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Abstract

In this paper we consider an example on asymptotic expansions on manifolds with
corner singularities. The content is a helpful step to understand how affects the push-
forward operation under a b-fibration on the asymptotic data on basic objects, namely
on b-densities.
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Introduction

Pseudodifferential calculus on configurations with (geometric) singularities, in particu-
lar, on manifolds with corners, is an important area of mathematical research. Further,
asymptotic structure at the singular points is one of the main problems of singular anal-
ysis.

Any operation in analysis consists of some basic processes, such as pull-back and
push—forward. In this view it is important to understand how affects the push-forward
under an appropriate map on the asymptotic data of the elements under the consider-
ation.

Let W,V be two manifolds with corner singularities and f : W — V be a b-fibration.
Further, let ;2 be a compactly supported b-density on . The Melrose’s Push-Forward
Theorem, see in [2], [4], or [5], shows that f,u is a b-density on V' and defines its index
family by that of 1 and geometric properties of f.
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The next natural point is to get the explicit asymptotic expansion of f, ., i.e., to define
the coefficients. For that purpose some general information is to find in [4].

In this paper we consider a special example, namely, the b-fibration f(z,y) = zy
between the manifolds Ki and R, . We get the asymptotic expansion of f,u for a com-
pactly supported density . on @i at 0. Note that this result can be find using the Singular
Asymptotics Lemma by Briining and Seeley, see in [1], or [3]. An advantage of our ap-
proach is that the reader is not assumed to be familar with the singular analysis, and
this example can be helpful to understand more general results.

I wish to express my thanks to Prof. D. Grieser (University of Oldenburg) for valuable
discussions and remarks.

1 Push-Forward Theorem

1.1 Spaces of polyhomogeneous conormal functions; /-integral

In this section we turn to necessary material with some important remarks.

Definition 1.1. A discrete set
E = {(zj, kj)}jen

with (z;,k;) € C x Ny is said to be an index set, if
Rez; w00 as j— oo and  (z,k)€ E= (z,s) € E forany s<k.

Definition 1.2. (i) A boundary defining function on a manifold X with boundary 0X is
an up to the boundary smooth functionp : X — [0, 00) such that p='(0) = 0X and dp # 0
on 0X. (A function p on a manifold with boundary is called smooth up to the boundary
iff all derivatives of all orders of p are bounded on bounded subsets of X°.)

(i) A trivialization near the boundary is a diffeomorphism (x,y) : U — [0,¢) x 0X where
U is a neighbourhood of 0.X in X; in particular,  must then be a boundary defining func-
tion.

By the next definition we introduce the basic function spaces used in this paper.

Definition 1.3. (i) Let X be an-dimensional manifold with boundary. The space Q5. (X)
of polyhomogeneous conormal functions on X with index set E is defined to be the set of
allu € C*(X°) which, in some trivialization (x,y) near the boundary, satisfy

’(x@m)aaf (u(x, y) — Z a.x(y)2* log" x>‘ < Oz (1)

(z,k)EE
Rez<N
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forevery N € R,a € Ny, 8 € NI, for some functions a.,(y) € C*(0X) and some con-
stantC' = C(N, «, 8) > 0, uniformly on compact subsets of 0.X .
Ifu satisfies the above conditions we also write

u(@,y) ~ Y ap(y)rlogbz as -0 )
(z,k)EE

and call the sum on the right side of (2) the asymptotic sum of uw asxz — 0.

(ii) Let X be a manifold with corners and boundary hypersurfaces H,, ..., H,,, and let
Ei, ..., E,, beindex sets. We think of E; as associated to H;. The set£ = (E,...,E,,) is
called an index family for X .

(iii) Let us now define the corresponding function spaces on manifolds with corners. For
. . . =2 .

the notational convenience we restrict to R ; the extension to the general case does not

cause any essential difficulty.

The space Qgc(ﬁi) of polyhomogeneous conormal functiogzs on Ei with index family
£ = (E,F) is defined to be the set of all functions u on R that satisfy the conditions
of ) with Cy=77'2N (J = inf F := inf {Rew : Is € Ny suchthat (w,s) € F})as
the right side of the inequality (1) and the coefficients a. ;(y) polyhomogeneous conormal
with index set F in the sense of (i) ( for the manifold with boundaryR.).

Remark 1.4. The definitions of the spaces 2,,.(X), Q‘;C(Ei), etc. are correct, i.e., indepen-

dent of the choice of boundary defining functions, if one assume that E (analogously F')
satisfies the condition:
(z,k) e E= (z+1,k) € E. (3)

Definition 1.5. (i) A b-density on R (Ki) polyhomogeneous conormal with index set E
(index family ) is a density of the form

with u(z) € QE(R,) (u(z,y) € QE(RY)).

Analogously, a b-density on Ei x R"* polyhomogeneous conormal with index family
E = (E,..., Ey) isadensity of the form

W(T1y s Tp)—— o dyr - Ay (4)

withu(zy,...,x,) € Qic(@i x R"7F).
((4) is independent of the choice of coordinates if each of E;,i = 1, ..., k, satisfies the con-
dition (3).)
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(ii) By Q¢ .(X) we denote the set of all b-densities on the manifold with corner X poly-
homogeneous conormal with index family £.

Remark 1.6. In this paper we will consider only compactly supported polyhomogeneous
conormal functions with integer index sets: (z,k) € E = z € Z. In particular, v may
be replaced by wu for a cut-off function w on R, (i.e.,w € C(R,) such thatw = 1 ina
neighbourhood of zero).

In the next part of this section we illustrate the so-called “b-integral” of b-densities.
We consider the one-dimensional case, R, ; the general case is of an analogous struc-
ture.

Let ;. € PQF (R,) for anindex set E. The integral [ . diverges unless £ C N x Ny. To
Ry
avoid this problem we “regularize” the latter; we replace usual integrals by b-integrals.

First note that

o0

Ia) = [ ne G,

T

(about the calculation see (8) below).

Definition 1.7. Theb-integral of 1, denoted by

][ ! 5)
R4

is defined to be the constant in the asymptotic expansion of I (x) as x — 0.

Remark 1.8. (i) For an integrable b-density the b-integral coincides with the ordinary in-
tegral.

(ii) Let us give an explicit expression for (5). Using Remark|[1.6| and the asymptotic ex-
pansion of u with i = u(z)%, the general terms to be considered are

d
][ w(z)z? logh x —J;, z €7, k €Ny. (6)
Ry T

Moreover, let us write

u(z) = w(z) - Z ax” logh x4+ r(x), (7)

(z,k)eE
2<0

where r(z) € QM (Ry); since fi r(x) % = [ r(z)% we only need to consider ﬁ) for
Ry

z <0.
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Integration by parts yields
i P DOIC Vi e E {x log"*z + [ w'(y)y” log’“‘sydy} , 2<0

xT

The integrals on the right side are convergent (as x — 0) and the other terms are polyho-
mogeneous conormal in x without a constant term. Hence

k
Z(—l)SH( k' z7571 f )z log" wdx, 2 <0

d -
][ w(z)z? log* x =0 N C)
Ry v -1 fw(x)log mda:, z2=0

(iii) (Coordinate invariance) In general the b-integral depends on the choice of the co-
ordinate (i.e., boundary defining function) x. Let n € PQE.(R,) andinf E = —m,m € Ny.
Let x and x' be boundary defining functions toR,,. : ©' = a(z)z foran0 < a(x) € C®(R..).
The b-integrals corresponding to x and ' coincide iff

In fact, by (i) we have to show the coordinate invariance of the terms in (6) for = =
—m,...,0.

The assertion is an easy consequence from (8). Let us explain the case = = 0. As
shows the second equality of (8) by the transition from x to x' in the asymptotic expansion

of f y) logk ydyy occurs a new constant term, —M, which implies the condition

a(0) = 1.

(iv) For a meromorphic function f we denote by R, f(a) the constant in the Laurent ex-
pansion of [ about a. Let us show that for f € Q. R4)

[ @)% = Ra(M)(0), 10)

where M f denotes the Mellin transform of f: M f(w f v f(x dx. The assertion is ob-

vious forr in (7 , so we need only consider the terms fzk( ) = w(z)2? log" z for = < 0.
Here we consider the case k = 0. The Mellin transform of f., is a meromorphic func-

tion on C with the single pole at —z of order 1; hence
lim (M f.0)(w), z <0
Ro (M f.0)(0) = ¢ 0 , .
3}1{?0 (U)Mfoo)<w)> y R

5

z Y s= T
/w(y)y loghy— = ¢°=° :
Y — {log x+fw ) log"t ydy}, 2=0

8)
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ForRew > —z (2 < 0) and Rew > 0, integrating by parts, we get

1 Oowz/ . 1 Oow/ z
wﬁmwo:w+zju+>mmef@+Z!xw@ndm

and .
w (M) (w) = [(@"Yala)do =~ [ a"/(a) da

respectively. Thus
dx
Ro(Mfzo)(O) = :]{Q fzo(I) =
+

cf. (9).

1.2 Push-Forward Theorem

We now formulate the Melrose’s Push—-Forward Theorem in a special case of manifolds
with corners, in particular, in the case considered in Section 2.

Definition 1.9. (i) Let X,Y be manifolds with corners und py und p;, the complete sets
of boundary defining functions for the boundary hypersurfaces { H} of X and {G} of Y,
respectively. A smooth map f : X — Y is said to be a b-map if for any hypersurface G of
Y is
Fpe=ac [[ o™, 0<ageC™(X),
H

with non-negative integerse(H, G).
In particular, ab-map f : Ki — Rr (in local coordinates) has the form

flz,y) = a(m,y)xayﬁ for 0<a(z,y) € COO(Ri), a, B € Ng.

(ii) A b-fibration f : X — R, is ab-map such that f : f~*(R.) — R, is a fibration in
the following sense:
foranyt, € R, the preimage X, := f~'(ty) is a manifold and a neighbourhood of X;, in
X can be identified (via a diffeomorphism) with X, x U for some neighbourhoodU C R,
of to such that f(x,t) =t forallx € X, t € U.

Let 4 € PQ%.(X) be compactly supported, f : X — R, a b-fibration and &, f sat-
isfy the condition below. The Melrose’s Push-Forward Theorem shows that f,u €
POL (R, ) for a resulting Index set F, defined by € and f, see below.

Let f : M — N be a smooth map between manifolds. The push—forward £, of a measure x on M is
the measure on N defined by (f.u)(V) = u(f~*(V))(= measure of the union of all fibers over V),V C N.
In terms of integrals, this is equivalent to [(f.u)p = [ uf*¢forall o € C5°(N).

N M
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Theorem 1.10. Let X be a manifold with corners and f : X — R, a b-fibration. Let
& = (E(H)) (with E(H) an index set to the boundary hypersurface H of X) such that

inf F(H) >0 whenever e(H,{0})=0. (11)

Then for any compactly supported b-density 1. on X, polyhomogeneous with index family
&, f.u is ab-density on R, , polyhomogeneous with index family

Ue(H,{Ié}»o{(m’k) H(2,k) € E(H)}, (12)

here EUF := EUF U {(z,k + k" +1): (z,K) € E, (2, k") € F}.

About the conditions of this theorem see [2, Section 3.6].

2 Push-Forwards of h-densities under the map
_2 P
I R+ — R—i-?f(x?y) =Ty

Let f be the b-fibration f : Ei — Ry, f(z,y) = zy = t, £ = (E,F) an index family
with E, F C Z x Ny, and p a compactly supported one in ngc(@i). According to the
Push-Forward Theorem, f,. € PQS (R, ) with

G = EUF.

The purpose of this paper is to compute the asymptotic sum of f.u ast — 0. The
consideration will be performed in two steps. First, in Section 2.1, we study smooth
b-densities (F, F' C Ny x {0}), afterwards, in Section 2.2, we consider a more general
case (E, F' C Z x Ny).

2.1 Push-forwards of compactly supported smooth H-densities

Let = u(z, y)%% foru e C§° (@i). For a suitable cut-off function w we can also write
1= w()w(y)u(z, y)df%’. Moreover, let f : @i — R, be as above, f(z,y) = zy. Then f.u
is a smooth b-density with an indexset G C Ny x {0, 1} :

dt

o0

with Q5 (R,) 3 g(t) = [ w(x)w(L)u(x, L) . Applying the Mellin transform on g we get

F(w) = Mysu(g(6) () = Mysuw(y) (Moo (@ (@)ul@, y)) (w, y)) (w). (13)

7



8 GOHAR HARUTYUNYAN

Let (4,0) € E N F. Write the Laurent expansion of

h(w,y) = M (w(@)ulz, y)) (w,y) (14)

close to —j:

h_1(y)

+ ho(y) + p(w,y)(w + j)

with a family of holomorphic functions p(w,y),y € R,, in a neighbourhood of —j. Let
us compute the coefficients 4_;(y) and hy(y). For Rew > 0 integration by parts gives

oo

h Dl wH G+
0
which yields
. ) 1 i -
h-1(y) = wlgr_lj(w + j)h(w,y) = i (a)(x)u(x,y))(H ) de
0
~u(0,y)
= i
Further,

holy) = Ro(Maou(w(@)u(e, y)(w, 1)) (—7) = Ro(Myorw (LT9)y 4 4 5 40) (=)

= R0<Mx—>w(W)(w,y))(0) = (by Remark[L.§|(iv) ) = u(i;y)d?x'

Iterating this process it is not difficult to show that

F(UJ) == My—>w (w(y)h(w, y)) =

@00 1 1 ][U;@><o,y>@+ ][u;%,om_x L4 gw)
U (w+j)* ¥y o fwtg

+ R4

with a holomorphic function ¢ in a neighborhood of —j.
Set

I's:={weC:Rew=p} and Sg::{wGC:B—%<Rew<ﬁ+%}.

8
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We return to the function g as the inverse of the Mellin transform of

. 1 —w
9(t) = ML (F(w)(t) = 5— /t F(w) dw
Iy
2
| Nl
= om T F(w)dw — tF(w)d — Y F (w)d
S r N+
N-1 .
= — / t7F(w)dw + — / ™ F(w)dw
— 27 Jos 2m1
J i
il 7/ —w ()
B g (1% 2mi (w+7)? J! 7 T
—j +
() _
; 0’ d 1 t—w 1
Yy’ Y | 2mi Jos_, wt ] 2mi Jo o,
Ry +3
N-1
_ 4 mJyJ 10gt+ _][ ya ax _][ +tN5(t)
§=0 (
with § € Qp0 "R, ) ie,,
(24)
. u Gard O 0 i X O 0 d
gty ~ Yy ¥ —L)bgﬂr—][y—— —][ y YY) as t—o.

(15)

2.2 The general case

Now we consider compactly supported b-densities polyhomogeneous with index sets
E,Fsuchthat(z,k) € EorF = z€ Z,k € Ny. Let ] :=inf E <inf F =: Jandlet (j,%;) €
E and (j,m;) € F. For h(w,y) asin the Laurent expansion in a neighbourhood of —j
is
) = G+ et Pl
(w+7)k* (w4 j)h w+J
+ ho(y) + I (y)(w +5) + -4 by () (w + )™ + (0 + )™ g(w,y) (16)

with a family of holomorphic functions g(w, y),y € R,, in a neighbourhood of —j. Write
the asymptotic expansion of u at R , :

u(w,y) ~ > 27 (aY(y) + al(y) logw + -+ + )’ (y) log x).

j=21
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For k > 0, using some obvious properties of the Mellin transform, we get

Eln(y) = Ro((Mamru(@(@ulz, ) w.y)) ) (<))
R, (Mxﬁw(w(x)u(x, y) log x)(

x)

= R (Mo (AW, ) )

x)
B ][ u(z,y) log® z dx
e, 7 T

For the coefficients of the negative powers of w+j, adding the equality wM (u(z)) (w) =
—M (zu/(z))(w), we show that

he(y) = (1) =k = Dla;* Y (y) for —k;—1<k<-1. (17)

Let us prove fork =-1:
hoi(y) = Ro((w+ )M (w(z)u(z,y))(w,y))(-))
= Rofw+ )M (I 4y ()
(

= M (o (LA 443 0)

x)
_ w(@)ulz,y)\r
_ ][( EEIY dr = al(y)
Ry
Putting the values of h;(y) in we get
kj+1
h(w,y) = > (=D (k =Dl (y) (w+ )"
k=1
A1 [ u(z,y)logh z da N
D e

k=0 R

+ (w+ )" g(w,y).
Write the asymptotic expansion of v at R ,

u(z,y) ~ Yy (BY(x) + Bl (x)logy + - - - + B} (x) log™ y)

Jj=J

and of o (y),k =0,...,kj,asy = 0

Oé?(y) ~ Z yi (’YJI‘C{O + '751‘71 IOgy S ,yjklvmz logmi y)

i>J
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Let us now consider M,_,, (w(y)h(w,y))(w). As in the last section, iterating the above
discussion, we get

and

w(y)u(z, y)log" z dz

My xJ z
+

ﬂ’Lj+1

> n - oif S )

m=1

with holomorphic functions p; and ¢ in a neighbourhood of —j.
Summing up, for £ as in (13) we have
k}j-f—l mj+1

F(w) = Y (=)™ = Dl(m = 1)lyf; " (w4 §)~*m™

j 1\ k-1 log™
D ) e

gk

m— k
' = 1) [ B ) log o d
! (e T
R

+ h(w)

with a holomorphic function % in a neighbourhood of —j.

The last step is of analogous structure as in Section 2.1; the asymptotic expansion of
gis

: ' (k=D'm =D 4 vmo1,  ktmet
g(t) ~ N v log t
; k=1 m=1 (k+m—-1)t
k]'+1 k—1 E—1 m
; k—1)! Qs lo d
+ Zt] (_1)m ( ) ][ j (y) gy _y logk_m_lt
§>I k=1 m=0 m!(k —m —1)! Y Y
= i
# SEe e (m=0t [ @los w da (18)
" Z =1 k\(m —k — 1)!][ i z 8
> m=1 k=0 R

O

11
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2.3 Some conclusions

Let X be a manifold with corner, H a boundary hypersurface and p a boundary defining
function corresponding to H. Define

plm(X;H) = {p :p isaboundarydefining functionto H
suchthat p—p =0(p™*?) for p—0}.

Let p = u(2)% € "QF (R, ,),E C Z x Ny,inf E = I < 0, be compactly supported,
v = [7]_;(Ry,;{0}) and z, 2’ € v be two different choice of local coordinates with 2’ =

a(z)z,0 < a(z) € C=(R, ,). The condition z, 2’ € v is equivalent to
a(0) =1,a(0)=0,i=0,1,...,—1.

Thus, using Remark (iii), fR+ L is well-defined, i.e., is independent of the choice of
local 0020rdinate z € v. In particular, if o = [t]o(Ry;{0}),11 = [x]_[(ﬁi; R, ,), s =
ly]-s(R.; R, ), then the principal part of the asymptotic expansion is independent
of particular choices of coordinates t € «, x € vy, y € vs.

Remark 2.1. In the smooth case we have

dy dx

u(0,0) = ﬂ|(0,0)’ (0, y)? = M‘R%y? u(z,0) = Mﬁﬁz' (19)

x
Let us show the coordinate independence of the restrictions (19). In fact, if z, 2’ with
7' = a(x,y)z andy,y withy' = b(x,y)y are two boundary defining functions toR. , and

R, ., respectively, and

B dedy  ,  dx'dy
u—U(fE,y)x ) =v(7,y) P
we have
dx dy de  aldx.dy
U(ﬂf’y)?? = U(a'x,y)(? a )y
dx d !
= U(G-Ly)—x—erv(a-x,y)—x-xd—x@,
x Yy a Ty

which gives u(0, y)d;y = (0, y)%, i.e., the restriction g,  is independent of the choice
of the boundary defining function to R, ,. In a similar manner we can argue for g, -
Finally, if

dz dy dx’" dy
M:u(way) Ty :U<xluy/) 2 y/’
the equality
dx dy de  da, dy db
bkt A v b (— £ Y (22 2
u($’y)x Y v(a -, y)($ + a)(y + b)
b, a’ a’ b, dxdy
_ b1ty 2yt e Oy AT dy
v(a-z,b-y)(1+y 7 + . + Yy ” b)a: y

yields u(0,0) = v(0,0), the coordinate independence of 1|0 of the choice of boundary
defining functions toR, , andR , ,,.

12
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We proved the following (coordinate invariant) result:

Theorem 2.2. Let f : Ri — R bea(1,1)-typeb-fibration over (0,00). Leta = [t]o(Ry 4, {0}), 11 =
[x]o(ﬁi, R.,) vs = o(R:,R,.,), satisfying the condition

ffa=v® .
Let 1 € bQﬁc(Ki),g = (E,F) with E,F € Ny x {0} be compactly supported. Then

fop € QS (R,) with
G = EUF,

and the principal term is

— 1] (0,0) log(pe) + ][

R‘hPZ

/'L|R+7K>a: +][ M’R‘hﬂy
+

Py

foranyp, € o, p, € 11, py € Vo With p, = py - py.
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