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Preface

These are the notes of the lectures that I delivered in the scope of the Summer School “Non-
linear Hyperbolic Partial Differential Equations”, which was organized by Michael Reissig at
the Technical University Bergakademie Freiberg during June-August, 2010. The focus of the
course was on the fundamental solutions for the linear operators with variable coefficients
with an emphasize on some applications to the problem of the global in time existence of
the solutions of the Cauchy problem for nonlinear equations.

The participants of this course were mostly young mathematicians, graduate and under-
graduate students specializing in the partial differential equations. My thanks to Thomas
Beyer, Christiane Böhme, Torsten Herrmann, Christian Jäh, Silke Konsulke, David Krieg, Si-
mon Liebing, Simon Lomowski, Sascha Matthes, Jens Seidel, for their interests and construc-
tive participation in lectures, seminars, and discussions. Special thanks to Michael Reissig,
Daniele Del Santo, Fumihiko Hirosawa, Anahit Galstian, Christiane Böhme, Torsten Her-
rmann, and Christian Jäh, who gave numerous seminar presentations on various interesting
related topics and made this Summer School unforgettable for all participants.

The preparation of these notes for publication recalls me how much I enjoyed the summer
school at TU Bergakademie Freiberg and gives me the opportunity of thanking most heartily
Michael Reissig for the invitation to Freiberg and for the warm hospitality, for his help and
comments during my lectures and for the creating very friendly and fruitful atmosphere. He
also helped me to minimize the number of misprints (although many more surely remain)
in the manuscript and put plenty of efforts to link material of my lectures to that part of
the audience, which has taken his courses on partial differential equations and on pseudo-
differential operators offered in TU Bergakademie Freiberg.

I express my gratitude to the Deutsche Forschungsgemeinschaft for the financial support
under grant GZ: RE 961/16-1 AOBJ: 577386 and the TU Bergakademie Freiberg for the
hosting this Summer School.
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Lecture 1. June 25, 2010

1 Duhamels Principle and Fundamental Solutions of

Hyperbolic Operators

1.1 The fundamental solutions at a glance

P (x, t,Dx, Dt)u(x, t) = f(x, t)

Example:

P = ∂2
t −∆, ∆ :=

n∑
i=1

∂2
xi

=
n∑
i=1

(
∂

∂xi

)2

=
n∑
i=1

∂2

∂xi2
.

We look for E such that
PE = I (identity operator) .

We will write formally E = E(x, t,Dx, Dt). We call E a fundamental solution of the operator
P .

In general, the operator can have several fundamental solutions.

If E is a fundamental solution of the operator P , then

u(x, t) = (Ef)(x, t)

since
P (x, t,Dx, Dt)u(x, t) = (P (x, t,Dx, Dt)E)f(x, t) = If(x, t) = f(x, t) .

Consider now the Cauchy problem{
∂2
t u(x, t)−∆u(x, t) = f(x, t), (t, x) ∈ Rn+1 ,
u(x, 0) = ϕ0(x), ut(x, 0) = ϕ1(x), x ∈ Rn .

(1.1)

To solve it we will look for the operators E0(x, t,Dx, Dt) and E1(x, t,Dx, Dt) such that{
(∂2
t −∆)E0(x, t,Dx, Dt) = 0,
E0(x, 0, Dx, Dt) = I (identity operator), (∂tE0) (x, 0, Dx, Dt) = 0

and {
(∂2
t −∆)E1(x, t,Dx, Dt) = 0,
E1(x, 0, Dx, Dt) = 0, (∂tE1) (x, 0, Dx, Dt) = I (identity operator)

We call E0 and E1 the fundamental solutions of the Cauchy problem for the operator P .

If E is a fundamental solution of the operator P while E0 and E1 are the fundamental
solutions of the Cauchy problem for the operator P then the solution of the problem (1.1) is

u(x, t) = E0 (ϕ0 − (Ef)|t=0) + E1 (ϕ1 − (∂t(Ef)) |t=0) + Ef(x, t)
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In particular, if E is a fundamental solution of the operator P such that

E(x, 0, Dx, Dt) = 0, (∂tE) (x, 0, Dx, Dt) = 0 ,

then
u = E0 (ϕ0) + E1 (ϕ1) + Ef .

Moreover, it is easily seen that

u = ϕ0 + tϕ1 + E(f − P (ϕ0 + tϕ1)) (1.2)

and, consequently, if we have such E , then we do not need E0 and E1 to solve the Cauchy
problem.

2. Operators and convolution
More precisely, let us look for the distribution E1(x, t) ∈ D′(Rn+1) (Pay attention, we use
same notation!) such that E1(x, t) ∈ C∞t ((−∞,∞); E ′(Rn

x)), that is

< E1(x, t), ϕ(x) >∈ C∞t (R), for every ϕ ∈ C∞0 (Rn
x)

and such that {
(∂2
t −∆)E1(x, t) = 0, (t, x) ∈ Rn+1,
E1(x, 0) = 0, (∂tE1) (x, 0) = δ(x) x ∈ Rn,

and define the operator E1(x, t,Dx, Dt) by

E1(x, t,Dx, Dt)ψ(x) := (E1(·, t) ∗ ψ(·))(x, t).

We will write it formally (distribution notation)

E1(x, t,Dx, Dt)ψ(x) =

∫
Rn
E1(x− y, t)ψ(y) dy, ∀ψ(x) ∈ C∞0 (Rn)

Example: The fundamental solutions of the string operator P = ∂2
t − ∂2

x.
It is known, that for the Cauchy problem{

∂2
t u(x, t)− ∂2

xu(x, t) = 0, (t, x) ∈ R2,
u(x, 0) = ϕ0(x), ut(x, 0) = ϕ1(x), x ∈ R, (1.3)

with smooth functions ϕ0, ϕ1 the solution is

u(x, t) =
1

2
(ϕ0(x+ t) + ϕ0(x− t)) +

1

2

∫ x+t

x−t
ϕ1(y) dy .

We plug formally in the last representation formula ϕ0 = 0 and ϕ1 = δ(x) and obtain the
corresponding (formal) solution:

E1(x, t) =
1

2

∫ x+t

x−t
δ(y) dy.
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Therefore, we define

E1(x, t) =


1

2
if 0 ∈ [x− t, x+ t],

0 otherwise.

The last function is locally integrable E1 ∈ L1
loc(R2), and defines a distribution by the

integral:

< E1, ψ >=

∫
R2

E1(x, t)ψ(x, t) dx dt, ∀ψ(x, t) ∈ C∞0 (R2)

Proposition 1.1 The operator defined by the formula

E1(x, t,Dx, Dt)ϕ(x) =

∫
R
E1(x− y, t)ϕ(y) dy, ∀ϕ(x) ∈ C∞0 (R) ,

is a fundamental solution E1(x, t,Dx, Dt) of the Cauchy problem for the operator P . Thus,
in the operator notations that means{

(∂2
t − ∂2

x)E1 = 0,
E1|t=0 = 0, (∂tE1) |t=0 = I(identity operator),

while in the distributions notations{
(∂2
t − ∂2

x)E1(x, t) = 0, in D′(R2),
E1(x, 0) = 0, (∂tE1) (x, 0) = δ(x) in D′(R) .

Proof. Take ψ(x, t) ∈ C∞0 (R2) and consider < PE1, ψ > with the test-function ψ. Then

< PE1, ψ >=< (∂2
t − ∂2

x)E1, ψ >=< E1, (∂
2
t − ∂2

x)ψ >

by the definition of the derivative of a distribution. Since E1 ∈ L1
loc(R2), we obtain

< E1, (∂
2
t − ∂2

x)ψ > =

∫ ∞
−∞

∫ ∞
−∞
E1(x, t)(∂2

t − ∂2
x)ψ(x, t) dx dt.
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We make change of variables{
l = x+ t
m = x− t ,

{
x = 1

2
(l +m)

t = 1
2
(l −m)

,

∣∣∣∣D(x, t)

D(l,m)

∣∣∣∣ =
1

2
.

In the new variables the operator is

P = −4
∂2

∂l∂m
= −4

∂

∂l

∂

∂m
.

Hence, ∫ ∞
−∞

∫ ∞
−∞
E1(x, t)(∂2

t − ∂2
x)ψ(x, t) dx dt

=

∫ ∞
−∞

∫ ∞
−∞
E1(x, t)

(
−4

∂

∂l

∂

∂m

)
ψ(x(l,m), t(l,m))

1

2
dl dm

=

∫
{l≤0,m≥0}∪{l≥0,m≤0}

1

2

(
−4

∂

∂l

∂

∂m

)
ψ(x(l,m), t(l,m))

1

2
dl dm

= −
∫
{l≤0,m≥0}∪{l≥0,m≤0}

(
∂

∂l

∂

∂m

)
ψ(x(l,m), t(l,m)) dl dm

We denote I := {l ≤ 0,m ≥ 0} and II := {l ≥ 0,m ≤ 0} and consider two integrals,
respectively. We have ∫

{l≤0,m≥0}

(
∂

∂l

∂

∂m

)
ψ(x(l,m), t(l,m)) dl dm

=

∫ 0

−∞
dl

∫ ∞
0

dm

(
∂

∂l

∂

∂m

)
ψ(x(l,m), t(l,m))

=

∫ 0

−∞

(
∂

∂l

∫ ∞
0

(
∂

∂m

)
ψ(x(l,m), t(l,m)) dm

)
dl

=

∫ 0

−∞

∂

∂l
(ψ(x(l,∞), t(l,∞))− ψ(x(l, 0), t(l, 0))) dl

= −
∫ 0

−∞

∂

∂l
(ψ(x(l, 0), t(l, 0)) dl

= ψ(x(−∞, 0), t(−∞, 0)− ψ(x(0, 0), t(0, 0))

= −ψ(0, 0) .

Similarly, ∫
{l≥0,m≤0}

(
∂

∂l

∂

∂m

)
ψ(x(l,m), t(l,m)) dl dm

=

∫ ∞
0

dl

∫ 0

−∞
dm

(
∂

∂l

∂

∂m

)
ψ(x(l,m), t(l,m))

=

∫ ∞
0

(
∂

∂l

∫ 0

−∞

(
∂

∂m

)
ψ(x(l,m), t(l,m)) dm

)
dl
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=

∫ ∞
0

∂

∂l
(ψ(x(l, 0), t(l, 0))− ψ(x(l,−∞), t(l,−∞))) dl

=

∫ 0

−∞

∂

∂l
(ψ(x(l, 0), t(l, 0)) dl

= ψ(x(0, 0), t(0, 0))− ψ(x(−∞, 0), t(−∞, 0)

= ψ(0, 0) .

Thus,∫
{l≤0,m≥0}

(
∂

∂l

∂

∂m

)
ψ(x(l,m), t(l,m)) dl dm+

∫
{l≥0,m≤0}

(
∂

∂l

∂

∂m

)
ψ(x(l,m), t(l,m)) dl dm = 0

implies

< PE1, ψ >= 0 ∀ψ(x, t) ∈ C∞0 (R2) .

Consequently PE1 = 0 in D′.

To check initial values we note that

E1(x, 0, Dx, Dt)ϕ(x) =

∫
R
E1(x− y, 0)ϕ(y) dy = 0, ∀ϕ(x) ∈ C∞0 (R)

since the interval [x− y, x− y] has measure zero. On the other hand

< (∂tE1)(x, 0), ψ(x) > = lim
t→0+

1

t
{< E1(x, t), ψ(x) > − < E1(x, 0), ψ(x) >}

= lim
t→0+

1

t
{< E1(x, t), ψ(x) > −0}

= lim
t→0+

1

t
< E1(x, t), ψ(x) >

= lim
t→0+

1

t

∫
[x−t,x+t]∩suppψ

1

2
ψ(y)dy = ψ(0) =< δ, ψ > ∀ϕ(x) ∈ C∞0 (R).

Exercise: Prove, that E1(x, t) ∈ C∞t ((−∞,∞); E ′(Rx)) (The operator P is partially hypoel-
liptic in the direction of time.) Proposition is proven. �

Exercise: Verify that the distribution E1(x, t;x0, t0) := E1(x−x0, t− t0) solves the following
Cauchy problem:{

(∂2
t −∆x)E1(x, t;x0, t0) = 0,
E1(x, t0;x0, t0) = 0, (∂tE1) (x, t0;x0, t0) = δ(x− x0) .

Exercise: Verify that the distribution E+(x, t;x0, t0) defined by

E+(x, t;x0, t0) :=


1

2
if 0 ∈ D+(x0, t0),

0 otherwise,
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where
D+(x0, t0) := {(x, t) ∈ Rn+1 | |x− x0| ≤ t− t0},

is a fundamental solution for the operator. Moreover, it solves the following Cauchy problem{
(∂2
t −∆x)E+(x, t;x0, t0) = δ(x− x0)δ(t− t0),
E+(x, t0;x0, t0) = 0, (∂tE+) (x, t0;x0, t0) = 0 .

Moreover, supp E+(x, t;x0, t0) = D+(x0, t0).

1.2 Representation formula for Three Space Dimensions

Theorem 1.2 The classical solution u = u(x, t) of the Cauchy problem{
∂2
t u(x, t)−∆u(x, t) = f(x, t), x ∈ R3, t ≥ 0,
u(x, 0) = 0, ut(x, 0) = 0, x ∈ R3 ,

(1.4)

is given by

u(x, t) =
1

4π

∫
Bt(0)

f(x+ y, t− |y|)
|y|

dy . (1.5)

Proof. First, for a given function u = u(x, t) we define the spherical means of u about point
x:

Iu(x, r, t) =
1

ω2

∫
S2

u(x+ ry, t) dSy ,

where ω2 denotes the area of the unit sphere S2 ⊂ R3. Then we define an operator Ωr by

Ωr(u)(x, t) := rIu(x, r, t) .

One can recover the functions according to

u(x, t) = lim
r→0

Iu(x, r, t) = lim
r→0

1

r
Ωr(u)(x, t) , (1.6)

u(x, 0) = lim
r→0

1

r
Ωr(u)(x, 0) , ut(x, 0) = lim

r→0

1

r
Ωr(∂tu)(x, 0) . (1.7)

Exercise: Prove that ∆xΩrh = ∂2

∂ r2
Ωrh for every function h ∈ C2(R3).

Therefore we arrive at the following mixed problem for the function v(x, r, t) := Ωr(u)(x, r, t):
vtt(x, r, t)− vrr(x, r, t) = F (x, r, t) for all t ≥ 0 , r ≥ 0 , x ∈ R3 ,
v(x, 0, t) = 0 for all t ≥ 0 , x ∈ R3,
v(x, r, 0) = 0 , vt(x, r, 0) = 0 for all r ≥ 0 , x ∈ R3 ,
F (x, r, t) := Ωr(f)(x, t) , F (x, 0, t) = 0 , for all x ∈ R3 .

It must be noted here that the spherical mean Iu defined for r > 0 has an extension as an
even function for r < 0 and hence Ωr(u) has a natural extension as an odd function. That
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allows replacing the mixed problem with the Cauchy problem. Namely, let functions ṽ and
F̃ be the continuations of the functions v and the forcing term F , respectively, by

ṽ(x, r, t) =

{
v(x, r, t), if r ≥ 0
−v(x,−r, t), if r ≤ 0

, F̃ (x, r, t) =

{
F (x, r, t), if r ≥ 0
−F (x,−r, t), if r ≤ 0

.

Then ṽ solves the Cauchy problem{
ṽtt(x, r, t)− ṽrr(x, r, t) = F̃ (x, r, t) for all t ≥ 0 , r ∈ R , x ∈ R3 ,
ṽ(x, r, 0) = 0 , ṽt(x, r, 0) = 0 for all r ∈ R , x ∈ R3.

Hence, one has the representation

ṽ(x, r, t) =

∫ t

0

dτ

(
1

2

∫ r+t−τ

r−t+τ
F̃ (x, r1, τ) dr1

)
.

Since

u(x, t) = lim
r→0

ṽ(x, r, t)

r
,

we consider the case of r < t in the above representation to obtain:

u(x, t) = lim
r→0

ṽ(x, r, t)

r

= lim
r→0

1

r

∫ t

0

dτ

(
1

2

∫ r+t−τ

r−t+τ
F̃ (x, r1, τ) dr1

)
= lim

r→0

1

r

∫ t

0

dτ

(
1

2

∫ t−τ

−t+τ
F̃ (x, r + z, τ) dz

)
= lim

r→0

1

r

∫ t

0

dτ
1

2

{∫ 0

−t+τ
F̃ (x, r + z, τ) dz +

∫ t−τ

0

F̃ (x, r + z, τ) dz

}
= lim

r→0

1

r

∫ t

0

dτ
1

2

{∫ t−τ

0

F̃ (x, r − z, τ) dz +

∫ t−τ

0

F̃ (x, r + z, τ) dz

}
=

∫ t

0

dτ lim
r→0

1

2r

{∫ t−τ

0

F̃ (x, r − z, τ) dz +

∫ t−τ

0

F̃ (x, r + z, τ) dz

}
=

∫ t

0

dτ

∫ t−τ

0

lim
r→0

1

2r

{
F̃ (x, r − z, τ) + F̃ (x, r + z, τ)

}
dz .

Then by definition of the function F̃ , we replace

lim
r→0

1

2r

{
F̃ (x, r − z, τ) + F̃ (x, r + z, τ)

}
= lim

r→0

1

2r
{−F (x, z − r, τ) + F (x, z + r, τ)}

= lim
r→0

1

2r
{F (x, z + r, τ)− F (x, z − r, τ)}

with ( ∂
∂r
F (x, r, τ)

)
r=z
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in the last formula. The definitions of F (x, r, t) and of the operator Ωr yield:

u(x, t) =

∫ t

0

dτ

∫ t−τ

0

lim
r→0

1

2r

{
F̃ (x, r − z, τ) + F̃ (x, r + z, τ)

}
dz

=

∫ t

0

dτ

∫ t−τ

0

( ∂
∂r
F (x, r, τ)

)
r=z

dz

=

∫ t

0

dτ

∫ t−τ

0

( ∂
∂r

Ωr(f)(x, τ)
)
r=z

dz

=

∫ t

0

dτ

∫ t−τ

0

( ∂
∂r

r

ω2

∫
S2

f(x+ ry, τ) dSy

)
r=z

dz ,

where x ∈ R3. Thus, the solution to the Cauchy problem is given by

u(x, t) =

∫ t

0

dτ

∫ t−τ

0

( ∂
∂r

r

4π

∫
S2

f(x+ ry, τ) dSy

)
r=z

dz . (1.8)

(Note that if we have with some function K a similar formula, like

u(x, t) =

∫ t

0

dτ

∫ t−τ

0

K(τ, z)
( ∂
∂r

r

4π

∫
S2

f(x+ ry, τ) dSy

)
r=z

dz ,

then we cannot apply Newton-Leibniz formula to get rid of the derivative and of the inter-
mediate integral! But, on the other hand, it will be shown later that such function K(τ, z)
opens a way for the generalizations.) Finally we show (Exercise!) that

u(x, t) =
1

4π

∫
Bt(0)

f(x+ y, t− |y|)
|y|

dy ,

where
Bt(0) := {y ∈ R3 | |y| ≤ t } .

Theorem is proven. �

Lecture 2. July 2, 2010

1.3 Representation formula for n-Space Dimensions

Theorem 1.3 For ϕ1 ∈ C∞0 (Rn) and for x ∈ Rn, n = 2m+1, m ∈ N, the solution u(x, t)

of the Cauchy problem

utt −∆u = 0, u(x, 0) = 0, ut(x, 0) = ϕ1(x) ,

is given by

u(x, t) :=
(1

t

∂

∂t

)n−3
2 tn−2

ωn−1c
(n)
0

∫
Sn−1

ϕ1(x+ ty) dSy, (1.9)

12



where c
(n)
0 = 1 · 3 · . . . · (n− 2).

For x ∈ Rn, n = 2m, m ∈ N,

u(x, t) :=
(1

t

∂

∂t

)n−2
2 2rn−1

ωn−1c
(n)
0

∫
Bn1 (0)

1√
1− |y|2

ϕ1(x+ ty) dVy , (1.10)

where c
(n)
0 = 1 · 3 · . . . · (n− 1).

For ϕ0 ∈ C∞0 (Rn) and for x ∈ Rn, n = 2m+ 1, m ∈ N, the solution u(x, t) of the Cauchy

problem
utt −∆u = 0, u(x, 0) = ϕ0(x), ut(x, 0) = 0 ,

is given by

u(x, t) :=
∂

∂t

(1

t

∂

∂t

)n−3
2 tn−2

ωn−1c
(n)
0

∫
Sn−1

ϕ0(x+ ty) dSy , (1.11)

where c
(n)
0 = 1 · 3 · . . . · (n− 2).

For x ∈ Rn, n = 2m, m ∈ N,

u(x, t) :=
∂

∂t

(1

t

∂

∂t

)n−2
2 2tn−1

ωn−1c
(n)
0

∫
Bn1 (0)

1√
1− |y|2

ϕ0(x+ ty) dVy . (1.12)

where c
(n)
0 = 1 · 3 · . . . · (n− 1). The constant ωn−1 is the area of the unit sphere Sn−1 ⊂ Rn.

Sketch of the proof of the n-D analog of formula (1.5):

u(x, t) =
2

c
(n)
0

∫ t

0

db

((1

r

∂

∂r

)m−1

r2m−1 1

ωn−1

∫
Sn−1

f(x+ ry, b) dSy

)
r=t−b

. (1.13)

Consider the case of x ∈ Rn, where n = 2m+ 1, m ∈ N. For the given function u = u(x, t)
we define the spherical mean of u about point x:

Iu(x, r, t) =
1

ωn−1

∫
Sn−1

u(x+ ry, t) dSy ,

where ωn−1 denotes the area of the unit sphere Sn−1 ⊂ Rn. Then we define the operator Ωr

by

Ωr(u)(x, t) :=
(1

r

∂

∂r

)m−1

r2m−1Iu(x, r, t) .

One can show that there are constants c
(n)
j , j = 0, . . . ,m − 1, where n = 2m + 1, with

c
(n)
0 = 1 · 3 · 5 · · · (n− 2), such that

(1

r

∂

∂r

)m−1

r2m−1ϕ(r) = r
m−1∑
j=0

c
(n)
j rj

∂j

∂rj
ϕ(r) .

13



Exercise: Prove that c
(n)
0 = 1 · 3 · 5 · · · (n− 2).

One can recover the functions according to

u(x, t) = lim
r→0

Iu(x, r, t) = lim
r→0

1

c
(n)
0 r

Ωr(u)(x, t) , (1.14)

u(x, 0) = lim
r→0

1

c
(n)
0 r

Ωr(u)(x, 0) , ut(x, 0) = lim
r→0

1

c
(n)
0 r

Ωr(∂tu)(x, 0) . (1.15)

Exercise: Verify that ∆xΩrh = ∂2

∂ r2
Ωrh for every function h ∈ C2(Rn).

Therefore we arrive at the following mixed problem for the function v(x, r, t) := Ωr(u)(x, r, t):
vtt(x, r, t)− vrr(x, r, t) = F (x, r, t) for all t ≥ 0 , r ≥ 0 , x ∈ Rn ,
v(x, 0, t) = 0 for all t ≥ 0 , x ∈ Rn,
v(x, r, 0) = 0 , vt(x, r, 0) = 0 for all r ≥ 0 , x ∈ Rn ,
F (x, r, t) := Ωr(f)(x, t) , F (x, 0, t) = 0 , for all x ∈ Rn .

Let the functions ṽ and F̃ be the continuations of the functions v and the forcing term F ,
respectively, by

ṽ(x, r, t) =

{
v(x, r, t), if r ≥ 0
−v(x,−r, t), if r ≤ 0

, F̃ (x, r, t) =

{
F (x, r, t), if r ≥ 0
−F (x,−r, t), if r ≤ 0

.

Then ṽ solves the Cauchy problem{
ṽtt(x, r, t)− ṽrr(x, r, t) = F̃ (x, r, t) for all t ≥ 0 , r ∈ R , x ∈ Rn ,
ṽ(x, r, 0) = 0 , ṽt(x, r, 0) = 0 for all r ∈ R , x ∈ Rn.

Hence, according to the result for the 1-d case, one has the representation

ṽ(x, r, t) =

∫ t

0

dτ

(
1

2

∫ r+t−τ

r−t+τ
F̃ (x, r1, τ) dr1

)
.

Since

u(x, t) = lim
r→0

ṽ(x, r, t)

r
,

we consider the case of r < t in the above representation to obtain:

u(x, t) =
1

c
(n)
0

∫ t

0

db

∫ t−b

0

dr1 lim
r→0

1

r

{
F̃ (x, r + r1, b) + F̃ (x, r − r1, b)

}
.

Then by definition of the function F̃ ,

lim
r→0

1

r

{
F̃ (x, r − r1, b) + F̃ (x, r + r1, b)

}
= 2
( ∂
∂r
F (x, r, b)

)
r=r1

in the last formula. The definitions of F (x, r, t) and of the operator Ωr yield:

u(x, t) =
2

c
(n)
0

∫ t

0

db

∫ t−b

0

dr1

(
∂

∂r

(1

r

∂

∂r

)m−1

r2m−1If (x, r, b)

)
r=r1

,
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where x ∈ Rn, n = 2m+ 1, m ∈ N. Thus

u(x, t) =
2

c
(n)
0

∫ t

0

db

∫ t−b

0

dr1

(
∂

∂r

(1

r

∂

∂r

)m−1

r2m−1 1

ωn−1

∫
Sn−1

f(x+ ry, b) dSy

)
r=r1

.

It follows (1.13), that is,

u(x, t) =
2

c
(n)
0

∫ t

0

db

∫ t−b

0

dr
∂

∂r

(1

r

∂

∂r

)m−1

r2m−1 1

ωn−1

∫
Sn−1

f(x+ ry, b) dSy

=
2

c
(n)
0

∫ t

0

db

((1

r

∂

∂r

)m−1

r2m−1 1

ωn−1

∫
Sn−1

f(x+ ry, b) dSy)

)
r=t−b

.

(Note that if we have with some function K the similar formula

u(x, t) =
2

c
(n)
0

∫ t

0

db

∫ t−b

0

dr1K(b, r1)

(
∂

∂r

(1

r

∂

∂r

)m−1

r2m−1If (x, r, b)

)
r=r1

,

then we cannot apply Newton-Leibniz formula to get rid of the derivative and of the inter-
mediate integral! On the other hand, such function opens a way for generalizations.)
Exercise: Employ the method of descent to complete the proof for the case of even n,
n = 2m, m ∈ N.
Theorem is proven. �

Fundamental solutions. We set ϕ0(x) = δ(x) and ϕ1(x) = δ(x) in (1.9) - (1.12), and we
obtain: if n is odd, then

E1(x, t) :=
1

ωn−11 · 3 · 5 . . . · (n− 2)

(1

t

∂

∂t

)n−3
2 1

t
δ(|x| − t) ,

E0(x, t) :=
1

ωn−11 · 3 · 5 . . . · (n− 2)

∂

∂t

(1

t

∂

∂t

)n−3
2 1

t
δ(|x| − t) ,

while for n even we have

E1(x, t) :=
2

ωn−11 · 3 · 5 . . . · (n− 1)

(1

t

∂

∂t

)n−2
2 1√

t2 − |x|2
χBt(x) ,

E0(x, t) :=
2

ωn−11 · 3 · 5 . . . · (n− 1)

∂

∂t

(1

t

∂

∂t

)n−2
2 1√

t2 − |x|2
χBt(x) .

Here χBt(x) denotes the characteristic function of the ball Bt(x) := {x ∈ Rn; |x| ≤ t}. The
constant ωn−1 is the area of the unit sphere Sn−1 ⊂ Rn. The distribution δ(|x|− t) is defined
by

〈δ(| · | − t), ψ(·)〉 =

∫
|x|=t

ψ(x) dx for ψ ∈ C∞0 (Rn).

Exercise: Prove that the above formulas indeed give the fundamental solutions.
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1.4 Duhamel’s principle revised: Integral transform

The text of this subsection is taken from [27].
Duhamel’s principle: The Cauchy problem with source term f(x, t) ∈ C∞(R2):

utt − uxx = f(x, t) in R2, u(x, t0) = 0, ut(x, t0) = 0 in R. (1.16)

The solution can be written as an integral

u(x, t) =

∫ t

t0

v(x, t; τ) dτ

of the family of the solutions v(x, t; τ) of the problem without the source term, but with a
parameter-dependent second initial datum

vtt − vxx = 0 in R2, v(x, τ ; τ) = 0, vt(x, τ ; τ) = f(x, τ) in R .

(The parameter τ is both in the function f and in the initial hyperplane.) Hence,

u(x, t) =

∫ t

t0

(
1

2

∫ x+t−τ

x−t+τ
f(y, τ) dy

)
dτ .

We revise the Duhamel’s principle. More precisely, we write∫ x+t−τ

x−t+τ
f(y, τ) dy =

∫ t−τ

−(t−τ)

f(x+ z, τ) dz

=

∫ 0

−(t−τ)

f(x+ z, τ) dz +

∫ t−τ

0

f(x+ z, τ) dz

=

∫ t−τ

0

f(x− z, τ) dz +

∫ t−τ

0

f(x+ z, τ) dz .

Our first observation is: if we denote

w(x; t; τ) :=
1

2
(f(x+ t, τ) + f(x− t, τ)),

then

u(x, t) =

∫ t

t0

dτ

∫ t−τ

0

w(x, z; τ) dz . (1.17)

Here w = w(x; t; τ) is the solution of the Cauchy problem

wtt − wxx = 0 in R2, w(x, 0; τ) = f(x, τ), wt(x, 0; τ) = 0 in R. (1.18)

This formula allows us to solve problems with the source term if we solve the problem for the
same equation without source term but with the parameter-dependent first initial datum.
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Exersise 1.4 Prove that the formula

u(x, t) =

∫ t

t0

dτ

∫ t−τ

0

w(x, z; τ) dz , (1.19)

can be used also for x ∈ Rn, n ∈ N. More precisely, it holds also for the Cauchy problem

utt −∆u = f(x, t) in Rn+1, u(x, t0) = 0, ut(x, t0) = 0 in Rn ,

with the function w = w(x; t; τ) solving{
wtt −∆w = 0 in Rn+1,
w(x, 0; τ) = f(x, τ), wt(x, 0; τ) = 0 in Rn.

(1.20)

Note that in the last problem the initial time t = 0 is frozen, while in the Duhamel’s principle
it is varying with the parameter τ .

The second observation is that in

u(x, t) =

∫ t

t0

dτ

∫ t−τ

0

w(x, z; τ) dz ,

the upper limit t− τ of the inner integral is generated by the propagation phenomena with
the speed which is equals to one. In fact, that is a distance function between the points
reached from the origin at time t and τ .

Our third observation is that the solution operator G : f 7−→ u can be regarded as a
composition of two operators.

• The first operator
WE : f 7−→ w

is a Fourier Integral Operator, which is a solution operator of the Cauchy problem with
the first initial datum for the wave equation in the Minkowski spacetime.

• The second operator
K : w 7−→ u

is an integral operator given by u(x, t) =
∫ t
t0
dτ
∫ t−τ

0
w(x, z; τ)dz.

Thus, G = K ◦WE and we have the diagram 1

Figure 1: Diagram for the solution operator
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The Aim is that based on this diagram to generate a class of operators for which we will
obtain explicit representation formulas for the solutions. That means also that we will have
representations for the fundamental solutions of the partial differential operators.

In fact, this diagram brings into a single hierarchy several different partial differential
operators. Indeed, if we take into account the propagation cone by introducing the distance
function φ(t), and if we provide the integral transform with the kernel K(t; r, b) as follows:

K[w](x, t) =

∫ t

t0

db

∫ |φ(t)−φ(b)|

0

K(t; r, b)w(x, r; b)dr, x ∈ Rn, t > t0, (1.21)

then we actually can generate new representations for the solutions of different well-known
equations. Below we illustrate the suggested scheme by several examples.

1.5 Examples of Integral transforms.
Example 1: Klein-Gordon equation in the Minkowski space-
time.

1. Bessel functions: Jν(z), ν ∈ R, is a solution of ODE

z2d
2y

dz2
+ z

dy

dz
+ (z2 − ν2)y = 0,

Jν(z) =
∞∑
k=0

(−1)k

k!Γ(k + ν + 1)

(z
2

)2k+ν

,

Iν(z) =
∞∑
k=0

1

k!Γ(k + ν + 1)

(z
2

)2k+ν

.
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Figure 2: Graph of Function J0(x) Figure 2: Graph of Function I0(x)

Γ(z) =

∫ ∞
0

e−ttz−1dt, <z > 0 .
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2. The representation formulas. If we choose the kernel K(t; r, b) as

K(t; r, b) = J0

(√
(t− b)2 − r2

)
, (1.22)

where J0(z) is the Bessel function of the first kind, and if we choose the distance function as
φ(t) = t, then we can prove (see Theorem 1.5 below) that the function

u(x, t) =

∫ t

t0

db

∫ t−b

0

J0

(√
(t− b)2 − r2

)
w(x, r; b)dr, x ∈ R, t > t0,

solves the problem for the Klein-Gordon equation with a positive mass equals to 1 in the
one-dimensional Minkowski spacetime,

utt − uxx + u = f(x, t) in R2, u(x, t0) = 0, ut(x, t0) = 0 in R ,

provided that w(x, r; b) is a corresponding solution of the problem for the wave equation in
the Minkowski spacetime. We emphasize that the function w = w(x, t; b), with b regarded
as a parameter, and the function u = u(x, t) solve different equations. This is fundamental
distinction from the Duhamel’s principle.

If we now choose the kernel K(t; r, b) as

K(t; r, b) = I0

(√
(t− b)2 − r2

)
, (1.23)

where I0(z) is the modified Bessel function of the first kind, and the distance function as
φ(t) = t, then the function

u(x, t) =

∫ t

t0

db

∫ t−b

0

I0

(√
(t− b)2 − r2

)
w(x, r; b)dr, x ∈ Rn, t > t0,

solves the problem for the Klein-Gordon equation with an imaginary mass in the one-
dimensional Minkowski spacetime,

utt − uxx − u = f(x, t) in R2, u(x, t0) = 0, ut(x, t0) = 0 in R ,

provided that w(x, r; b) is a corresponding solution of the problem (1.18) for the wave equa-
tion in the one-dimensional Minkowski spacetime.

According to the next theorem the representation formulas are valid also for the higher
dimensional equations.

Theorem 1.5 (K.Y. [27] Rend. Istit. Mat. Univ. Trieste 42 Suppl. (2010) )
The functions u = u<(x, t) and u=(x, t) defined by

u<(x, t) =

∫ t

t0

db

∫ t−b

0

J0

(
m
√

(t− b)2 − r2
)
w(x, r; b)dr, x ∈ Rn, (1.24)

u=(x, t) =

∫ t

t0

db

∫ t−b

0

I0

(
m
√

(t− b)2 − r2
)
w(x, r; b)dr, x ∈ Rn, (1.25)

m = |M |, are solutions of the problems

utt −∆u+M2u = f(x, t) in Rn+1, u(x, t0) = 0, ut(x, t0) = 0 in Rn ,

with M2 > 0 and M2 < 0, respectively. Here w(x, t; b) is a solution of (1.20).

19



We emphasize that u<(x, t) and w(x, r; b) solve different equations.

Proof of Theorem 1.5. We give a proof for the case of real mass M = m = 1 > 0, only,
since the proof for the imaginary mass is similar. By straightforward calculations we obtain

∂tu<(x, t) =

∫ t

t0

f(x, b)db+

∫ t

t0

db

∫ t−b

0

wz(x, r; b)dr

+

∫ t

t0

db

∫ t−b

0

J ′0

(√
(t− b)2 − r2

) t− b√
(t− b)2 − r2

w(x, r; b)dr.

Then, one more differentiation and the equation for w imply

∂2
t u<(x, t) = f(x, t) + ∆

∫ t

t0

db

∫ t−b

0

w(x, r; b)dr −
∫ t

t0

t− b
2

w(x, t− b; b) db

+

∫ t

t0

db

∫ t−b

0

{
J ′0

(√
(t− b)2 − r2

)
∂t

(
t− b√

(t− b)2 − r2

)

+J ′′0

(√
(t− b)2 − r2

)( t− b√
(t− b)2 − r2

)2}
w(x, r; b)dr .

Consequently,

∂2
t u<(x, t)−∆u<(x, t) + u<(x, t)

=−∆

∫ t

t0

db

∫ t−b

0

J0

(√
(t− b)2 − r2

)
w(x, r; b)dr +

∫ t

t0

db

∫ t−b

0

J0

(√
(t− b)2 − r2

)
w(x, r; b)dr

+f(x, t) + ∆

∫ t

t0

db

∫ t−b

0

w(x, r; b)dr −
∫ t

t0

t− b
2

w(x, t− b; b) db

+

∫ t

t0

db

∫ t−b

0

{
J ′0

(√
(t− b)2 − r2

)
∂t

(
t− b√

(t− b)2 − r2

)

+J ′′0

(√
(t− b)2 − r2

)( t− b√
(t− b)2 − r2

)2}
w(x, r; b)dr.

Since ∆w = ∂2
rw(x, r; b) we obtain

∂2
t u<(x, t)−∆u<(x, t) + u<(x, t)

= f(x, t) +

∫ t

t0

db

∫ t−b

0

(
∂rJ0

(
m
√

(t− b)2 − r2
))

wr(x, r; b)dr −
∫ t

t0

t− b
2

w(x, t− b; b) db

+

∫ t

t0

db

∫ t−b

0

J0

(
m
√

(t− b)2 − r2
)
w(x, r; b)dr

+

∫ t

t0

db

∫ t−b

0

{
J ′0

(√
(t− b)2 − r2

)
∂t

(
t− b√

(t− b)2 − r2

)

+J ′′0

(√
(t− b)2 − r2

)( t− b√
(t− b)2 − r2

)2}
w(x, r; b)dr.
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On the other hand ∫ t

t0

db

∫ t−b

0

(
∂rJ0

(√
(t− b)2 − r2

))
wr(x, r; b)dr

=

∫ t

t0

t− b
2

w(x, t− b; b) db

−
∫ t

t0

db

∫ t−b

0

{
J ′′0

(√
(t− b)2 − r2

)( r√
(t− b)2 − r2

)2

+J ′0

(√
(t− b)2 − r2

)
∂r

(
− r√

(t− b)2 − r2

)}
w(x, r; b)dr,

then

∂2
t u<(x, t)−∆u<(x, t) + u<(x, t)

= f(x, t) +

∫ t

t0

db

∫ t−b

0

(
∂rJ0

(
m
√

(t− b)2 − r2
))

wr(x, r; b)dr −
∫ t

t0

t− b
2

w(x, t− b; b) db

+

∫ t

t0

db

∫ t−b

0

J0

(
m
√

(t− b)2 − r2
)
w(x, r; b)dr

+

∫ t

t0

db

∫ t−b

0

{
J ′0

(√
(t− b)2 − r2

)
∂t

(
t− b√

(t− b)2 − r2

)

+J ′′0

(√
(t− b)2 − r2

)( t− b√
(t− b)2 − r2

)2}
w(x, r; b)dr .

Hence,

∂2
t u<(x, t)−∆u<(x, t) + u<(x, t)

= f(x, t)

+

∫ t

t0

db

∫ t−b

0

{
J ′0

(√
(t− b)2 − r2

) 1√
(t− b)2 − r2

+J0

(√
(t− b)2 − r2

)
+ J ′′0

(√
(t− b)2 − r2

)}
w(x, r; b)dr

= f(x, t).

Theorem is proven. �

Let s ∈ R be a given number. For every function ψ ∈ C∞0 (Rn) we denote

‖ψ(x)‖2
Hs(Rn) :=

∫
Rn

(
1 + |ξ|2

)s |ψ̂(ξ)|2dξ ,

where ψ̂(ξ) is the Fourier transform of ψ(x), that is,

ψ(x) = (2π)−n/2
∫
Rn
ex·ξψ̂(ξ) dξ, ψ̂(ξ) = (2π)−n/2

∫
Rn
e−x·ξψ(x) dx .
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Exercise: Prove, that if s is a positive integer, s ∈ N, then one has

‖ψ(x)‖2
Hs(Rn) =

∫
Rn

∑
α1+α2+...+αn≤s

cα1α2...αn|∂α1
x1
∂α2
x2
· · · ∂αnxn ψ(x)|2 dx .

Find the constants cα1α2...αn .

Corollary 1.6 For the solution (1.25) the following estimate holds

n∑
i=1

‖∂xiu=(x, t)‖2
Hs(Rn) ≤

1

m

∫ t

t0

sinh(m(t− b))
n∑
i=1

‖∂xif(x, b)‖2
Hs(Rn) db .

Proof. For the solution w = w(x, r; b) of the Cauchy problem for the wave equation

wtt −∆w = 0 w(x, 0, b) = f(x, b), wt(x, 0, b) = 0,

we have the conservation law

n∑
i=1

‖∂xiw(x, t, b)‖2
Hs(Rn) + ‖∂tw(x, t, b)‖2

Hs(Rn)

=
n∑
i=1

‖∂xiw(x, 0, b)‖2
Hs(Rn) + ‖∂tw(x, 0, b)‖2

Hs(Rn) .

That implies

n∑
i=1

‖∂xiw(x, t, b)‖2
Hs(Rn) + ‖∂tw(x, t, b)‖2

Hs(Rn) =
n∑
i=1

‖∂xif(x, b)‖2
Hs(Rn) .

Hence, since I0

(
m
√

(t− b)2 − r2
)

is positive, we obtain

n∑
i=1

‖∂xiu(x, t)‖2
Hs(Rn) ≤

∫ t

t0

db

∫ t−b

0

I0

(
m
√

(t− b)2 − r2
) n∑
i=1

‖∂xif(x, b)‖2
Hs(Rn)dr

≤
∫ t

t0

n∑
i=1

‖∂xif(x, b)‖2
Hs(Rn)db

∫ t−b

0

I0

(
m
√

(t− b)2 − r2
)
dr .

We denote τ := t− b. Then∫ t−b

0

I0

(
m
√

(t− b)2 − r2
)
dr =

∫ τ

0

I0

(
m
√
τ 2 − r2

)
dr

and we make the change of variable x = m
√
τ 2 − r2 in the integral∫ τ

0

I0

(
m
√
τ 2 − r2

)
dr =

1

m

∫ mτ

0

x√
(mτ)2 − x2

I0 (x) dx .
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Exercise: Show that for a > 0 one has∫ a

0

x√
a2 − x2

I0 (x) dx = sinh(a) .

Finally, using the last identity with a = mτ we obtain

n∑
i=1

‖∂xiu(x, t)‖2
Hs(Rn) ≤

1

m

∫ t

t0

sinh(m(t− b))
n∑
i=1

‖∂xif(x, b)‖2
Hs(Rn)db .

Corollary is proven. �

Problem. Show that the kernel sinhm(t − b) of this inequality is an optimal one, that is,
if with some continuous function K(t, b) the following estimate

n∑
i=1

‖∂xiu=(x, t)‖2
Hs(Rn) ≤

∫ t

t0

K(t, b)
n∑
i=1

‖∂xif(x, b)‖2
Hs(Rn)db

holds for all t, t0 and f(x, b) ∈ C∞0 (Rn+1), then

K(t, b) ≥ 1

m
sinh(m(t− b)).

Problem. Derive for u<(x, t) a corresponding estimate.

3. The fundamental solution for the Klein-Gordon equation in the Minkowski spacetime. If
we choose the kernel K(t; r, b) as in (1.22) and choose the distance function as φ(t) = t, then
it can be easily verified (see Theorem 1.7 below) that the distribution

E(x, t;x0, t0) = H(t− t0)

∫ t−b

0

J0

(√
(t− b)2 − r2

)
Ewave0 (x− x0, r)dr ,

x ∈ Rn, t ∈ R, is a forward fundamental solutions for the Klein-Gordon operator with a
positive mass equals to 1 in the Minkowski spacetime,(

∂2
t −∆ + 1

)
E(x, t;x0, t0) = δ(x− x0)δ(t− t0) in Rn+1, supp E ⊆ D+(x0, t0),

provided that Ewave0 (x, t) is the fundamental solution of the Cauchy problem corresponding
to the first datum with the source at the origin, for the wave equation in the Minkowski
spacetime.

We emphasize that the distributions E(x, t;x0, t0) and Ewave(x, t) solve different equa-
tions.

If we now choose the kernel K(t; r, b) as in (1.23) and the distance function as φ(t) = t,
then the distribution

E(x, t;x0, t0) = H(t− t0)

∫ t−t0

0

I0

(√
(t− b)2 − r2

)
Ewave0 (x− x0, r)dr,

x ∈ Rn, t ∈ R, is a forward fundamental solution for the Klein-Gordon operator with an
imaginary mass in the Minkowski spacetime,(

∂2
t −∆− 1

)
E(x, t;x0, t0) = δ(x− x0)δ(t− t0) inRn+1, supp E ⊆ D+(x0, t0).

The following theorem can be easily proved by direct substitution.
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Theorem 1.7 (K.Y. [27] Rend. Istit. Mat. Univ. Trieste 42 Suppl. (2010) )
The distributions E<(x, t;x0, t0) and E=(x, t;x0, t0) defined by

E<(x, t;x0, t0) =H(t− t0)

∫ t−t0

0

J0

(
m
√

(t− b)2 − r2
)
Ewave0 (x− x0, r)dr,

E=(x, t;x0, t0) =H(t− t0)

∫ t−t0

0

I0

(
m
√

(t− b)2 − r2
)
Ewave0 (x− x0, r)dr,

x ∈ Rn, t ∈ R, are forward fundamental solutions for the Klein-Gordon operator with a real
or an imaginary mass

∂2
t −∆ +M2 in Rn+1,

with M2 > 0 or M2 < 0, respectively. Here m = |M | ≥ 0 and Ewave0 (x, t) is the fundamental
solution of the Cauchy problem corresponding to the first datum with the support at the
origin, for the wave equation in the Minkowski spacetime.

Lecture 3. July 16, 2010

1.6 Examples of Integral transforms.
Example 2: Tricomi-type equations.

1. The Gauss’s hypergeometric function.

z(1− z)
d2u

dz2
+ [c− (a+ b+ 1)z]

du

dz
− abu = 0,

(a)0 = 1, (a)n = a(a+ 1) · · · (a+ n− 1) =
Γ(a+ n)

Γ(a)
, n = 1, 2, 3, . . . ,

F (a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)nn!

zn (= 2F1(a, b; c; z)) .

If <c > <b > 0, then there is the Euler formula

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− d)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)adt .

2. The representation formulas. The first example linking to an operator with a variable
coefficient is generated by the kernel

K(t; r, b) := ck
(
(φ(t) + φ(b))2 − r2

)−γ
F

(
γ, γ; 1;

(φ(t)− φ(b))2 − r2

(φ(t) + φ(b))2 − r2

)
, (1.26)

with ck = (k + 1)−k/(k+1)2k/(k+1), the distance function φ = φ(t) and the number γ defined
as follows

φ(t) =
1

k + 1
tk+1 =

2

l + 2
t
l+2
2 , γ :=

k

2k + 2
=

l

2(l + 2)
, 2k = l ∈ N ∪ {0}, (1.27)

where N is the set of natural numbers, while F (a, b; c; ζ) is the Gauss’s hypergeometric
function.
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Figure 3: Graph of the function F (1/3, 1/3; 1;x)

Theorem 1.8 (K.Y. [17]J.D.E. 206(2004) Representation theorem)
For an integer non-negative l and for the smooth function f = f(x, t), the function

u(x, t) = cl

∫ t

0

db

∫ φ(t)−φ(b)

0

(
(φ(t) + φ(b))2 − r2

)−γ
×F

(
γ, γ; 1;

(φ(t)− φ(b))2 − r2

(φ(t) + φ(b))2 − r2

)
w(x, r; b)dr, t > 0,

solves the Tricomi-type equation

utt − tl∆u = f(x, t) in Rn+1
+ := {(x, t) |x ∈ Rn, t > 0}, (1.28)

and takes vanishing initial values

u(x, 0) = 0, ut(x, 0) = 0 in Rn. (1.29)

Here the function w(x, t; b) is a solution of the Cauchy problem

wtt −4w = 0, w(x, 0) = f(x, b), wt(x, 0) = 0 .

The next theorem gives representation formula for the problem without source term but
with initial data.

Theorem 1.9 (K.Y.[23] Z. Angew. Math. Phys. 58 (2007)) The solution to the Cauchy prob-
lem

utt − tl 4 u = 0, u(x, 0) = ϕ0(x), ut(x, 0) = ϕ1(x) (1.30)

can be represented as follows:

u(x, t) = 22−2γΓ (2γ)

Γ2 (γ)

∫ 1

0

vϕ0(x, φ(t)s)(1− s2)γ−1ds (1.31)

+ t22γΓ (2− 2γ)

Γ2 (1− γ)

∫ 1

0

vϕ1(x, φ(t)s)(1− s2)−γds, x ∈ Rn, t > 0 .

Here the function vϕ(x, t) solves the Cauchy problem

vtt −4v = 0, v(x, 0) = ϕ(x), vt(x, 0) = 0 .
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One can write (1.31) also as follows

u(x, t) = φ(t)1−2γ22−2γΓ (2γ)

Γ2 (γ)

∫ φ(t)

0

vϕ0(x, τ)(φ2(t)− τ 2)γ−1dτ (1.32)

+ tφ(t)2γ−122γΓ (2− 2γ)

Γ2 (1− γ)

∫ φ(t)

0

vϕ1(x, τ)(φ2(t)− τ 2)−γdτ, x ∈ Rn, t > 0 .

We remind that here the function vϕ(x, t) is given by formulas (1.11) and (1.12). More
precisely, for ϕ ∈ C∞0 (Rn) and for x ∈ Rn, n = 2m+ 1, m ∈ N,

vϕ(x, t) :=
∂

∂t

(1

t

∂

∂t

)n−3
2 tn−2

ωn−1c
(n)
0

∫
Sn−1

ϕ(x+ ty) dSy

while for x ∈ Rn, n = 2m, m ∈ N ,

vϕ(x, t) :=
∂

∂t

(1

t

∂

∂t

)n−2
2 2tn−1

ωn−1c
(n)
0

∫
Bn1 (0)

1√
1− |y|2

ϕ(x+ ty) dVy .

3. Huygens’ Principle. Consider the formula that gives the solution for the Cauchy
problem for the wave equation for odd n:

v(x0, t0) :=

{(
∂

∂t

)l (1

t

∂

∂t

)n−3
2 tn−2

ωn−1c
(n)
0

∫
Sn−1

ϕ(x0 + ty) dSy

}
t=t0

, l = 0, 1 .

It shows that the value of the solution at point x = x0 at a moment t = t0 depends only on
the values of the function ϕ and its derivatives on the sphere

Sn−1
t0 (x0) := {x ∈ Rn | |x− x0| = t0} .

This observation is called the Strong Huygens’ Principle.

On the other hand, the corresponding formula for the Tricomi-type equation

u(x0, t0) = cl

∫ 1

0

vϕ0(x
0, φ(t0)s)(1− s2)γ−1ds

+ tc′l

∫ 1

0

vϕ1(x
0, φ(t0)s)(1− s2)−γds, x ∈ Rn,

contains integrals, and, consequently, it collects information from the initial values via vϕ0

and vϕ1 for all times τ = φ(t0)s ∈ [0, φ(t0)] with positive weights (1 − s2)γ−1 and (1 −
s2)−γ, respectively, where s is running over [0, 1]. For instance, consider the first term with
vϕ0(x

0, φ(t0)s). The last value depends on only values of ϕ0 and its derivatives on the sphere

Sn−1
τ (x0) := {x ∈ Rn | |x− x0| = φ(t0)s}.
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Figure 4: Cone of dependence for wave equation

Since s runs over [0, 1], these spheres fill the ball

Bφ(t0)(x
0) = {x ∈ Rn | |x− x0| ≤ φ(t0)s}.

Thus, the strong Huygens’ Principle does not hold. At the same time, we have found a
dependence domains for the point (x0, t0) with t0 ≥ 0:

Dn := {(x, t) ∈ Rn+1 | |x− x0| ≤ φ(t0)− φ(t), 0 ≤ t ≤ t0} ⊂ Rn+1,

Dn−1 := {x ∈ Rn | |x− x0| ≤ φ(t0)} ⊂ Rn.
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Figure 5: “Cone” of dependence for equation utt − t6∆u = f

Thus, the value of the solution at the point (x0, t0) depends only on the values of the data
ϕ0, ϕ1 on the domain Dn−1, and on the values of the source term f on the domain Dn.
Sometimes this observation is called a Weak Huygens’ Principle.

4. Pointwise estimates for wave operator in the Minkowski spacetime. Denote

‖ψ(x)‖2
Hs(Rn) :=

∑
α1+α2+...+αn≤s

‖∂α1
x1
∂α2
x2
· · · ∂αnxn ψ(x)‖2

L2(Rn)
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and
‖ψ(x)‖Ẇ s,p(Rn) :=

∑
α1+α2+...+αn=s

‖∂α1
x1
∂α2
x2
· · · ∂αnxn ψ(x)‖Lp(Rn) .

The definitions of the homogeneous Sobolev space Ẇ
n+1
2
,1(Rn) and homogeneous Besov space

Ḃ
n−1
2

1,1 (Rn) will be given later. The following is well known and we skip its proof.

Proposition 1.10 For the Cauchy problem

utt −4u = 0, u(x, 0) = ϕ0(x), ut(x, 0) = ϕ1(x)

in n dimensions space the bound for u for odd n is given by

|u(x, t)| ≤ Cnt
−n−1

2

(
‖ϕ0‖

Ẇ
n+1
2 ,1(Rn)

+ ‖ϕ1‖
Ẇ

n−1
2 ,1(Rn)

)
, x ∈ Rn, t > 0 ,

while for even dimensions

|u(x, t)| ≤ Cnt
−n−1

2

(
‖ϕ0‖

Ḃ
n+1
2

1,1 (Rn)
+ ‖ϕ1‖

Ḃ
n−1
2

1,1 (Rn)

)
, x ∈ Rn, t > 0 .

5. Pointwise estimates for the Tricomi-type operator.

We give just one example of the pointwise estimate. LetM(n) be a space of functions where
we have the estimate similar to the given in Proposition 1.10 for the solution of the wave
equation,

|u(x, t)| ≤ Ckt
−n−1

2

(
‖ϕ0‖M(n)(Rn) + ‖ϕ1‖M(n)(Rn)

)
, x ∈ Rn, t > 0 .

Corollary 1.11 For the solution u = u(x, t) of (1.30) in n = 2 space dimension the bound
for u is given by

|u(x, t)| ≤ Ck

(
t−

1
2

(k+1)‖ϕ0‖M(2)(R2) + t1−
1
2

(k+1)‖ϕ1‖M(2)(R2)

)
, x ∈ R2, t > 0 .

Proof of Corollary. First we set ϕ1 = 0 and obtain

|u(x, t)| ≤ φ(t)1−2γCl

∫ φ(t)

0

|vϕ0(x, τ)|(φ2(t)− τ 2)γ−1dτ .

According to the pointwise estimates for the solution of the wave equation:

|vϕ0(x, τ)| ≤ cτ−
n−1
2 ‖ϕ0‖M(2)(Rn) .

Hence,

|u(x, t)| ≤ Clφ(t)1−2γ

∫ φ(t)

0

τ−
n−1
2 ‖ϕ0‖M(2)(Rn)(φ

2(t)− τ 2)γ−1dτ

≤ Clφ(t)1−2γ‖ϕ0‖M(2)(Rn)

∫ φ(t)

0

τ−
n−1
2 (φ2(t)− τ 2)γ−1dτ .

28



Exercise: Prove that for a > −1, b > −1, and c > 0 one has∫ c

0

τa(c− τ 2)bdτ = Ca,bc
1+a+2b .

Thus, we plug c = φ(t) in the previous formula, and obtain∫ φ(t)

0

τ−
n−1
2 (φ2(t)− τ 2)γ−1dτ = ckφ(t)−

n−1
2

+2γ−1 .

Here we have used the assumption that the dimension is n = 2, that is
n− 1

2
< 1. It follows

|u(x, t)| ≤ Cγ‖ϕ0‖M(2)(Rn)φ(t)−
n−1
2 = C ′γ‖ϕ0‖M(2)(Rn)t

− 1
2

(k+1) .

Now, if ϕ0 = 0, then

|u(x, t)| ≤ Cltφ(t)2γ−1

∫ φ(t)

0

|vϕ1(x, τ)|(φ2(t)− τ 2)−γdτ, x ∈ Rn, t > 0 ,

and we repeat the previous arguments. Corollary is proven. �

There are estimates similar to the given by Proposition 1.10 without singular (at t = 0)

weight t−
n−1
2 but with the loss of derivatives. Those estimates allow to obtain corresponding

inequalities for all dimensions n.
6. Hs(Rn) estimates for the Tricomi-type operator.

Corollary 1.12 For the solution u = u(x, t) of the Cauchy problem (1.28), (1.29) one has

n∑
i=1

‖∂xiu(x, t)‖Hs(Rn) ≤ C

∫ t

0

tk+1 − bk+1

(tk+1 + bk+1)
k
k+1

n∑
i=1

‖∂xif(x, b)‖Hs(Rn) db, t > 0 .

Proof of Corollary 1.12. For the solution w = w(x, r; b) of the Cauchy problem for the
wave equation

wtt −∆w = 0 w(x, 0, b) = f(x, b), wt(x, 0, b) = 0,

we have the conservation law

n∑
i=1

‖∂xiw(x, t, b)‖2
Hs(Rn) + ‖∂tw(x, t, b)‖2

Hs(Rn)

=
n∑
i=1

‖∂xiw(x, 0, b)‖2
Hs(Rn) + ‖∂tw(x, 0, b)‖2

Hs(Rn) .

Hence,

n∑
i=1

‖∂xiw(x, t, b)‖2
Hs(Rn) ≤

n∑
i=1

‖∂xiw(x, 0, b)‖2
Hs(Rn) =

n∑
i=1

‖∂xif(x, b)‖2
Hs(Rn) ,
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and, consequently,

n∑
i=1

‖∂xiw(x, t, b)‖Hs(Rn) ≤
n∑
i=1

‖∂xif(x, b)‖Hs(Rn) .

It follows,

n∑
i=1

‖∂xiu(x, t)‖Hs(Rn) ≤ C

∫ t

0

db

∫ φ(t)−φ(b)

0

(
(φ(t) + φ(b))2 − r2

)−γ
×F

(
γ, γ; 1;

(φ(t)− φ(b))2 − r2

(φ(t) + φ(b))2 − r2

) n∑
i=1

‖∂xiw(x, r; b)‖Hs(Rn)dr .

The argument of the hypergeometric function is bounded,

0 ≤ (φ(t)− φ(b))2 − r2

(φ(t) + φ(b))2 − r2
≤ 1 for all 0 < b < t and 0 < r ≤ φ(t)− φ(b) .

Since 2γ < 1, the function F (γ, γ; 1; ζ) is bounded on the interval ζ ∈ [0, 1], we have

n∑
i=1

‖∂xiu(x, t)‖Hs(Rn)

≤ C

∫ t

0

db

∫ φ(t)−φ(b)

0

(
(φ(t) + φ(b))2 − r2

)−γ n∑
i=1

‖∂xif(x, b)‖Hs(Rn)dr

≤ C

∫ t

0

db
n∑
i=1

‖∂xif(x, b)‖Hs(Rn)

∫ φ(t)−φ(b)

0

(
(φ(t) + φ(b))2 − r2

)−γ
dr, t > 0.

To estimate the integral ∫ φ(t)−φ(b)

0

(
(φ(t) + φ(b))2 − r2

)−γ
dr, t > 0,

we take into account that z := φ(t)/φ(b) = (t/b)k+1 > 1 and rewrite it as follows:∫ φ(b)(z−1)

0

(
φ(b)2(z + 1)2 − r2

)−γ
dr = φ(b)1−2γ

∫ z−1

0

(
(z + 1)2 − y2

)−γ
dy .

Since 1/2 + γ < 3/2, the function F
(

1
2
, γ; 3

2
;x
)

is bounded on the interval x ∈ [0, 1], and we
have ∫ z−1

0

(
(z + 1)2 − y2

)−γ
dy = (z − 1)(z + 1)−2γF

(
1

2
, γ;

3

2
;
(z − 1)2

(z + 1)2

)
≤ C(z − 1)(z + 1)−2γ ,
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uniformly with respect to z ∈ [1,∞). It follows,

n∑
i=1

‖∂xiu(x, t)‖Hs(Rn) ≤ C

∫ t

0

db
n∑
i=1

‖∂xif(x, b)‖Hs(Rn)φ(b)1−2γ(z − 1)(z + 1)−2γ

≤ C

∫ t

0

db
n∑
i=1

‖∂xif(x, b)‖Hs(Rn)
φ(t)− φ(b)

(φ(t) + φ(b))2γ

≤ C

∫ t

0

φ(t)− φ(b)

(φ(t) + φ(b))2γ

n∑
i=1

‖∂xif(x, b)‖Hs(Rn) db

≤ C

∫ t

0

tk+1 − bk+1

(tk+1 + bk+1)
k
k+1

n∑
i=1

‖∂xif(x, b)‖Hs(Rn) db .

Corollary is proven. �

Lecture 4. July 23, 2010

7. Fundamental solutions.

Theorem 1.13 (K.Y. [17] J.D.E. 206(2004) Fundamental solution)
The distribution E(x, t;x0, t0),

E(x, t;x0, t0) = 2clH(t− t0)

∫ φ(t)−φ(t0)

0

(
(φ(t) + φ(t0))2 − r2

)−γ
×F

(
γ, γ; 1;

(φ(t)− φ(t0))2 − r2

(φ(t) + φ(t0))2 − r2

)
Ewave0 (x− x0, r)dr,

is the forward fundamental solution for the Tricomi-type equation (1.28), x ∈ Rn, t0 ≥ 0,
with the support in the forward light cone

D(x0, t0) := {(x, t) ∈ Rn+1 | |x− x0| ≤ φ(t)− φ(t0)}.

Thus,(
∂tt − tl∆

)
E(x, t;x0, t0) = δ(x− x0)δ(t− t0) in Rn+1

+ := {(x, t) |x ∈ Rn, t > 0}.

Here Ewave0 (x, t) is the fundamental solution of the Cauchy problem corresponding to the first
datum with the support at the origin, for the wave equation in the Minkowski spacetime,{

(∂2
t −∆)Ewave0 (x, t) = 0,
Ewave0 (x, 0, ) = δ(x) , (∂tEwave0 ) (x, 0) = 0 .
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1.7 Examples of Integral transforms.
Example 3: Klein-Gordon equations in the Robertson-Walker
spacetime

1. The representation via Fourier transform (Galstian [6]) The equation

utt − e2t4 u = 0, (1.33)

is suggested and studied by Galstian as an example of hyperbolic equation with time depen-
dent coefficient that can be solved via Fourier transform in terms of the Bessel functions and
in terms of confluent hypergeometric functions. More precisely, in [6] the resolving operator
for the Cauchy problem

∂2
t u− e2t∆u = 0, u(x, 0) = ϕ0(x), ut(x, 0) = ϕ1(x) , (1.34)

is written as a sum of the Fourier integral operators with the amplitudes given in terms of
the Bessel functions and in terms of confluent hypergeometric functions. In particular, it is
proved in [6] that for t > 0 the solution of the Cauchy problem (1.34) is given by

u(x, t)

=
∑
j=0,1

−i 2− j
(2π)n

∫
Rn

{
ei[x·ξ+(et−1)|ξ|]H+

(1

2
; 1; 2iet|ξ|

)
H−

(3

2
− j; 3− 2j; 2i|ξ|

)
− ei[x·ξ−(et−1)|ξ|]H−

(1

2
; 1; 2iet|ξ|

)
H+

(3

2
− j; 3− 2j; 2i|ξ|

)}
|ξ|2(1−j)F(ϕj)(ξ)dξ .

In the notations of [2] H−(α; γ; z) = eiαπΨ(α; γ; z) and H+(α; γ; z) = eiαπΨ(γ − α; γ;−z)
with the confluent hypergeometric function Ψ(a; c; z) defined in [2, Sec.6.5]. Here F(ϕ)(ξ)
is a Fourier transform of ϕ(x).

This equation under time inversion, t→ −t, becomes utt − e−2t4 u = 0.

It turns out that (1.33) describes matter waves (particle) in the so-called Anti-de Sitter
model of the universe that appears in the Mathematical Cosmology. Equation utt−e−2t4u =
0 describes particle in the so-called de Sitter model of the universe.

2. Real mass
utt − e−2t4 u+M2u = f .

The integral transform and, in particular, its kernel and the Gauss’s hypergeometric function,
open a way to establish a bridge between the wave equation (massless equation) and the
Klein-Gordon equation (massive equation) in the curved spacetime. Indeed, if we allow
the parameter γ of the function F (γ, γ; 1; z) to be a complex number, γ ∈ C, then this
continuation into the complex plane produces the following representation formula.

Theorem 1.14 (A.G.-K.Y. [21] Comm. Math. Phys., 285 (2009).)
One can write

u(x, t) = 2

∫ t

0

db

∫ e−b−e−t

0

dr w(x, r; b)(4e−b−t)iM
(
(e−t + e−b)2 − r2

)− 1
2
−iM

×F
(

1

2
+ iM,

1

2
+ iM ; 1;

(e−b − e−t)2 − r2

(e−b + e−t)2 − r2

)
, (1.35)
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Figure 6: Graphs of the dependence and influence domains

where the function w(x, t; b) is a solution to the Cauchy problem for the wave equation

wtt −4w = 0 , w(x, 0; b) = f(x, b) , wt(x, 0; b) = 0 .

A similar formula holds for the fundamental solution E+(x, t;x0, t0) for the Klein-Gordon
operator in the de Sitter spacetime.

Theorem 1.15 (A.G.-K.Y. [21] Comm. Math. Phys., 285 (2009).)

E+(x, t;x0, t0) = 2H(t− t0)

∫ e−t0−e−t

0

(4e−t0−t)iM
(
(e−t0 + e−t)2 − r2

)− 1
2
−iM

(1.36)

×F
(1

2
+ iM,

1

2
+ iM ; 1;

(e−t0 − e−t)2 − r2

(e−t0 + e−t)2 − r2

)
Ewave0 (x− x0, r) dr,

where the distribution Ewave0 (x, t) is the fundamental solution of the Cauchy problem for the
wave equation.

The non-negative curved mass M ≥ 0 is defined as follows:

M2 := m2 − n2

4
≥ 0.

• The parameter m is a physical mass of particle.

• The fundamental solution E−(x, t;x0, t0) with the support in the backward light cone
admits a similar representation.

• The fundamental solutions E+(x, t;x0, t0) and E−(x, t;x0, t0) are constructed in [21] for
the case of large masses m ≥ n/2, that is M ≥ 0.

• The integral makes sense in the topology of the space of distributions.

• The fundamental solutions for the Klein-Gordon operator in the anti-de Sitter space-
time can be obtained by time inversion, t → −t, from the fundamental solutions for
the Klein-Gordon operator in the de Sitter spacetime.

33



3. Imaginary mass
Moreover, the analytic continuation of this distribution in parameter M into C allows us to
use it also in the case of small mass 0 ≤ m ≤ n/2. The corresponding equation

utt − e−2t4 u−M2u = f,

can be regarded as a Klein-Gordon equation with an imaginary mass. Equations with imag-
inary mass appear in several physical models such as φ4 field model, tachion (super-light)
fields, Landau-Ginzburg-Higgs equation and others.

More precisely, for small mass 0 ≤ m ≤ n/2 we define the distribution E+(x, t;x0, t0) by

E+(x, t;x0, t0) = 2H(t− t0)

∫ e−t0−e−t

0

(4e−t0−t)−M
(

(e−t0 + e−t)2 − r2
)− 1

2
+M

×F
(1

2
−M,

1

2
−M ; 1;

(e−t0 − e−t)2 − r2

(e−t0 + e−t)2 − r2

)
Ewave0 (x− x0, r) dr.

1.8 Examples of Integral transforms.
Example 3: Proof of case n = 1.

The Riemann Function
In the characteristic coordinates l and m,

l = x+ e−t, m = x− e−t, (1.37)

the operator S of the equation reads as follows:

S :=
∂2

∂t2
− e−2t ∂

2

∂x2
+M2 = −(l −m)2

{
∂2

∂l ∂m
− 1

2(l −m)

( ∂
∂l
− ∂

∂m

)
− 1

(l −m)2
M2

}
.

In particular, in the new variables the equation(
∂2

∂t2
− e−2t ∂

2

∂x2
+M2

)
u = 0 implies

{
∂2

∂l ∂m
− 1

2(l −m)

( ∂
∂l
− ∂

∂m

)}
u− 1

(l −m)2
M2u = 0 .

We need the following lemma with γ =
1

2
+ iM .

Lemma 1.16 (A.G.-K.Y. [21] Comm. Math. Phys., 285 (2009).)
The function

V (l,m; a, b) = (l − b)−γ(a−m)−γF
(
γ, γ; 1;

(l − a)(m− b)
(l − b)(m− a)

)
solves the equation {

∂2

∂l ∂m
− 1

(l −m)
γ
( ∂
∂l
− ∂

∂m

)}
V (l,m; a, b) = 0 .
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Proof. In fact, the result follows by direct computations and basic properties of the hyper-
geometric function. We leave a proof to the reader. (A complete proof one can find in [21].)
The lemma is proven. �

Lemma 1.17 (A.G.-K.Y. [21] Comm. Math. Phys., 285 (2009).)
For γ ∈ C such that F (γ, γ; 1; z) is well defined, the function

Ẽ(l,m; a, b) := (a− b)γ−
1
2 (l −m)γ−

1
2V (l,m; a, b)

= (a− b)γ−
1
2 (l −m)γ−

1
2 (l − b)−γ(a−m)−γF

(
γ, γ; 1;

(l − a)(m− b)
(l − b)(m− a)

)
solves the equation{

∂2

∂l ∂m
− 1

2(l −m)

( ∂
∂l
− ∂

∂m

)}
Ẽ(l,m; a, b) +

1

(l −m)2

(
1

2
− γ
)2

Ẽ(l,m; a, b) = 0 .

Proof. Indeed, straightforward calculations show

(a− b)−γ+ 1
2

{
∂2

∂l ∂m
− 1

2(l −m)

( ∂
∂l
− ∂

∂m

)
+

1

(l −m)2

(
1

2
− γ
)2}

Ẽ

= (l −m)γ−
1
2

[
Vlm −

1

(l −m)
γ (Vl − Vm)

]
= 0 .

The lemma is proven. �

Consider now the operator

S∗ch :=
∂2

∂l ∂m
+

1

2(l −m)

( ∂
∂l
− ∂

∂m

)
− 1

(l −m)2
(M2 + 1) ,

which is a formally adjoint to the operator

Sch :=
∂2

∂l ∂m
− 1

2(l −m)

( ∂
∂l
− ∂

∂m

)
− 1

(l −m)2
M2 .

In the next lemma the Riemann function (see, e.g., [3, Ch.V, §5]) is presented.

Proposition 1.18 (A.G.-K.Y. [21] Comm. Math. Phys., 285 (2009).)
The function

R(l,m; a, b)

= (l −m)Ẽ(l,m; a, b)

= (a− b)iM(l −m)1+iM(l − b)−
1
2
−iM(a−m)−

1
2
−iMF

(1

2
+ iM,

1

2
+ iM ; 1;

(l − a)(m− b)
(l − b)(m− a)

)
defined for all l, m, a, b ∈ R, such that l > m, is a unique solution of the equation S∗chR = 0,
which satisfies the following conditions:

(i) Rl =
1

2(l −m)
R along the line m = b;

(ii) Rm = − 1

2(l −m)
R along the line l = a;

(iii) R(a, b; a, b) = 1.
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Proof. Indeed, if we denote γ = 1
2

+ iM , then for the Riemann function we have

R(l,m; a, b) = (a− b)γ−
1
2 (l −m)γ+ 1

2V (l,m; a, b) = (l −m)Ẽ(l,m; a, b) .

The operators Sch and S∗ch can be written as follows:

Sch =
∂2

∂l ∂m
− 1

2(l −m)

( ∂
∂l
− ∂

∂m

)
+

1

(l −m)2

(
γ − 1

2

)2

,

S∗ch =
∂2

∂l ∂m
+

1

2(l −m)

( ∂
∂l
− ∂

∂m

)
− 1

(l −m)2

(
1−

(
γ − 1

2

)2
)
.

Direct calculations show that, if the function u solves the equation Schu = 0, then the
function v = (l − m)u solves the equation S∗chv = 0, and vice versa. Then Lemma 1.17
completes the proof. The lemma is proven. �

Proof of Theorem 1.15

Next we use the Riemann function R(l,m; a, b) and the function E(x, t;x0, t0) defined by

E(x, t;x0, t0) = (4e−t0−t)iM
(

(e−t + e−t0)2 − (x− x0)2
)− 1

2
−iM

(1.38)

×F
(1

2
+ iM,

1

2
+ iM ; 1;

(e−t0 − e−t)2 − (x− x0)2

(e−t0 + e−t)2 − (x− x0)2

)
,

to complete the proof of (1.36), which gives the fundamental solution with support in the
forward cone D+(x0, t0), x0 ∈ Rn, t0 ∈ R, and the fundamental solution with support in the
backward cone D−(x0, t0), x0 ∈ Rn, t0 ∈ R, defined by

D±(x0, t0) :=
{

(x, t) ∈ Rn+1 ; |x− x0| ≤ ±(e−t0 − e−t)
}
. (1.39)

with plus and minus, respectively.

We present a proof for E+(x, t; 0, t0) since for E−(x, t; 0, t0) it is similar. First, we note
that the operator S is formally self-adjoint, S = S∗. We must show that

< E+,Sϕ >= ϕ(0, t0) , for every ϕ ∈ C∞0 (R2) .

Since the distribution E+(x, t; 0, t0) is locally integrable in R2, this is equivalent to show that∫ ∫
R2

E+(x, t; 0, t0)Sϕ(x, t) dx dt = ϕ(0, t0), for every ϕ ∈ C∞0 (R2). (1.40)

Let (b,−b) := (e−t0 ,−e−t0) be the image of the point (0, t0) in the characteristic coordinates
l and m (see (1.37))

l = x+ e−t, m = x− e−t .
The image of the interior of D+(0, t0) in the characteristic coordinates l and m is the open
triangle

T+(b,−b) := {(l,m) ∈ R2 | l > m, m > −e−t0 , l < e−t0} .
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For the functions ϕ and E in the new variables we use notations ϕ̃ and Ẽ, respectively, that
is ϕ(x, t) = ϕ̃(l,m) and E(x, t; 0, t0) = Ẽ(l,m; b,−b). It is evident that ϕ̃ ∈ C∞0 (R2) and

supp ϕ̃ ⊂ {(l,m) ∈ R2 | l > m}.

In the mean time ∣∣∣∣D(x, t)

D(l,m)

∣∣∣∣ = (l −m)−1

is the Jacobian of the transformation (1.37). Hence the integral in the left-hand side of (1.40)
is equal to∫ ∫

R2

E+(x, t; 0, t0)Sϕ(x, t) dx dt =

∫ ∞
t0

dt

∫ e−t0−e−t

e−t−e−t0
E(x, t; 0, t0)Sϕ(x, t) dx

= −
∫ b

−∞

∫ ∞
−b

R(l,m; b,−b)
{

∂2

∂l ∂m
− 1

2(l −m)

( ∂
∂l
− ∂

∂m

)
− 1

(l −m)2
M2

}
ϕ̃dl dm. (1.41)

The rest of the proof is standard (see, e.g., [3, Ch.V, §5]), but we give it to make this section
self-contained. We consider the first term of (1.41) and integrate it by parts∫ ∞

−b
dm

∫ b

−∞
dl R(l,m; b,−b) ∂2

∂l ∂m
ϕ̃

= −ϕ(b,−b)−
∫ ∞
−b

dm

(
∂

∂m
R(b,m; b,−b)

)
ϕ̃(b,m)

+

∫ b

−∞
dl

(
∂

∂l
R(l,−b; b,−b)

)
ϕ(l,−b) +

∫ ∞
−b

dm

∫ b

−∞
dl

(
∂2

∂l ∂m
R(l,m; b,−b)

)
ϕ̃.

Then, for the second term in equation (1.41) we obtain

−
∫ ∞
−b

dm

∫ b

−∞
dl R(l,m; b,−b) 1

2(l −m)

( ∂
∂l
− ∂

∂m

)
ϕ̃

= −
∫ b

−∞
R(l,−b; b,−b) 1

2(l + b)
ϕ̃(l,−b) dl −

∫ ∞
−b

R(e−b,m; b,−b) 1

2(b−m)
ϕ̃(b,m) dm

−
∫ ∞
−b

dm

∫ b

−∞
dl

1

(l −m)2
R(l,m; b,−b)ϕ̃(l,m) .

+

∫ ∞
−b

dm

∫ b

−∞
dl
[ 1

2(l −m)

( ∂
∂l
− ∂

∂m

)
R(l,m; b,−b)

]
ϕ̃(l,m) .

Using properties of the Riemann function we derive

−
∫ ∞
−b

dm

∫ b

−∞
dl R(l,m; b,−b)

{
∂2

∂l ∂m
− 1

2(l −m)

( ∂
∂l
− ∂

∂m

)
− 1

(l −m)2
M2

}
ϕ̃

= ϕ̃(b,−b) = ϕ(0, t0) .

Theorem is proven. �
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2 Function Spaces

2.1 Notations

0.1 Denote N0 := N ∪ {0}. Let α be a multi-index α = (α1, α2, . . . , αn) ∈ Nn
0 . We define

α + β = (α1 + β1, ..., αn + βn) ,

|α| = α1 + · · ·+ αn ,

β ≤ α, if βi ≤ αi, i = 1, ..., n;

α! = α1!...αn!

Cα
β =

(
α

β

)
=

α!

β!(α− β)!

xα = (x1)α1 . . . (xn)αn , for x ∈ Rn ,

∂α =

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn
;

Dα =

(
1

i

∂

∂x1

)α1

· · ·
(

1

i

∂

∂xn

)αn
= (−i)|α|∂αx .

0.2 Let f be a function from C(Ω), and Ω ⊆ Rn be an open set. Support of the continuous
function f is defined as the closure in Ω of the set of all x ∈ Ω, such that f(x) 6= 0, i.e

supp f = {x ∈ Ω; f(x) 6= 0} ∩ Ω .

Thus, f ≡ 0 on Ω \ supp f .

2.2 Sobolev spaces

Let Ω ⊆ Rn be an open set and let u ∈ L1
loc(Ω). For a given multi-index α = (α1, α2, . . . , αn) ∈

Nn
0 we define the distributional derivative

∂αu =

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn
u =

∂|α|u

∂α1
x1 · · · ∂αnxn

to be the linear functional on C∞0 (Ω) given by

< ∂αu, ϕ >:= (−1)|α|
∫

Ω

u(x)∂αϕ(x) dx , ∀ϕ ∈ C∞0 (Ω) .

We say that ∂αu ∈ Lp(Ω), 1 ≤ p ≤ ∞, if there exists v ∈ Lp(Ω) such that

< ∂αu, ϕ >=

∫
Ω

v(x)ϕ(x) dx , ∀ϕ ∈ C∞0 (Ω) .

For k ∈ N, 1 ≤ p ≤ ∞, we define the Sobolev space as a liner space

W k,p(Ω) := {u ∈ Lp(Ω) | ∂αu ∈ Lp(Ω) for all α such that |α| ≤ k}
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with the norm
‖u‖Wk,p(Ω) :=

∑
|α|≤k

‖∂αu‖Lp(Ω) .

1. The spaces W k,p(Ω) are Banach spaces.
2. For p <∞ smooth functions u ∈ C∞ ∩W k,p(Ω) are dense in W k,p(Ω).
3. We denote by W k,p

0 (Ω) the closure of C∞0 (Ω) in the W k,p(Ω)-norm.
4. The special case of the Sobolev spaces with p = 2 usually are denoted asHk(Ω) := W k,2(Ω)
5. If Ω = Rn, then we write simply W k,p and Hk.
6. The space W k,p can be also defined via Fourier transform even for all real k ∈ R by means
of the norm

‖u‖Wk,p := ‖(1−∆)s/2u‖Lp .
where ∆ is the Laplacian on Rn.
7. One can proved the space Hs(Ω) with scalar product

(u, v)Hs(Ω)
def
=
∑
|α|≤s

(∂αu, ∂αv)L2(Ω) .

Then, Hs(Ω) is a separable Hilbert space.
8. Denote by Bk the Banach space of all functions u ∈ Ck(Rn) such that ∂αu, |α| ≤ k, is
bounded on Rn, that is,

Bk := {u ∈ Ck(Rn) | for every α, |α| ≤ k, there exists Cα such that

|∂αu(x)| ≤ Cα for all x ∈ Rn} .

Theorem 2.1 (Sobolev embedding theorem.)
If s > n

2
+ k, then the space Hs is continuously embedded in Bk, that is Hs ⊂ Bk. More

precisely, for every α, |α| ≤ k, the function ∂αu(x) is continuous and

sup
Rn
|∂αu(x)| ≤ C(n, k, s)‖u‖Hs .

Proof. For any function u ∈ C∞0 we have

∂αu(x) = (2π)−n/2
∫
Rn
ξαeix·ξû(ξ)dξ .

Then

|∂αu(x)| ≤ (2π)−n/2
∫
Rn
|ξα||û(ξ)|dξ

= (2π)−n
∫
Rn
|ξα|(1 + |ξ|2)s/2|û(ξ)|(1 + |ξ|2)−s/2dξ

≤ (2π)−n/2
(∫

Rn
(1 + |ξ|2)s|û(ξ)|2 dξ

)1/2(∫
Rn
|ξ2α|(1 + |ξ|2)−s dξ

)1/2

≤ C(n, k)

(∫
Rn

(1 + |ξ|2)s|û(ξ)|2 dξ
)1/2(∫

Rn
(1 + |ξ|2)|α|−s dξ

)1/2

≤ C(n, k)‖u‖Hs

(∫
Rn

(1 + |ξ|2)k−s dξ

)1/2

.
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The integral
∫
Rn |(1 + |ξ|2)k−s dξ is convergent since s >

n

2
+ k, and we set

C(n, k)

∫
Rn

(1 + |ξ|2)k−s dξ = C(n, k, s) .

Exercise. Complete the proof of the theorem.
Theorem is proven. �

If 1 ≤ p < n, the Sobolev conjugate of p is

p∗ :=
np

n− p
.

Note that
1

p∗
=

1

p
− 1

n
.

Theorem 2.2 (Gagliardo-Nirenberg-Sobolev inequality)
Assume 1 ≤ p < n. There exists a constant C = C(n, p), depending only on n and p, such

that
‖u‖Lp∗ ≤ C(n, p)‖∇u‖Lp for all u ∈ C1

0(Rn).

Proof. It is enough to check it for u ∈ C∞0 (Rn). We have

|u(x)| ≤
∫ ∞
−∞
|∂xju(x1, . . . , xj−1, yj, xj+1, . . . , xn)|dyj ∀u ∈ C∞0 (Rn).

It follows

|u(x)|n ≤
n∏
j=1

∫ ∞
−∞
|∂xju|dyj ∀u ∈ C∞0 (Rn)

and

|u(x)|
n
n−1 ≤ unj=1

(∫ ∞
−∞
|∂xju(x1, . . . , xj−1, yj, xj+1, . . . , xn)|dyj

) 1
n−1

.

Now we set p = 1 and integrate with respect to x1 and apply the generalized Hölder inequal-
ity,∫

Rn
|u1 · · ·um| dx ≤ ‖u1‖Lp1 · · · ‖um‖Lpm ∀pj ∈ [1,∞],

1

p1

+ . . .+
1

pm
= 1, uj ∈ C∞0 (Rn).

For the case of a general n and p = 1∫ ∞
−∞
|u(x)|

n
n−1 dx1

≤
∫ ∞
−∞

(∫ ∞
−∞
|∂x1u|dy1

) 1
n−1

· · ·
(∫ ∞
−∞
|∂xnu|dyn

) 1
n−1

dx1

=

(∫ ∞
−∞
|∂x1u|dy1

) 1
n−1
∫ ∞
−∞

(∫ ∞
−∞
|∂x2u|dy2

) 1
n−1

· · ·
(∫ ∞
−∞
|∂xnu|dyn

) 1
n−1

dx1

=

(∫ ∞
−∞
|∂x1u|dy1

) 1
n−1
{(∫ ∞

−∞

∫ ∞
−∞
|∂x2u| dx1dy2

)
· · ·
(∫ ∞
−∞

∫ ∞
−∞
|∂xnu| dx1dyn

)} 1
n−1

,
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where
p2 = . . . = pn = n− 1.

Then we integrate with respect to x2:∫ ∞
−∞

∫ ∞
−∞
|u(x)|

n
n−1 dx1 dx2

≤
∫ ∞
−∞

(∫ ∞
−∞
|∂x1u|dy1

) 1
n−1

×
{(∫ ∞

−∞

∫ ∞
−∞
|∂x2u| dx1dy2

)
· · ·
(∫ ∞
−∞

∫ ∞
−∞
|∂xnu| dx1dyn

)} 1
n−1

dx2

=

(∫ ∞
−∞

∫ ∞
−∞
|∂x2u| dx1dy2

) 1
n−1

×
∫ ∞
−∞

(∫ ∞
−∞
|∂x1u|dy1

) 1
n−1
(∫ ∞
−∞

∫ ∞
−∞
|∂x3u| dx1dy3

) 1
n−1

· · ·

· · ·
(∫ ∞
−∞

∫ ∞
−∞
|∂xnu| dx1dyn

) 1
n−1

dx2 .

Applying once more the generalized Hölder inequality, we find∫ ∞
−∞

∫ ∞
−∞
|u(x)|

n
n−1 dx1 dx2

≤
(∫ ∞
−∞

∫ ∞
−∞
|∂x2u| dx1dy2

) 1
n−1
(∫ ∞
−∞

∫ ∞
−∞
|∂x1u|dy1 dx2

) 1
n−1

×
(∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞
|∂x3u| dx1 dx2dy3

) 1
n−1

· · ·
(∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞
|∂xnu| dx1 dx2dyn

) 1
n−1

.

We continue by integration with respect x3, . . . , xn , eventually to find∫
Rn
|u(x)|

n
n−1 dx ≤

n∏
i=1

(∫ ∞
−∞
· · ·
∫ ∞
−∞
|∂xiu| dx1 . . . dyi . . . dxn

) 1
n−1

= ‖∇u‖
n
n−1

L1 .

The case of p = 1 is proven.
Consider now the case of p ∈ (1, n). For every γ > 1, the function v := |u|γ, is a

C1-function, and we can apply already proved case with p = 1:(∫
Rn
|u(x)|

γn
n−1 | dx

)n−1
n

≤
∫
Rn
|∇|u(x)|γ| dx

= γ

∫
Rn
|u(x)|γ−1|∇u(x)| dx

≤ γ

(∫
Rn
|u(x)|(γ−1) p

p−1 dx

) p−1
p
(∫

Rn
|∇u(x)|p dx

) 1
p

.
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We set

γ =
p(n− 1)

n− p
> 1 =⇒ γn

n− 1
= (γ − 1)

p

p− 1
=

np

n− p
= p∗ .

Then (∫
Rn
|u(x)|p∗ dx

)n−1
n

≤ γ

(∫
Rn
|u(x)|p∗ dx

) p−1
p
(∫

Rn
|∇u(x)|p dx

) 1
p

implies the desired estimate(∫
Rn
|u(x)|p∗| dx

) 1
p∗

≤ γ

(∫
Rn
|∇u(x)|p dx

) 1
p

.

Theorem is proven. �

Theorem 2.3 (Estimates for W 1,p(Ω), 1 ≤ p < n.)
Let Ω be a bounded, open subset of Rn, and suppose that its boundary ∂Ω is C1. Assume
1 ≤ p < n, then

W 1,p(Ω) ⊂ Lp
∗
(Ω).

Moreover, there is the estimate

‖u‖Lp∗ (Ω) ≤ C(n, p,Ω)‖u‖W 1,p(Ω), for all u ∈ W 1,p(Ω) ,

where the constant C(n, p,Ω) depends only on n, p, and Ω.

Proof. We skip proof of the theorem. �

Theorem 2.4 (Poincaré’s inequality. Estimates for W 1,p
0 (Ω), 1 ≤ p < n.)

Let Ω be a bounded, open subset of Rn. Assume 1 ≤ p < n. Then for every q ∈ [1, p∗] there
is a constant C(n, p, q,Ω) depending only on n, p, q, and Ω, such that the estimate

‖u‖Lq(Ω) ≤ C(n, p, q,Ω)‖∇u‖Lp(Ω), for all u ∈ W 1,p
0 (Ω).

Proof. We skip proof of the theorem. �

Remark 2.5 On the space W 1,p
0 (Ω) with a bounded, open Ω, the norm ‖∇u‖Lp(Ω) is equiv-

alent to ‖u‖W 1,p(Ω).

Exercise: Prove that the function u = log log
(

1 + 1
|x|

)
, where B1(0) ⊂ R2 is an open unit

ball, belongs to W 1,2(Ω), but not to L∞(Ω).

Lecture 5. July 29, 2010
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Theorem 2.6 (Rellich-Kondrachov Compactness Theorem.)
Let Ω be a bounded, open subset of Rn. Suppose that its boundary ∂Ω is C1. Assume
1 ≤ p < n. Then

W 1,p(Ω) ⊂⊂ Lq(Ω)

for every q ∈ [1, p∗].

Proof. We skip proof of the theorem. �

Theorem 2.7 (General Sobolev embeddings.)
Let Ω be a bounded, open subset of Rn. Suppose that its boundary ∂Ω is C1. Assume
u ∈ W k,p(Ω).
(i) If

k <
n

p
,

then u ∈ Lq(Ω), where
1

q
=

1

p
− k

n
.

Moreover, there is the estimate

‖u‖Lq(Ω) ≤ C(k, n, p,Ω)‖u‖Wk,p(Ω),

with a constant C(k, n, p,Ω) depending only on k, n, p, q, and Ω.
(ii) If

k >
n

p
,

then
u ∈ Ck−[np ]−1,γ(Ω) ,

where

γ =


[
n

p

]
+ 1− n

p
, if

n

p
is not an integer,

any positive number < 1, if
n

p
is an integer.

We have in addition the estimate

‖u‖
C
k−[np ]−1,γ

(Ω)
≤ C‖u‖Wk,p(Ω)

with the constant C depending only on k, p, n, γ, and Ω.
(iii) If

k =
n

p

then for k, 1 ≤ k ≤ n,

u ∈ W k,p(Ω) =⇒ u ∈ Lq(Ω), that is W k,p(Ω) ⊂ Lq(Ω) , 1 ≤ p ≤ q <∞
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and
‖u‖Lq(Ω) ≤ C(k, n, p,Ω)‖u‖Wk,p(Ω) .

Moreover, if p = 1 so that k = n, embedding W k,p(Ω) ⊂ Lq(Ω) exists with q =∞ as well; in
fact,

W n,1(Ω) ⊂ C0
B(Ω) .

Proof. We skip proof of the theorem. �

Remark 2.8 In fact, the statement (i) is true for every q′ ≤ q, that is

‖u‖Lq′ (Ω) ≤ C(k, n, p,Ω)‖u‖Wk,p(Ω).

Sobolev spaces with multiplication (algebra) property.

Theorem 2.9 (Algebra.)
Let Ω be a bounded, open subset of Rn. Then for s > n

2
the space Hs(Ω) is an algebra. Thus,

for u, v ∈ Hs(Ω) we have uv ∈ Hs(Ω) and

‖uv‖Hs(Ω) ≤ C‖u‖Hs(Ω)‖v‖Hs(Ω).

Proof. Indeed, for u, v ∈ Hk(Ω) and any multi-index α with |α| ≤ s, by the product rule
we have

|∂α(uv)| ≤ Cα
∑

β+γ=α

|(∂βu)(∂γv)| .

If s− |β| > n
2
, then by (ii) of Sobolev embedding Theorem 2.7, we have

‖∂βu‖L∞(Ω) ≤ C‖∂βu‖
Cs−|β|−[n2 ]−1,γ̃(Ω)

≤ C‖∂βu‖Hs−|β|(Ω) ≤ C‖u‖Hs(Ω).

Similarly, the following inequality holds if s− |γ| > n
2
,

‖∂γv‖L∞(Ω) ≤ C‖∂γv‖
Cs−|γ|−[n2 ]−1,γ̃(Ω)

≤ C‖∂γv‖Hs−|γ|(Ω) ≤ C‖v‖Hs(Ω).

Hence,
‖(∂βu)(∂γv)‖L2(Ω) ≤ C‖∂βu‖L∞(Ω)‖∂γv‖L2(Ω) ≤ C‖u‖Hs(Ω)‖v‖Hs(Ω) .

In the remaining case we have s − |β| ≤ n
2

and s − |γ| ≤ n
2
. On the other hand, for the

nonnegative numbers a and b we have

a :=
1

2
− s− |β|

n
≥ 0 and b :=

1

2
− s− |γ|

n
≥ 0 .

Meanwhile,

n+ 2|α| < 4s =⇒ 1

2
− s− |β|

n
+

1

2
− s− |γ|

n
<

1

2
=⇒ a+ b <

1

2
.
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Now we choose p and q such that 1 < p, q <∞ and

1 =
1

p
+

1

q
,

1

p
≥ a ≥ 0 ,

1

q
≥ b ≥ 0 .

Then, in the case of s − |β| < n
2

we use (i) and in the case of s − |β| = n
2

we use (iii) of
Theorem 2.7 to estimate ‖∂βu‖Lp(Ω). If we denote by p1 a number defined by

1

p1

=
1

2
− s− |β|

n
,

then p ≤ p1 and, according to Theorem 2.7 since Ω is bounded, we have

‖∂βu‖Lp(Ω) ≤ C‖∂βu‖Lp1 (Ω) ≤ C‖∂βu‖Hs−|β|(Ω) ≤ C‖u‖Hs(Ω) .

Similarly, defining q1 by
1

q1

=
1

2
− s− |γ|

n
we obtain

‖∂γv‖Lq(Ω) ≤ C‖∂γv‖Lq1 (Ω) ≤ C‖∂γv‖Hs−|γ|(Ω) ≤ C‖v‖Hs(Ω) .

Thus,
‖(∂βu)(∂γv)‖L2(Ω) ≤ C‖∂βu‖Lp(Ω)‖∂γv‖Lq(Ω) ≤ C‖u‖Hs(Ω)‖v‖Hs(Ω) .

Theorem is proven. �

Exercise. Prove that for s >
n

2
the space Hs(Rn) is an algebra. Thus, for u, v ∈ Hs(Rn)

we have uv ∈ Hs(Rn) and

‖uv‖Hs(Rn) ≤ C‖u‖Hs(Rn)‖v‖Hs(Rn).

Superposition of functions in Sobolev spaces.

If P (z) is polynomial, then by induction on the degree, for any polynomial we find that

P ◦ u ∈ Hs(Ω) for u ∈ Hs(Ω) and s >
n

2
,

‖P ◦ u‖Hs(Ω) ≤ C(1 + ‖u‖sHs(Ω)) sup
l≤s
‖P (l) ◦ u‖L∞(Ω) ,

where P (l)(z) =
dl

dzl
P (z).

By density of polynomials in Ck
loc(R), for any function g ∈ Ck(R) and any u ∈ Hs(Ω),

k ≥ s, we conclude that the composition g ◦ u ∈ Hs(Ω) and that

‖g ◦ u‖Hs(Ω) ≤ C
(
1 + ‖u‖sHs(Ω)

)
sup
l≤s
‖g(l) ◦ u‖L∞(Ω) ,

where g(l)(z) =
dl

dzl
g(z).
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Interpolation.

For every given α, |α| ≤ m, and numbers q and r we define p(α) by

m

p(α)
=
m− |α|

q
+
|α|
r
. (2.42)

Theorem 2.10 (Interpolation) Let 1 ≤ r ≤ ∞, 1 ≤ q ≤ ∞, and let m be an integer ≥ 2.
If u ∈ Lq(Rn) and ∂γu ∈ Lr(Rn) for all γ with |γ| = m, then ∂αu ∈ Lp(α)(Rn) for every
α, |α| ≤ m. Moreover, for every j, j = 0, 1, . . . ,m,

sup
|α|=j
‖∂αu‖Lp(α)(Rn) ≤ 4j(m−j)

(
sup
|γ|=m

‖∂γu‖Lr(Rn)

) j

m
‖u‖

m− j
m

Lq(Rn) . (2.43)

Corollary 2.11 If u, v ∈ L∞(Rn) and ∂αu, ∂αv ∈ Lr(Rn) when |α| = m, then

∂α(uv) ∈ Lr(Rn), when |α| = m,∑
|α|=m

‖∂α(uv)‖Lr(Rn) ≤ Cm

(
‖v‖L∞(Rn)

∑
|α|=m

‖∂αu‖Lr(Rn) + ‖u‖L∞(Rn)

∑
|α|=m

‖∂αv‖Lr(Rn)

)
.

A more general version of the proceeding estimates is useful:

Corollary 2.12 If v1, v2,. . ., vj ∈ L∞(Rn) and ∂αv1, ∂αv2, . . ., ∂αvj ∈ Lr(Rn) when |α| =
m, then

∂α1v1∂
α2v2 · · · ∂αjvj ∈ Lr(Rn) ,

j∑
1

|αj| = m,

‖∂α1v1∂
α2v2 · · · ∂αjvj‖Lr(Rn) ≤ 2jm

2/2 max
1≤i≤j

{(∏
k 6=i

‖vk‖L∞(Rn)

)
sup
|α|=m

‖∂αvi‖Lr(Rn)

}
.

Corollary 2.13 Let u ∈ L∞(Rn,RN), let F ∈ Cm(RN), and assume that ∂αu ∈ Lr(Rn,RN)
when |α| = m. Then

∂αF (u) ∈ Lr(Rn), when |α| = m,

sup
|α|=m

‖∂αF (u)‖Lr(Rn) ≤ Cm

(
sup

1≤|γ|≤m
|F (γ)(u)|‖u‖|γ|−1

L∞(Rn)

)
sup
|α|=m

‖∂αu‖Lr(Rn) if m > 0,(2.44)

while for m = 0 one has

‖F (u)− F (0)‖Lr(Rn) ≤M‖u‖Lr(Rn) ,

if M is a Lipschitz constant for F in the range of u.
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Corollary 2.14 The more general version of (2.44) where F ∈ Cm(Rn+N) also depends on
x, is

sup
|α|=m

‖∂α(F (x, u(x))− F (x, 0))‖Lr(Rn)

≤ C ′m sup
1≤|γ|≤|α|
|α|+|β|=m

sup
|v|≤‖u‖L∞(Rn)

|∂βx∂γvF (x, v)|‖u‖|γ|−1
L∞(Rn)‖∂

αu‖Lr(Rn)

+ C ′′m sup
|α|=m

sup
|v|≤‖u‖L∞(Rn)

|∂αx∂vF (x, v)|‖∂αu‖Lr(Rn) .

3 Energy Estimates for Linear Equation

Lemma 3.1 Denote
Es(t) := ‖∂tu‖Hs−1(Rn) + ‖u‖Hs(Rn) .

Let s >
n+ 4

2
. Then for f ∈ C([0, T ];Hs−1(Rn), solutions

u ∈ C([0, T ];Hs(Rn) ∩ C1([0, T ];Hs−1(Rn) of the equation

utt −
∑

i,j=1,...,n

aij(x, t)uij = f(x, t), (x, t) ∈ Rn × [0, T ], (3.45)

satisfy the a priori estimate

Es(t) ≤ C

(
Es(0) +

∫ t

0

‖f(τ)‖Hs−1(Rn) dτ

)
, t ∈ [0, T ] , (3.46)

where the constant C depends on the coefficient functions aij, their L∞-norms of the deriva-
tives ∂βx∂

l
taij(x, t), with l ≤ 1, |β| ≤ s− 1, and numbers s, T .

Proof. In order to make an idea of the proof clear, we start with the simple case of an
equation with constant coefficients aij(x, t) = aij. With |α| ≤ s − 1 we apply ∂αx to the
equation,

∂αx

(
utt −

∑
i,j=1,...,n

aijuij

)
= ∂αx f =⇒ ∂αxutt − ∂αx

∑
i,j=1,...,n

aijuij = ∂αx f .

Then we multiply on ∂αxut and integrate with respect to x over Rn,∫
Rnx

(
∂αxutt − ∂αx

∑
i,j=1,...,n

aijuij

)
∂αxut dx =

∫
Rnx

(∂αx f) ∂αxut dx,

that is, ∫
Rnx

(∂αxutt) ∂
α
xut dx−

∫
Rnx

( ∑
i,j=1,...,n

aij∂
α
xuij

)
∂αxut dx =

∫
Rnx

(∂αx f) ∂αxut dx .
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Consider all terms of the last equation separately. For the first term we have∫
Rnx

(∂αxutt) ∂
α
xut dx =

1

2

d

dt

∫
Rnx

(∂αxut)
2 dx .

The second term can be transformed as follows:

−
∫
Rnx

∑
i,j=1,...,n

aij (∂αxuij) ∂
α
xut dx = −

∫
Rnx

∑
i,j=1,...,n

aij
(
∂αx∂xi∂xju

)
∂αxut dx

=

∫
Rnx

∑
i,j=1,...,n

aij (∂αx∂xiu) ∂αx∂xjut dx =
1

2

d

dt

∫
Rnx

∑
i,j=1,...,n

aij (∂αx∂xiu)
(
∂αx∂xju

)
dx .

For the source term, using algebra property of the Sobolev space, inequality |α| ≤ s−1, and
the definition of the energy, we obtain∣∣∣∣∫

Rnx
(∂αx f) ∂αxut dx

∣∣∣∣ ≤ ‖∂αx f‖L2(Rnx)‖∂αxut‖L2(Rnx) .

Thus, we have obtained

1

2

d

dt

∫
Rnx

(∂αxut)
2 dx+

1

2

d

dt

∫
Rnx

∑
i,j=1,...,n

aij (∂αx∂xiu)
(
∂αx∂xju

)
dx ≤ ‖f‖Hs−1(Rnx)‖∂αxut‖L2(Rnx) ,

or

1

2

d

dt

{∫
Rnx

(∂αxut)
2 dx+

∫
Rnx

∑
i,j=1,...,n

aij (∂αx∂xiu)
(
∂αx∂xju

)
dx

}
≤ ‖f‖Hs−1(Rnx)‖∂αxut‖L2(Rnx) .

We sum up all such inequalities for α with |α| ≤ s− 1, and arrive at the inequality

1

2

d

dt


∫
Rnx

∑
|α|≤s−1

(∂αxut)
2 dx+

∫
Rnx

∑
|α|≤s−1

aij (∂αx∂xiu)
(
∂αx∂xju

)
dx


≤ ‖f‖Hs−1(Rnx)

∑
|α|≤s−1

‖∂αxut‖L2(Rnx) .

Exercise. Derive in a similar way a conservation law used above.
Moreover,

1

2

d

dt


∫
Rnx

∑
|α|≤s−1

(∂αxut)
2 dx+

∫
Rnx

∑
|α|≤s−1

aij (∂αx∂xiu)
(
∂αx∂xju

)
dx

 (3.47)

≤ ‖f‖Hs−1(Rnx)


∫
Rnx

∑
|α|≤s−1

(∂αxut)
2 dx+

∫
Rnx

∑
|α|≤s−1

aij (∂αx∂xiu)
(
∂αx∂xju

)
dx


1/2

.
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Now we note that since the matrix aij is positive, the function y = y(t) defined by

y(t) :=


∫
Rnx

∑
|α|≤s−1

(∂αxut)
2 dx+

∫
Rnx

∑
|α|≤s−1
i,j=1,...,n

aij (∂αx∂xiu)
(
∂αx∂xju

)
dx


1/2

,

is continuous and nonnegative. Then (3.47) implies

d

dt
y2(t) ≤ Cy(t)‖f‖Hs−1(Rnx)

for all t ∈ [0, T ]. Then, the last inequality implies (check this statement)

y(t) ≤ C

∫ t

0

‖f(τ)‖Hs−1(Rnx) dτ ,

that is ∫
Rnx

∑
|α|≤s−1

(∂αxut)
2 dx+

∫
Rnx

∑
|α|≤s−1
i,j=1,...,n

aij (∂αx∂xiu)
(
∂αx∂xju

)
dx

≤ C

(∫ t

0

‖f(τ)‖Hs−1(Rnx) dτ

)2

.

Now we have to take into account that in the left hand side of the last inequality the term
‖u(t)‖L2(Rnx) is absent, while it is present in the energy Es(t). We estimate that term as
follows:

‖u(t)‖L2(Rnx) = ‖u(0) +

∫ t

0

ut(τ) dτ‖L2(Rnx)

≤ ‖u(0)‖L2(Rnx) +

∫ t

0

‖ut(τ)‖L2(Rnx) dτ

≤ ‖Es(0)‖L2(Rnx) +

∫ t

0

Es(τ) dτ .

Since |aij| ≤ C we obtain∫
Rnx

∑
|α|≤s−1

(∂αxut)
2 dx+

∫
Rnx

∑
|α|≤s−1
i,j=1,...,n

aij (∂αx∂xiu)
(
∂αx∂xju

)
dx (3.48)

≤ CEs(0) + C

(∫ t

0

‖f(τ)‖2
Hs−1(Rnx) dτ

)2

.

On the other hand, since
∑
aijξiξj ≥ c|ξ|2, the left hand side of the inequality (3.48) can be

estimated from the below, and we obtain

E2
s (t) ≤ CE2

s (0) + C

(∫ t

0

‖f(τ)‖2
Hs−1(Rnx) dτ

)2

.

Exercise. Complete the proof for variable coefficients aij = aij(x, t).
Lemma is proven. �

Exercise. Derive the energy estimates from the representation formula for the solutions of
the equation.
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4 Uniqueness

In this section we consider real-valued functions and use the notations

x0 := t, u′ := (uj) := (∂tu,∇u) =: (∂x0u, ∂x1u, . . . , ∂xnu),

u′′ := (uij) := (∂xi∂xju)i,j=0,1,...,n, Fjk(x, u, u
′, u′′) :=

∂F (x, u, u′, u′′)

∂ujk
.

Theorem 4.1 (Local Uniqueness.)
Let u ∈ C3 be a solution of the differential equation

F (x, u, u′, u′′) = 0 (4.49)

in a neighborhood of 0 ∈ Rn+1, with F ∈ C2. Assume that it is strictly hyperbolic at the
origin with respect to the plane x0 = 0, that is the polynomial

n∑
j,k=0

Fjk(0, u(0), u′(0), u′′(0))ξjξk

is strictly hyperbolic in the direction of the ξ0 axis. Thus, the quadratic equation
n∑

j,k=0

Fjk(0, u(0), u′(0), u′′(0))ξjξk = 0 ,

for ξ0 has real distinct roots for all ξ2
1 + ξ2

2 + . . .+ ξ2
n = 1.

Then any other solution v ∈ C3 of (4.49) with ∂αu = ∂αv when x0 = 0 and |α| ≤ 2 is
equal to u in some neighborhood of 0.

Proof. By Taylor’s formula we can write

F (x, u, u′, u′′)− F (x, v, v′, v′′) =
∑
|α|≤2

aα(x, u, u′, u′′, v, v′, v′′)∂α(u− v) ,

where aα ∈ C1 as a function of x, u, u′, u′′, v, v′, v′′. Hence u− v satisfies a linear differential
equation with C1 coefficients which by hypothesis is hyperbolic with respect to the plane
x0 = 0 at 0. Moreover, it is strictly hyperbolic with respect to the plane x0 = 0 in some
neighborhood of the origin because we consider real-valued functions, only. (Exercise: Prove
the last statement.) Since the Cauchy data are 0 it follows from the energy estimates for
linear equations proved before and from the Holmgren’s transformation that u − v = 0 in
some neighborhood of 0 ∈ Rn+1. �

Exercise. Prove that, if the equation is quasilinear, that is, linear in the highest order
derivatives,

utt −
∑

i,j=1,...,n

aij(u, ∂tu,∇u)uij = f(u, ∂tu,∇u), (x, t) ∈ Rn+1 ,

the statement of the theorem is true if u, v ∈ C2.

Lecture 6. August 6, 2010
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5 Local Existence

Consider the Cauchy problem

utt −
∑

i,j=1,...,n

aij(u,∇u)uij + u = f(u,∇u), (x, t) ∈ Rn+1 , (5.50)

u(x, 0) = ϕ0(x), ut(x, 0) = ϕ1(x), x ∈ Rn, (5.51)

where uij := ∂xi∂xju, and aij and f are smooth functions of their arguments. The matrix
aij(u, η) is assumed to be positive uniformly for all its arguments, that is,

0 < c1 ≤
∑

i,j=1,...,n

aij(u, η)ξiξj for all u ∈ R, η, ξ ∈ Rn, |ξ| = 1 .

Example. aij(u, η) = δij(1 + |η|2) or aij(u, η) = δij (2 + u4 + sin(1 + |η|2))

5.1 Local Well-Posedness Theorem

Theorem 5.1 (Local Well-Posedness).
Given initial data

(ϕ0, ϕ1) ∈ Hs ×Hs−1

for some s >
n+ 4

2
, there exists a number T > 0 such that the Cauchy problem (5.50),(5.51):

utt −
∑

i,j=1,...,n

aij(u,∇u)uij + u = f(u,∇u), (x, t) ∈ Rn+1 ,

u(x, 0) = ϕ0(x), ut(x, 0) = ϕ1(x), x ∈ Rn,

is locally well-posed in the space C([0, T ];Hs)× C([0, T ];Hs−1), that is

(u, ut) ∈ C([0, T ];Hs)× C([0, T ];Hs−1) .

Proof. We use the notation for the “energy”

Es(t) := ‖∂tu‖Hs−1(Rn) + ‖u‖Hs(Rn) .

Denote by X the space of functions u ∈ L2([0, T ]× Rn) such that

ut, ux1 , . . . , uxn ∈ L∞([0, T ];Hs−1)
⋂

C([0, T ];L2)

with the norm defined according to

‖u‖X := sup
0≤t≤T

Es(t) .

Then, denote for M > 0 the subset

XM := {u ∈ X |u(0) = ϕ0, ut(0) = ϕ1 ‖u‖X ≤M} .
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We provide the set XM with the metric ρ(u, v) defined by

ρ(u, v) := sup
0≤t≤T

(‖u− v‖Hs + ‖∂tu− ∂tv‖Hs−1) .

Exercise. Prove that (XM , ρ) is a complete metric space.
Define the map

L : XM 3 v 7−→ u ∈ X ,

where u solves the Cauchy problem for the linear equation

utt −
∑

i,j=1,...,n

aij(v,∇v)uij = f(v,∇v), (x, t) ∈ Rn × [0, T ] ,

u(x, 0) = ϕ0(x), ut(x, 0) = ϕ1(x), x ∈ Rn.

Step 1. First we prove that L maps XM into itself provided that T is small enough. Indeed,
according to the energy estimates, we have

Es(t) ≤ C0Es(0) + C(‖v‖X)

∫ t

0

‖f(v(x, τ),∇v(x, τ))‖Hs−1(Rn)dτ .

According to the property of the superposition of the functions and of the Sobolev embedding,
we have

‖f(v(x, τ),∇v(x, τ))‖Hs−1(Rn) ≤ Cs(‖v(x, τ)‖Hs(Rn)) .

Hence,

Es(t) ≤ C0Es(0) + C(‖v‖X)

∫ t

0

‖f(v(x, τ),∇v(x, τ))‖Hs−1(Rn)dτ

≤ C0Es(0) + C(‖v‖X)

∫ t

0

Cs(‖v(x, τ)‖Hs(Rn))dτ

≤ C0Es(0) + TC(‖v‖X)Cs( sup
0≤τ≤T

‖v(x, τ)‖Hs(Rn)), t ∈ [0, T ] .

Now we choose M = 2C0Es(0) and then T small enough, so that

C0Es(0) + TC(‖v‖X)Cs(‖v‖X) ≤M

and we can conclude that
‖u‖X ≤M .

Step 2. Second, we prove that L is contraction on XM . Indeed, for v1, v2 ∈ XM , let
u1, u2 ∈ XM be the corresponding solutions of the Cauchy problem. Then,

(u1 − u2)tt −
∑

i,j=1,...,n

aij(v1,∇v1)(u1 − u2)ij

= f(v1,∇v1)− f(v2,∇v2) +
∑

i,j=1,...,n

(aij(v1,∇v1)− aij(v2,∇v2)) (u2)ij, (x, t) ∈ Rn × [0, T ],
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while

(u1 − u2)(x, 0) = 0, (u1 − u2)t(x, 0) = 0, x ∈ Rn .

From the energy estimate we have

ρ(u1, u2)

≤ C(‖v‖X)

∫ t

0

{
‖f(v1,∇v1)− f(v2,∇v2)

+
∑

i,j=1,...,n

(aij(v1,∇v1)− aij(v2,∇v2)) (u2)ij‖Hs−1(Rn)

}
dτ

≤ C(‖v‖X)

∫ t

0

‖f(v1,∇v1)− f(v2,∇v2)‖Hs−1(Rn)

+C(‖v‖X)

∫ t

0

‖
∑

i,j=1,...,n

(aij(v1,∇v1)− aij(v2,∇v2)) (u2)ij‖Hs−1(Rn)dτ .

To make the estimates more transparent we take case of

f(v,∇v) = |∇v|2 , aij(v,∇v) = aij

with the constants aij. Then, since s− 1 > n/2, we derive by product property

‖f(v1,∇v1)− f(v2,∇v2)‖Hs−1(Rn) = ‖|∇v1|2 − |∇v2|2‖Hs−1(Rn)

= ‖(∇v1 −∇v2) · (∇v1 +∇v2)‖Hs−1(Rn)

≤ ‖∇v1 −∇v2‖Hs−1(Rn)‖∇v1 +∇v2‖Hs−1(Rn)

≤ ‖v1 − v2‖Hs(Rn)‖v1 + v2‖Hs(Rn)

≤ 2M‖v1 − v2‖Hs(Rn)

≤ 2M sup
[0,T ]

‖v1 − v2‖Hs(Rn)

≤ 2Mρ(v1, v2) .

Hence,

ρ(u1, u2) ≤ TC(‖v‖X)2Mρ(v1, v2) .

Again, for T sufficiently small we obtain

ρ(u1, u2) ≤ 1

2
ρ(v1, v2) .

By the contraction mapping principle, L has a unique fixed point that depends continuously
on the data.
Exercise. Complete the proof by discussion of the case of the general aij(v,∇v) and
f(v,∇v). (Hint: Provide the set XM with the metric ρ(u, v) defined by

ρ1(u, v) := sup
0≤t≤T

(‖u− v‖H1 + ‖∂tu− ∂tv‖L2) .
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Prove that (XM , ρ) is a complete metric space. In order to estimate∑
i,j

∥∥∥(aij(v1,∇v1)− aij(v2,∇v2)
)

(u2)ij

∥∥∥
L2((Rn)

use condition on s, namely, s > n
2

+ 2 =⇒ s− 2 > n
2
. Then Sobolev embedding implies

‖∂xi∂xju2‖L∞(Rn) ≤ C‖∂xi∂xju2‖Hs−2(Rn) ≤ C‖u2‖Hs(Rn) ≤ C‖u2‖X ≤ CM ) .

Theorem is proven. �

6 Counterexamples to the Global Existence

6.1 Nirenberg’s Example. Method of Representation Formula

The following one is an example of an equation without global classical solution u ∈ C2(R×
R3) to the Cauchy problem with large initial data in R3:

utt −∆u = |∇u|2 − |ut|2 ,
u(0, x) = 0, ut(0, x) = ϕ1(x) , x ∈ R3 ,

where further conditions on ϕ1 are given below. If u = u(t, x) is a solution to this Cauchy
problem, then the function v = v(t, x) defined by

v(t, x) = eu(t,x)

solves the following Cauchy problem for the wave equation

vtt −∆v = 0 ,

v(0, x) = 1, vt(0, x) = ϕ1(x) , x ∈ R3 .

The solution v is unique and there is an explicit representation for v:

v(t, x) = 1 +
t

4π

∫
|y|=1

ϕ1(x+ ty)dSy .

If v > 0, then one obtains

u(t, x) = log

(
1 +

t

4π

∫
|y|=1

ϕ1(x+ ty)dSy

)
.

For every given positive t0 and point x0 ∈ R3 one can find a function ϕ1(x) ∈ C∞0 (R3) such
that solution u(t, x) develops singularity not later than at time t0 at the point x0. Indeed,
ϕ1 has only to satisfy the following relation:

t0
4π

∫
|y|=1

ϕ1(x0 + t0y)dSy = −1 .

On the other hand, it is easily seen from the next proposition that for sufficiently small data
solution exists for all t.
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Proposition 6.1 If ϕ1(z) = O(|z|−1) as |z| → ∞, ‖∇ϕ1‖L1(R3) < 4π, ‖ϕ1‖L∞(R3) < 1,
then u is defined globally, that is, for all x ∈ R3 and all t ∈ R .

Proof. We note that for the “large time”, t > 1, there is some decay of the varying part
v(t, x) − 1 of the solution v = v(t, x) to the wave equation. Namely the L∞-norm of that
part satisfies the following estimates:

|v(t, x)− 1| =
t

4π

∣∣∣∣∫
|y|=1

∫ ∞
t

d

dτ
ϕ1(x+ τy)dτdSy

∣∣∣∣
=

t

4π

∣∣∣∣∫
|y|=1

∫ ∞
t

y · (5xϕ1)(x+ τy)dτdSy

∣∣∣∣
=

t

4π

∣∣∣∣∫ ∞
t

dτ

∫
|z|=τ

(z
τ

)
· (∇ϕ1)(x+ z)

dSz
τ 2

∣∣∣∣
≤ t

4π

∫ ∞
t

dτ

∫
|z|=τ

1

τ 2
|(∇ϕ1)(x+ z)|dSz

≤ 1

4πt

∫
|z|≥t
|∇ϕ1(x+ z)|dz

≤ 1

4πt
‖∇ϕ1‖1 ≤

1

t
< 1 .

The same estimate holds for t < −1. For the small time t, |t| ≤ 1, that difference vanishes
at t = 0, and we have

|v(t, x)− 1| =
∣∣∣∣ t4π

∫
|y|=1

ϕ1(x+ ty)ds

∣∣∣∣ ≤ |t|‖ϕ1‖∞ < 1 .

Therefore, v(t, x) is positive for all (t, x) ∈ R × R3 and u = u(t, x) is defined globally in
R× R3. �

From now on through this lectures “blow-up” means the nonexistence of the global in
time classical solution u ∈ C2([0,∞)× Rn) to the Cauchy problem under consideration.

Exercise: Prove that for every given positive t0 and point x0 ∈ R3 one can find a function
ϕ1(x) ∈ C∞0 (R3) such that the solution u(t, x) of the Cauchy problem

utt − tl 4 u+ (ut)
2 − tl

n∑
j=1

(uxj)
2 = 0, u(0, x) = 0, ut(0, x) = ϕ1(x) , x ∈ Rn ,

develops a singularity not later than at time t0 at the point x0.

6.2 Parametric resonance breaks down the small data solution

We give an example of the influence of the behavior of a time-dependent coefficient a = a(t),
and in particular its oscillating behavior, on the global existence of solutions to nonlinear
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hyperbolic equation. More precisely, for arbitrary small initial data we will construct blowing
up solution. To this end we consider in R× Rn the equation

utt − a2(t, x)4 u+ u2
t − a2(t, x)| 5x u|2 = 0 , (6.52)

where u = u(t, x) is a real-valued unknown function. We restrict ourselves to the case of
a(t, x) = b(t):

utt − b2(t)4 u+ (ut)
2 − b2(t)

n∑
j=1

(uxj)
2 = 0 . (6.53)

The next theorem shows that if the function b = b(t) differs from the constant, for instance,
oscillates, the situation with the global existence for small data changes dramatically. It was
first detected in [16]. In the next theorem ‖ϕ‖(s) denotes the norm of the function ϕ = ϕ(x)
from the Sobolev space Hs(Rn).

Theorem 6.2 (K.Y [16], J. of Math. Anal. and Appl. (2001))
Let b = b(t) be a defined on R, a periodic, non-constant, smooth, and positive function.

Then for every n, s, and for every positive δ there are data u0 ∈ C∞0 (Rn) and u1 ∈ C∞0 (Rn)
such that

‖u0‖(s+1) + ‖u1‖(s) ≤ δ (6.54)

but a solution u ∈ C2(R+ × Rn) to the problem with data

u(0, x) = u0(x), ut(0, x) = u1(x) , x ∈ Rn , (6.55)

does not exist.

Proof. We skip proof of the theorem. �

For a simplest example of the equation (6.53) one can take

b(t) = 1 + ε sin(2πt), ε ∈ (−1/2, 1/2), ε 6= 0.

The oscillations are responsible for the blow-up of the solutions. Indeed, if we switch off
them, that is, if we set ε = 0, then for all n ≥ 3 the problem has small data global in
time solution. (See, e.g. [8].) The proof of Theorem 6.2 is based on the well-known in
Physics parametric resonance phenomena. The main feature of the parametric resonance is
the exponentially increasing amplitudes of oscillatory system, whereas in ordinary resonance
they increase with a power law.

6.3 Coefficient stabilizing to a periodic one. Parametric resonance
dominates.

After studying the periodic case the next question is that for corresponding results for
equations with a coefficient stabilizing to a periodic one. Equations with the coefficient
being a product of periodic function and a function stabilizing to a constant, are considered
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in many papers and books (see, e.g., Ch.4 [4]). Following this let us restrict to the model
equation

utt − exp(2tα)b2(t)4 u+ (ut)
2 − exp(2tα)b2(t)|∇u|2 = 0 , (6.56)

t ∈ [1,∞), x ∈ Rn, for α ∈ R, α < 0. Here b = b(t) is a real-valued, defined on R, a
periodic, non-constant, smooth, and positive function. We study the global solvability of the
Cauchy problem with the data prescribed on t = 1:

u(1, x) = u0(x), ut(1, x) = u1(x) . (6.57)

In Section 11 [18] we proved the global existence for small data for the equation (6.56) with
the fast oscillating coefficients, that is, for the case α ∈ [1/2,∞).

The next theorem shows that for equation with a coefficient stabilizing to a periodic one,
the oscillations, which approach for the large time the pure periodic behavior, in general
break the global existence. (See also [16]).

Theorem 6.3 (K.Y. [18] Oper. Theory Adv. Appl., 159, 2005)
Let α ∈ (−∞,−1) while b = b(t) be a defined on R, a periodic, non-constant, smooth, and

positive function. Then for every n, s, and for every positive δ there are data u0 ∈ C∞0 (Rn)
and u1 ∈ C∞0 (Rn) such that the inequality

‖u0‖(s+1) + ‖u0‖(s) ≤ δ (6.58)

is fulfilled, but a solution u ∈ C2([1,∞)× Rn) to the problem (6.56), (6.57) does not exist.

Open Problem: Consider the case of α ∈ [−1, 0) ∪ (0, 1/2).

Lecture 7. August 17, 2010

6.4 Functional method. Second order differential inequalities

Second order differential inequalities with power decreasing kernel play a key role in proving
blow-up of the solutions to semilinear equations. Kato’s lemma [9] allows us to derive from
the second order differential inequality the boundedness of the life-span of solution with the
property wt ≥ a > 0.

Lemma 6.4 ([9] Kato, Comm. Pure Appl. Math.1980)
If p > 1, b > 0, there is no global solution to the differential inequality

ẅ ≥ bt−1−pwp, t ≥ R > 0 large

such that wt ≥ a > 0 and w ≥ at > 0.

Proof. We skip proof of the lemma. �

The next lemma (Lemma 4[12]) is a version of Kato’s lemma.
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Lemma 6.5 ([12] Sideris, T.C. J. Diff. Equations (1984))
Suppose F (t) ∈ C2([a, b)), and for a ≤ t < b,

F (t) ≥ C0(k0 + t)r ,

F̈ (t) ≥ C1(k0 + t)−qF (t)p ,

where C0, C1, and k0 are positive numbers. If p > 1, r ≥ 1, and (p − 1)r > q − 2, then b
must be finite.

Proof. We skip proof of the lemma. �

For the equation in de Sitter spacetime

utt − e−2t4 u+M2u = 0,

the kernel of the corresponding ordinary differential inequality decreases exponentially:

ẅ ≥ be−Mtwp, p > 1, b > 0, M > 0, t large.

There is a global solution to the last differential inequality. Hence, to generalize Kato’s
lemma we have to look for proper supplementary conditions on the involving functions. It
is done in the following lemma.

Lemma 6.6 (K.Y. [26] Discrete Contin. Dyn. Syst. Ser. S 2 (2009))
Suppose F (t) ∈ C2([a, b)), and

F (t) ≥ c0A(t), Ḟ (t) ≥ 0, F̈ (t) ≥ γ(t)A(t)−pF (t)p for all t ∈ [a, b), (6.59)

where A, γ ∈ C1([a,∞)) are non-negative functions and p > 1, c0 > 0. Assume that

lim
t→∞

A(t) =∞ , (6.60)

and that

d

dt

(
γ(t)A(t)−p

)
≤ 0 for all t ∈ [a, b) . (6.61)

If there exist ε > 0 and c > 0 such that

γ(t) ≥ cA(t)(lnA(t))2+ε for all t ∈ [a, b), (6.62)

then b must be finite.

Proof. We skip proof of the lemma. �

We note here that the equation

F̈ (t) = e−dtF (t)p , d > 0,

has a global solution F (t) = cF e
d
p−1

t, where cF = (d/(p− 1))2/(p−1), while the corresponding
A(t) = cAe

at, a > 0, and γ(t) = cγe
(pa−d)t. The condition (6.62) implies a > d/(p − 1). On

the other hand, the first inequality of (6.59) holds only if a ≤ d/(p− 1).
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6.5 Functional method. Nonexistence of global solution for the
semilinear Tricomi-type equation

The next example illustrate the so-called Functional Method to prove blow-up phenomena.
Example. (K.Y. [18]) Assume that u = u(x, t) is a smooth solution of

utt − a2(t)∆u = m(t)|u|p on [0, T ]× Rn , 0 < T ≤ ∞ ,

u(x, 0) = ϕ0(x) , ut(x, 0) = ϕ1(x) on Rn ,

where for the speed of propagation a = a(t) and for the function m = m(t) with some
positive constants C and k the following conditions are fulfilled:

0 < a0 ≤ a(t) , a(t),m(t) ∈ C∞(R+) , A(t) :=

∫ t

0

max
τ≤s

a(τ) ds ,

m(t) ≥ C(k + t)−c(k + A(t))n(p−1) for large t with c < p+ 1 .

Suppose that
suppϕ0, suppϕ1 ⊂ {x ∈ Rn ; |x| ≤ R }.

By the domain of dependence property,

suppu(t, ·) ⊂ {x ∈ Rn ; |x| ≤ R + A(t) } .

By integrating the equation with respect to spatial variables we obtain∫
Rn

(
utt(t, x)− a2(t)∆u(t, x)

)
dx =

∫
Rn
m(t)|u(t, x)|p dx .

On the other hand the divergence theorem gives∫
Rn
a2(t)∆u(t, x) dx = a2(t)

∫
Rn

∆u(t, x) dx = 0 ,

while
d2

dt2

∫
Rn
u(t, x) dx =

∫
Rn

∂2u(t, x)

∂t2
dx .

Hence,
d2

dt2

∫
Rn
u(t, x) dx =

∫
Rn
m(t)|u(t, x)|p dx .

Now we introduce a functional

F (t) =

∫
Rn
u(t, x) dx ,

then

F̈ (t) =

∫
Rn
m(t)|u(t, x)|p dx .
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Using the compact support of u(t, ·) and Hölder’s inequality we get with 1/p + 1/q = 1,
p/q = p− 1, τn the volume of the unit ball in Rn,∣∣∣∣∫

Rn
u(t, x) dx

∣∣∣∣p =

∣∣∣∣∫
|x|≤R+A(t)

u(t, x) dx

∣∣∣∣p
≤

(∫
|x|≤R+A(t)

|u(t, x)|p dx
)(∫

|x|≤R+A(t)

1 dx

)p/q
=

(∫
Rn
m(t)|u(t, x)|p dx

)
τn

1

m(t)
(R + A(t))np/q

= F̈ (t)τn
1

m(t)
(R + A(t))np/q .

Thus
F̈ (t) ≥ τ−1

n m(t)(R + A(t))−n(p−1)|F (t)|p

for all t in the interval [0, T ]. In particular, F̈ (t) ≥ 0, and so F (t) ≥ Ḟ (0)t+ F (0). Now

Ḟ (0) =

∫
Rn
ut(0, x) dx =

∫
Rn
ϕ1(x) dx ≡ Cϕ1 .

If Cϕ1 > 0, then
F (t) ≥ (pos. const.)t , t large .

The Lemma 6.5 with r = 1 and c = q satisfying (p − 1)r > q − 2, shows that the function
F (t) cannot remain finite. Hence, T <∞.

Example. (Tricomi-type linear part.) If we consider the Cauchy problem for the equation

utt − t2k∆u = m(t)|u|p on [0, T ]× Rn , 0 < T ≤ ∞ ,

u(x, 0) = ϕ0(x) , ut(x, 0) = ϕ1(x) on Rn ,

that is with a(t) = tk and m(t) = tm for large t, then the assumptions on these functions
imply

p <
n(k + 1) + 1 +m

n(k + 1)− 1
.

Example. (Semilinear wave equation in Minkowski spacetime.) If we set k = 0, n = 3, and
m = 0 in the previous example, then the condition on p is

p < 2 .

It is known (see,e.g, [18]) that for the semilinear wave equation in Minkowski spacetime

utt −∆u = |u|p on [0, T ]× Rn , 0 < T ≤ ∞ ,

the last condition can be improved

1 < p < 1 +
√

2 .
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For the general n ≥ 2 denote by pn the positive root of the equation

(n− 1)p2
n − (n+ 1)pn − 2 = 0 .

Conjecture (W. Strauss [15]): For the semilinear wave equation in Minkowski spacetime
for n ≥ 2 blow-up for all data if p < pn and global existence for all small data if p > pn.

Open Problem: Prove Conjecture [19]: For the Cauchy problem

utt − t2k∆u = |u|p on, [0, T ]× Rn , 0 < T ≤ ∞ ,

u(x, 0) = ϕ0(x) , ut(x, 0) = ϕ1(x) on Rn ,

if n = 3, then for p, given by

p >
3k + 4

3k + 2
,

the small data solution exists globally, that is T =∞.

7 Global Existence Theorem

7.1 Invariance of the wave operator under Lorentz group and ho-
motheties.

The 4-dimensional spacetime (ct, x, y, z) in which we find ourselves is called a Minkowski
space, and a point in such a space is termed an event. The equation

s2 ≡ c2t2 − x2 − y2 − z2 = 0

defines the light cone. Events that have s2 > 0 are called timelike; events that have s2 < 0
are called spacelike; events on the light cone (s2 = 0) are called lightlike. Timelikes events
can be causally connected to the origin with signals for which v < c, but spacelike events
cannot be connected to the origin except by signals for which v > c.

The special theory of relativity is based on the two following postulates:
(1) the velocity of light in vacuum is constant in all inertial systems (an inertial system is a
system of reference in which Newton’s first law of motion holds),
(2) the laws of physics are invariant under transformations between inertial systems (covari-
ance).

Thus Lorentz transformation of the variables x0, x1, x2, x3 (x0 = t) is any linear homo-
geneous transformation of these variables

yi =
3∑
j=0

aijxj , i = 0, 1, 2, 3 ,

with real coefficients aij which leaves invariant the quadratic form

x2
0 − x2

1 − x2
2 − x2

3 .
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That is
y2

0 − y2
1 − y2

2 − y2
3 = x2

0 − x2
1 − x2

2 − x2
3 .

More general inhomogeneous Lorentz transformations (Poincaré transformation) are defined
by

yi =
3∑
j=0

aijxj + bi , i = 0, 1, 2, 3 .

The homogeneous Lorentz transformations form a group, called homogeneous Lorentz group
(often just termed the Lorentz group). This group is a 6-parameter Lie group in four dimen-
sions. The 3-dimensional orthogonal group of rotations O(3) is a subgroup of the homoge-
neous Lorentz group.

We now write down a formula for a special class of Lorentz transformations which have the
property of leaving invariant two of the last three (spatial) coordinates. Such transformation
has the form 

y0 = αx0 + βx1 ,
y1 = γx0 + δx1 ,
y2 = x2 ,
y3 = x3 .

For such transformations the identity

y2
0 − y2

1 = x2
0 − x2

1

must hold. Substituting in this identity the expression for y0 and y1, we get

(αx0 + βx1)2 − (γx0 + δx1)2 = x2
0 − x2

1 .

Whence α2 − γ2 = 1 ,
β2 − δ2 = −1 ,
αβ − γδ = 0 .

In particular, these equations are satisfied if we put

α = δ = coshψ ,

β = γ = sinhψ ,

where ψ is an arbitrary number. Then
y0 = (coshψ)x0 + (sinhψ)x1 ,
y1 = (sinhψ)x0 + (coshψ)x1 ,
y2 = x2 ,
y3 = x3 .

If we denote tanhψ = v/c (|v/c| < 1 for any ψ), then we obtain the usual formulas for the
class of Lorentz transformations of this special case:

(∗)


y0 = 1√

1−(v/c)2
x0 + v/c√

1−(v/c)2
x1 ,

y1 = v/c√
1−(v/c)2

x0 + 1√
1−(v/c)2

x1 ,

y2 = x2 ,
y3 = x3 .
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Any Lorentz transformation is a combination of an orthogonal transformation of the variables
x1, x2, x3 which leaves x0 fixed, a transformation of the form (∗), and a possible change of
sign of one of the variables (a reflection).

Theorem 7.1 Every non-singular linear transformation of the variables t, x1, x2, x3 with real
constant coefficients which does not change the form of the wave equation is a combination
of a Lorentz transformation, a translation of the origin in the space (t, x1, x2, x3), and a
similarity transformation in that space.

By the statement that some transformation “does not change the form of the wave
equation” we mean that any function u(t, x1, x2, x3) which satisfies the equation

∂2u

∂x2
0

− ∂2u

∂x2
1

− ∂2u

∂x2
2

− ∂2u

∂x2
3

= 0

goes over, after transformation of the xi into the yi, into a function u(y0, y1, y2, y3) satisfying
the equation

∂2u

∂y2
0

− ∂2u

∂y2
1

− ∂2u

∂y2
2

− ∂2u

∂y2
3

= 0 .

Homotheties transformations are the transformations given for every positive number α
by 

y0 = αx0 ,
y1 = αx1 ,
y2 = αx2 ,
y3 = αx3 ,

with a generator coinciding with the identity matrix.

7.2 Homogeneous fields

By Z = Z(x, ∂x) we shall denote any one of the vector fields

Zjk(x, ∂x) = gjj(0)xj
∂

∂xk
− gkk(0)xk

∂

∂xj
, j, k = 0, . . . , , n ,

Z0(x, ∂x) =
n∑
j=0

xj
∂

∂xj
(radial vector field) ,

where gjk(0) = diag(1,−1, . . . ,−1) are the coefficients of the d’Alembertian. We shall call
these vector fields the homogeneous fields since their coefficients are homogeneous of degree
one. We often omit (x, ∂x) and write shortly Z0, Zjk.

Zjk with 0 < j < k ≤ n are spatial angular momentum operators. Z0 is a generator of
the representation of the homotheties transformations.
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Generators of the representation of the Poincaré (inhomogeneous Lorentz) group are
given by

∂0, ∂1, . . . , ∂n, Zjk = gjj(0)xj∂/∂xk − gkk(0)xk∂/∂xj , j, k = 0, . . . , , n .

For example Z12 is the infinitesimal generator of the representation of the group of rotations
{T12(h)} given by 

y0 = x0 ,
y1 = (cosh)x1 + (sinh)x2 ,
y2 = −(sinh)x1 + (cosh)x2 ,
y3 = x3 .

We denote by ZI any product of |I| such vector fields.

Exercise: Check the following identities

[�, Zjk] = �Zjk − Zjk� = 0 , j, k = 0, . . . , , n ,

[�, Z0] = �Z0 − Z0� = 2� ,

[Z0, Zjk] = 0 ,

[Z0, ∂j] = −∂j , j = 0, 1, . . . , n ,

[Zij, Zkl] = −gik(0)Zjl − gjl(0)Zik + gil(0)Zjk + gjk(0)Zil , i, j, k, l = 0, . . . , n ,

[Zij, ∂k] = −gik(0)∂j + gjk(0)∂i , i, j, k = 0, . . . , n .

In what follows, we shall denote

∂0, ∂1, . . . , ∂n, Z0, Z01, . . . , Zn−1,n

respectively by Γi, i = 0, . . . ,m(n).

Exercise: Find number m(n).

At times we shall suppress the subscript. Also, if (α0, . . . , αm), m = m(n), is a multi-index,
we shall write

Γα = Γα0
0 Γα1

1 . . .Γαmm , m = m(n) .

Exercise: Prove that: (i) for homogeneous fields (h.v.f.) we have the commutativity rela-
tions

[Γi,Γj] =
∑

Γk:h.f.

cijkΓk , Γi,Γj : h.v.f.

for certain fixed constants, where the sum just involves homogeneous vector fields; (ii) the
commutator of two homogeneous vector fields is a linear combination of homogeneous vector
fields; (iii) commutator of ∂j with a homogeneous vector field is a translation invariant vector
field:

[Γk, ∂j] =
n∑
i=0

aijk∂i , Γk : h.v.f. (7.63)

since the above calculated commutators:

(∗∗)


[Z0, ∂k] = −∂k , k = 0, 1, . . . , n ,
[∂k, Z0j] = δ0k∂j + δjk∂0 ,
[∂k, Zij] = δjk∂i − δik∂j , 0 < i < j ≤ n .
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If we introduce the three families of first-order operators

Ω :=
(
Zij

)
1≤i<j≤n

,

Ω :=
(
Zij

)
0≤i<j≤n

,

γ :=
(
Z0,Ω, ∂0, . . . , ∂n

)
,

then commutator relations imply that the R-linear span of each of the families is a Lie-algebra
with bracket [·, ·]. (Check that statement.)

Proposition 7.2 Let r = |x| and ∂r = r−1
∑n

i=1 xi∂i. Then in R1+n
+ \ 0 we can write

(t− r)∂r = a0(t, x)Z0 +
n∑
i=1

ai(t, x)Z0i , (7.64)

where the coefficients

a0(t, x) = − |x|
|x|+ t

, ai(t, x) =
t

|x|+ t

xi
|x|

,

are smooth, homogeneous of degree zero and satisfy bounds of the form

|∂αaj(t, x)| ≤ Cα(t+ |x|)−|α| for all |x| > δt ,

and all α with δ > 0 fixed. Also,

(t− r)2

n∑
i=0

|∂iui(t, x)|2 ≤ 2

(
|Z0u(t, x)|2 +

∑
0≤j<k≤n

|(Zjku)(t, x)|2
)
. (7.65)

Proof. We skip proof of the lemma. �

There are some useful formulas:

(t− r)∂r =
1

r + t
(t2 − r2)∂r =

1

r + t

(
t

n∑
i=1

xi
|x|
Z0i − rZ0

)
, (7.66)

(t− r)∂t =
1

r + t

(
tZ0 −

n∑
i=1

xiZ0i

)
, (7.67)

(t2 + |x|2)
n∑
j=2

|∂iu(t, x)|2 =
∑

0<j<k

|(Zjku)(t, x)|2 +
n∑
k=2

|(Z0ku)(t, x)|2 , (7.68)
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if �u = 0 then �ZIu = 0 for every I ,

Zjk(|x| − t) = 0 j, k 6= 0 ,

Z0k(|x| − t) = (|x| − t)xk/|x| , k 6= 0 ,

Z0(|x| − t) = |x| − t .

Lemma 7.3 The vector fields Zjk, Z0 form a basis for all vector fields when t2 6= |x|2, that
is outside the light cone Λ = {(t, x) ∈ R1+n , |t| = |x|}:

∂xj =
gjjxj∑n
k=0 g

kkx2
k

Z0 −
n∑
l=0

xl∑n
k=0 g

kkx2
k

Zjl , j = 0, . . . , n ,

∂t =
t

t2 − r2
Z0 −

n∑
k=1

xk
t2 − r2

Z0k , ∂xj = − xj
t2 − r2

Z0 −
n∑
k=0

xk
t2 − r2

Zjk, j = 0, . . . , n .

Thus,

∂j =
∑
ν

ajν(t, x)Zν , j = 0, . . . , n ,

where Zν is any labeling of the vector fields Zjk, Z0, and ajν is in C∞(R1+n \Λ) and homo-
geneous of degree −1.

Proof. We skip proof of the lemma. �

Lemma 7.4 Span of the homogeneous vector fields at the point (t, x) ∈ R1+n \ 0:
a) If t2 6= |x|2, that is if (t, x) is not on the light cone, then homogeneous vector fields span
the full tangent space above (t, x);
b) If t2 = |x|2, then they only span the tangent space to the light cone;
c) If t2 = |x|2, then the missing normal component vanishes only to first order.

Proof. We skip proof of the lemma. �

7.3 Variant of Sobolev’s theorem

The proof of the estimates we shall require will use this proposition as well as the following
variant of Sobolev’s theorem for Rn.

We shall use the energy integral method to estimate ‖ZIu(t, ·)‖ and deduce maximum
norm estimates from the next proposition.
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Proposition 7.5 ([8]) There is a constant C such that

(1 + |t|+ |x|)n−1(1 + ||t| − |x||)|u(t, x)|2 ≤ C
∑

|I|≤(n+2)/2

‖ZIu(t, ·)‖2
Rnx (7.69)

if u ∈ S in (t− 1, t+ 1)× Rn, say. Here by Z it is denoted any one of the vector fields Z0,
Zjk or ∂0, ∂1,. . . , ∂n.

Proof. We skip proof of the proposition. �

7.4 L∞-weighted estimate for the solution to the wave equation

Proposition 7.6 ([8]) If u is solution of the homogeneous unperturbed wave equation with
Cauchy data ϕ0, ϕ1 ∈ C∞0 (Rn), then

sup
Rn+1

(1 + |t|)
n−1
2 (1 + ||t| − |x||)−

1
2 |u(t, x)| ≤ Cϕ0,ϕ1 <∞ ,

where constant Cϕ0,ϕ1 depends also on the diameters of the supports of data.

From Section 6.2 [8] we know that these estimates have the right order of magnitude
near the boundary of the light cone, that is, when ||t| − |x|| is bounded. However, the best
bounds are

sup (1 + |t|)
n−1
2 (1 + ||t| − |x||)

n−1
2 (|u(t, x)|+ |u′(t, x)|) <∞ ,

and they cannot be obtained from L2 estimates of ZIu.

7.5 Global existence theorem

In this section we shall study the Cauchy problem in R1+n

n∑
j,k=0

gjk(u′)∂j∂ku = f(u′) , (7.70)

u(0, x) = εϕ0(x) , ∂0u(0, x) = εϕ1(x) . (7.71)

We assume that u ≡ 0 is a solution of (7.70) and that the linearization at this solution is
the wave operator, that is,

we assume that
n∑

j,k=0

gjk(0)∂j∂k = � and that f vanishes of second order at 0.

Theorem 7.7 ([11] S. Klainerman, Comm. Pure Appl. Math. (1980))
The Cauchy problem (7.70), (7.71) with ϕj ∈ C∞0 (Rn), j = 0, 1, has a C∞ solution for t ≥ 0

if n ≥ 4 and ε is sufficiently small.
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Proof. We skip proof of the theorem. �

The graphics in this lecture notes were made by Mathematica 7.0.0.
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