# ИССЛЕДОВАНИЕ КУМУЛЯТИВНОГО ФОТОРОЖДЕНИЯ ПРОТОНОВ И л-МЕЗОНОВ

#### К. Ш. ЕГИЯН

Приводятся новые экспериментальные данные по кумулятивному фоторождению протонов и  $\pi$ -мезонов из ядер  $^{12}C$ ,  $^{27}Al$ ,  $^{63}Cu$ ,  $^{118}Sn$ ,  $^{208}Pb$ , облучениых тормозными  $\gamma$ -квантами с энергией до 4,5 ГэВ. Обсуждаются энергетические, угловые и A-зависимости инвариантного сечения этих процессов, а также функции возбуждения кумулятивного фотообразования протонов. Спектры протонов из ядра  $^{12}C$  сравниваются с предсказаниями двух теоретических моделей: модели малонуклонных корреляций (МНК) и кластерной модели. Полученные данные удовлетворительно объясняются кластерной моделью лишь в кумулятивной области ( $\theta_p \geqslant 90^\circ$ ) и моделью МНК в приближении двухнуклонных корреляций в области характерных импульсов нуклонов в коррелированной паре  $k \leqslant 1$  ГэВ/с.

#### I. Введение

Изучение процессов фрагментации ядер в элементарные частицы с кинематикой, запрещенной для столкновений со свободными нуклонами, привело к открытию кумулятивного эффекта [1, 2] и ядерного скейлинга [3, 4], исследованию которых в последнее время посвящается все большее число экспериментальных и теоретических работ. Поскольку указанные выше эффекты первоначально были наблюдены в основном в столкновениях адронов с ядрами, то для установления их универсальности необходимо было подробно исследовать кумулятивный эффект (КЭ) и ядерный скейлинг (ЯС) в процессах, вызванных электромагнитным излучением и слабо взаимодействующими частицами.

Первые систематические исследования [5, 6], проводимые в ЕрФИ с 1972 г., показали справедливость основных закономерностей КЭ и ЯС в процессах фотофрагментации ядер в протоны. В втих исследованиях импульсы кумулятивных протонов не превышали 0,8 ГвВ/с. Между тем для более однозначных сравнений с имеющимися теоретическими модельными представлениями, претендующими на объяснение сути КЭ и ЯС, необходимо расширить пределы импульсов регистрируемых протонов. Кроме того, КЭ и ЯС в процессах фотофрагментации ядер в л-мезоны до настоящего времени не исследованы вообще.

В предлагаемой работе представлены полученные в ЕрФИ новые экспериментальные данные по фотофрагментации ядер в протоны с импульсом до 1,25 ГъВ/с и первые результаты по фотофрагментации ядер в л-мезоны в области больших углов и энергий вторичных частиц.

Экспериментальные результаты получены на пучке Г-3 Ереванского влектронного синхротрона при помощи установки «Дейтрон», подробно описанной в [7, 8].

Протоны и л-мезоны идентифицировались двумя детекторами. В первом случае был использован пробежный детектор [7], позволяющий отождествлять частицы с кинетической энергией  $T_p = 80 \div 300~{\rm MpB}$  для протонов и  $T_{\star} = 45 \div 160 \text{ МъВ для } \pi$ -мезонов (без разделения по знаку заряда) под углом регистрации 20 ÷ 160°. Абсолютные энергетические разбросы и телесный угол составляли соответственно  $\Delta T_p = 15 \div 6$  МэВ.  $\Delta T_{\star} = 12 \div 8 \text{ MbB}$  и  $\Delta \Omega = 10$  мстр. Во втором случае детектором служил магнитный спектрометр с применением методики измерения времени пролета, который позволил [8] идентифицировать частицы с кинетической энеогией 0,18 ÷ 1,2 ГвВ для л-мезонов и 0,3 ÷ 0,65 ГвВ для протонов под углом регистрации 20—120°. Относительные погрешности в измерении импульса и телесный угол спектрометра составляли соответственно  $\Delta p/p = \pm 6.5\%$  (при  $p \geqslant 1,0$  ГъВ/с) и  $\Delta \Omega = 1,25$  мстр. Время пролета измерялось в интервале т = 15 ÷ 50 нс с относительными разбросами  $\Delta \tau / \tau \leq \pm 5\%$ .

На рис. 1a приведены массовые спектры, полученные при помощи пробежного детектора, которые показывают, что л-мезоны и протоны разделяются со 100% вффективностью. На рис. 16 приведены такие же спектры, полученные спектрометром при положительной полярности магнитного по-

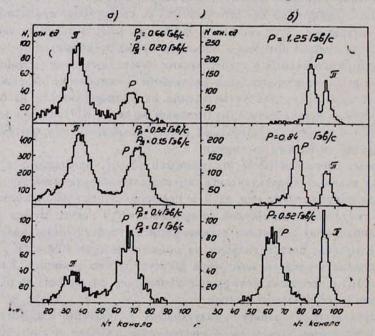



Рис. 1. Массовые спектры: a — получены пробежным детектором для заряженных частиц; b — получены магнитным спектрометром для положительно заряженных частиц.

ля. Как нетрудно видеть, пики от  $\pi^+$ -мезонов и протонов (на рис. 16 пики от  $\pi^+$ -мезонов расположены справа) надежно разделяются до значения импульса 1,25 ГэВ/с. Пики от протонов по мере уменьшения импульса расширяются из-за многократных рассеяний и энергетических потерь в сцинимах диспользуемых в спектрометре. Аналогичные спектры для отрицательной полярности магнитного поля показывают наличие только пиков в точности в тех местах, где расположены пики от  $\pi^+$ -мезонов.

Таким образом, весь комплекс установки «Дейтрон» позволяет идентифицировать заряженные частицы в области энергий  $T_{\rm x}$ =0,045÷1,2 ГэВ для п-мезонов и  $T_{\rm p}$ =0,08÷0,65 ГэВ для протонов.

Были исследованы реакции

$$\gamma + A \to p(\pi) + X,\tag{1}$$

где X — остаточная система. В качестве твердых мишеней использовались ядра  $^{12}C$ ,  $^{27}Al$ ,  $^{63}Cu$ ,  $^{118}Sn$  и  $^{208}$  Pb.

Выходы реакций (1) измерялись одновременно для  $\pi^{\pm}$ -мезонов и протонов в случае использования пробежного детектора и  $\pi^{+}$ -мезонов и протонов в случае использования магнитного спектрометра. В последнем случае измерение выхода  $\pi^{-}$ -мезонов осуществлялось путем изменения полярности магнитного поля. По измеренным выходам составлялись инвариантные сечения:

$$f \equiv E \frac{d^{3a}}{dp^{3}} = C \frac{E}{p^{2}} \frac{N}{2 \Delta \Omega \left(\Delta p/p\right) p N_{s} N_{T}}, \qquad (2)$$

где N — измеренный выход, E, p и  $\Delta p/p$  — полная энергия, импульс и импульсный разброс измерения,  $\Delta \Omega$  — телесный угол регистрации,  $N_{\rm g}$  и  $N_{\rm g}$  — число ядер- на пути пучка и число эквивалентных у-квантов, которое определяется путем измерения мощности пучка при помощи квантометра гауссовского типа. Коэффициент C в (2) учитывает поправки, обусловленные ядерным поглощением и многократным рассеянием в веществе детектора и мишени, параобразованием в мишени, распадом на лету (в случае  $\pi^{\pm}$ -мезонов) и конечной эффективностью регистрации частиц. Инвариантное сечение (2) было получено в зависимости от энергии вторичных частиц, от угла регистрации, от массового числа ядер мишени и от энергии первичных у-квантов.

## III. Экспериментальные результаты и их обсуждение

## 1. Энергетические и угловые спектры

Протоны. На рис. 2 приведены внергетические спектры протонов из ядер  $^{12}C$  при различных углах и при  $(E)_{\max} = 4,5$  ГвВ. Темными значказначками — данные, полученные магнитным спектрометром [10]. Необходимо отметить, что несмотря на то, что две серии данных получены различми обозначены данные [9], полученные пробежным детектором, светлыми ной методикой и в разное время (фактически в двух самостоятельных экс-

периментах), тем не менее на рис. 2 никаких нормировок для «сшивания» данных не было сделано. Наблюдаемое согласие между двумя сериями измерений свидетельствует о малых систематических ошибках в наших измерениях.

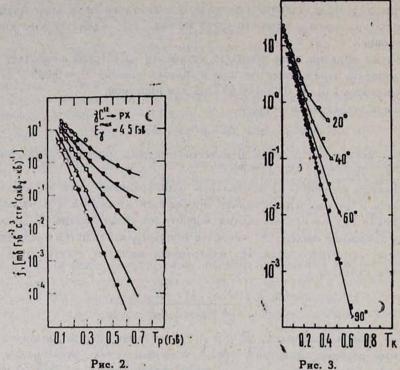



Рис. 2. Энергетические спектры протонов в реакции  $\gamma C \to \rho X$  при  $(E_{\gamma})_{\rm max}=4.5$  ГэВ. Экспериментальные точки:  $\bullet$  и  $\bigcirc -20^{\circ}$ ,  $\blacktriangle$  и  $\triangle -40^{\circ}$ ,  $\blacksquare$  и  $\square -60^{\circ}$ ,  $\blacktriangledown$  и  $\bigcirc -90^{\circ}$ ,  $\spadesuit$  и  $\Diamond -120^{\circ}$ ; затемненные значки—из работы [9]. Кривые в случае  $\theta_{\rho}=90^{\circ}$  и 120° построены методом наименьших квадратов, в случае  $\theta_{\rho}=60^{\circ}$ ,  $40^{\circ}$ ,  $20^{\circ}-$  "на глаз".

Рис. 3. Зависимость  $F(T_k)$  от  $T_k$  (см. соотношение (5)). Экспериментальные точки:  $\bigcirc -$  для угла регистрации протонов  $20^\circ$ ,  $\triangle - 30^\circ$ ,  $\square - 40^\circ$ ,  $\nabla - 50^\circ$ ,  $\Diamond - 60^\circ$ ,  $\bigcirc -70^\circ$ ,  $\triangle - 80^\circ$ ,  $\square - 90^\circ$ ,  $\bigvee -100^\circ$ ,  $\diamondsuit - 110^\circ$ , полутемные значки:  $\bigcirc -120^\circ$ ,  $\triangle - 130^\circ$ ,  $\square - 140^\circ$ ,  $\nabla - 150^\circ$ ,  $\Diamond - 160^\circ$  при v = 0.18 и  $T_0 = 52.5$  МэВ [12]. Сплошными линиями экспериментальные точки соединены "на глаз".

Согласно данным рис. 2, для фиксированного угла регистрации спектры кумулятивных протонов (в данном случае для  $\vartheta_p \geqslant 90^\circ$ ) можно описать одной экспонентой

$$f_{\rho} = C_{\rho} \exp\left(-T_{\rho}/T_{o\rho}\right), \tag{3}$$

где  $C_p$  и  $T_{op}$  — постоянные. Величина  $T_{op}$  зависит от угла  $\vartheta_p$  и достигает значения  $T_{op}=45\div 50$  МэВ при  $\vartheta_p\geqslant 120^\circ$ , что хорошо согласуется с результатами, полученными ранее в  $[1\div 6]$ . Для углов  $\vartheta_p<60^\circ$  ранее была установлена справедливость представления (3), но для области импульсов  $\rho_p\leqslant 0.8$  ГэВ/с  $(T_p\leqslant 0.3$  ГэВ). Новые данные (рис. 2) пока-

зывают, что для этой области углов (в основном это — некумулятивная область) спектры протонов нельзя представить одной экспонентой: для больших энергий спектры выполаживаются.

Ниже приводится сравнение наших экспериментальных данных с предсказаниями двух теоретических моделей.

В работе [11] было показано, что кластерная модель [12] очень хорошо описывает полученные нами [9] угловые и энергетические спектры фотообразования протонов для  $p_p \le 0.8$  ГэВ/с и  $\vartheta_p = 20$ —160°.

Расчет спектров был проведен по формуле

$$f_p = \varphi_p(A) \exp\left[-\frac{E_p - v p_p \cos \theta_p}{T_{op} (1 - v^2)^{1/2}}\right],$$
 (4)

где v — критическая скорость, при которой происходит распад кластера [11],  $T_{op}$  — параметр экспоненты (фактически температура распадающейся системы). Если ввести переменную  $T_k = E_p - v p_p \cos \vartheta_p$ , то, согласно (4), величина

$$F_p = \frac{f}{\varphi_p(A)} = \exp(-T_k/T_{k_0})$$
 (5)

будет универсальной функцией от  $T_k$ .

На рис. 3 приведены данные рис. 2 в таком представлении. Значение критической скорости принято равным v=0.18 [11]. Если бы кластерная модель была справедлива для всех значений энергий и углов, то все точки должны были бы лежать на одной линии. Как видим, это имеет место лишь для кумулятивных протонов ( $\Phi_p \ge 90^\circ$ ). В области малых углов и больших энергий отклонение экспериментальных значений сечения от предскаваний (5) составляет несколько порядков.

В работе [13] было показано, что модель малонуклонных корреляций (МНК) в приближении двухчастичных корреляций удовлетворительно объясняет угловые зависимости наших данных [9]. Расчеты были проведены согласно формуле [13]

$$f_{p} = \lambda Z \sigma_{l}^{\gamma N} |\psi(k)|^{2} (m_{N}^{2} + k^{2})^{1/2} \left[ 1 - \frac{E_{p} - p_{p} \cos \vartheta_{p}}{2 m_{N}} \right]^{-1}, \qquad (6)$$

где

$$k = m_N \left\{ \frac{m_N^2 - (E_p - p_p \cos \theta_p)^2 + p_p^2 \sin^2 \theta_p}{(E_p - p_p \cos \theta_p) \left[ 2 m_N (E_p - p_p \cos \theta_p) \right]} \right\}^{1/2}$$
 (7)

есть импульс нуклона в системе коррелированной пары нуклонов [13],  $p_p$  и  $E_p$  — импульс и полная энергия регистрируемого протона,  $\psi(k)$  — волновая функция коррелированной пары,  $\sigma_i^N$  — полное адронное сечение поглощения у-квантов,  $\lambda$  — постоянная, характеризующая увеличение вероятности спаривания в ядерной материи по сравнению со свободным состоянием, т. е. дейтроном, Z — порядковый номер ядра мишени.

Из (6) следует, что величина

$$F(k) = |\psi(k)|^2 = \frac{f_p \left[1 - (E_p - p_p \cos \theta_p)/2 \, m_N\right]}{\lambda Z \sigma_1^{TN} \, (m_N^2 + k_N^2)^{1/2}} \tag{8}$$

является универсальной функцией переменной k.

На рис. 4 приведены значения F(k) в зависимости от k. Как легко видеть, универсальность функции F(k) наблюдается в области  $k \le 1 \, \Gamma_{\vartheta} B/c$ . При  $k > 1 \, \Gamma_{\vartheta} B/c$ , по-видимому, необходимо учесть вклады корреляций высших порядков, теоретические аспекты которых в настоящее время развиты в недостаточной степени.

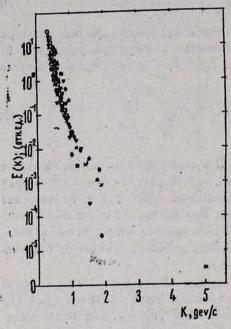



Рис. 4. Зависимость F(k) от k (см. соотношение (8)). Значки те же, что на рис. 2.

 $\pi$ -Мезоны. На рис. 5a приведен а энергетическая зависимость инвариантного сечения (2) реакции (1) для  $\pi^+$ -мезонов. Линии проведены через экспериментальные точки: в случаях  $\vartheta_{\pi}=60^\circ$ ,  $90^\circ$  и  $120^\circ$  методом наименьших квадратов, в случаях  $\vartheta_{\pi}=20^\circ$  и  $40^\circ$  — "на глаз". Стрелками показаны границы кумулятивной области. Как видим, для  $\vartheta_{\pi} \geqslant 60^\circ$  и  $T_{\pi} \leqslant 1,1$  ГэВ спектры хорошо описываются одной экспонентой. При  $\vartheta_{\pi} \leqslant 40^\circ$  наблюдается отклонение от экспоненты (спектр падает сильнее при больших энергиях). На рис. 56 приведены аналогичные данные для  $\pi$ -мезонов. Наблюдается одинаковый характер поведения спектров отрицательно и положительно заряженных  $\pi$ -мезонов.

При  $\theta_{\pi} > 60^{\circ}$  инвариантное сечение можно представить в виде

$$f_{\pi} = C_{\pi} \exp{\left(-T_{\pi}/T_{o\pi}\right)}, \tag{9}$$

где  $C_{\pi}$  и  $T_{o\pi}$  — постоянные. В таблице приведены значения  $T_{o\pi}$ , найденные по экспериментальным точкам методом наименьших квадратов

для различных углов. Можно видеть, что с ростом угла  $T_{\rm ox}$  уменьшается и уже при  $\theta_{\rm x}=120^{\circ}$  достигает значения  $T_{\rm ox}=65~{\rm MpB}$ , что хо-

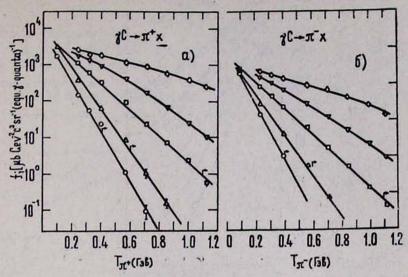
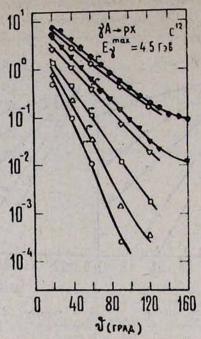



Рис. 5. Энергетические спектры:  $\alpha - 4$ ля  $\pi^+$ -мезонов, 6 - 4ля  $\pi^-$ -мезонов. Экспериментальные точки:  $\Diamond$  — угол  $\pi$ -мезонов  $\vartheta_{\pi} = 20^{\circ}$ ,  $\nabla - 40^{\circ}$ ,  $\Box - 60^{\circ}$ ,  $\triangle - 90^{\circ}$ ,  $\bigcirc - 120^{\circ}$ .

рошо согласуется со значением  $T_{c\pi}=60 \div 65$  МвВ, найденным в аналогичных процессах, вызванных адронами [1, 2].


| Таблиц<br>Значения Ток ± \( \Delta Tok \) (МвВ) |           |                |
|-------------------------------------------------|-----------|----------------|
| $\vartheta_{\pi}$                               | π+-мезоны | π-мезоны       |
| 60°                                             | 124 ±2    | 121 <u>+</u> 2 |
| 90°                                             | 76,2±2,6  | 78,3±1,5       |
| 120°                                            | 65,1±3,1  | 57,1±1,8       |

Необходимо подчеркнуть одно важное обстоятельство: при переходе из некумулятивной области в кумулятивную характеры спектров не меняются. Такое же поведение наблюдается при фотообразовании протонов на ядрах (см. рис. 2).

На рис. 6 и 7 приведены соответственно угловые распределения инвариантного сечения (2) для протонов и π-мезонов.

#### 2. А-вависимость

л-мезоны. Зависимость сечения от атомного числа ядер мишени (Азависимость) является одной из наиболее важных характеристик процесса фрагментации ядер в элементарные частицы.



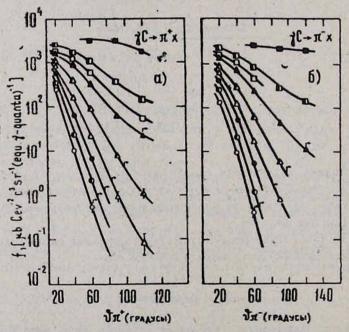



Рис. 7. Угловая зависимость инвариантного сечения f реакции (1) для  $\pi$ -мезонов:  $\alpha$  — для  $\pi^+$ -мезонов,  $\delta$  — для  $\pi^-$ -мезонов. Экспериментальные точки:  $\blacksquare$  — при инистической энергии  $\pi$ -мезонов  $T_\pi = 0,094$  ГэВ,  $\Box$  — 0,318 ГэВ,  $\triangle$  — 0,399 ГэВ,  $\Delta$  — 0,712 ГэВ,  $\bigcirc$  — 0,851 ГэВ,  $\bigcirc$  — 1,12 ГэВ; полутемные значки:  $\Box$  —0,239 ГэВ,  $\triangle$  — 0,567 ГэВ,  $\bigcirc$  — 1,00 ГэВ.

$$f = BA^n, \tag{10}$$

где В и п — постоянные.

На рис. 8 в качестве примера приведены некоторые данные по A-зависимости выхода  $\pi$ -мезонов в реакции (1). Кривые на рис. 8 проведены через экспериментальные точки методом наименьших квадратов согласно формуле (10). Ниже будет проанализировано поведение показателя  $n_{\pi}$  в зависимости от энергии и угла регистрации  $\pi$ -мезонов.

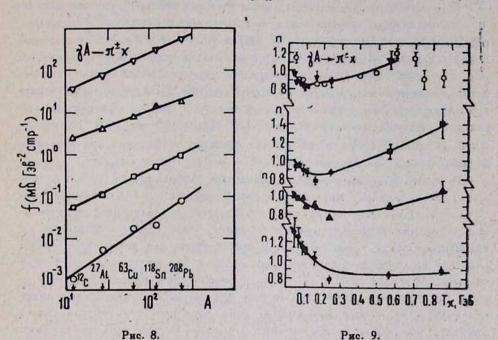



Рис. 8. Зависимость инвариантного сечения f реакции  $\gamma A \to \pi X$  при  $(E_{\gamma})_{\max} = 4,5$  ГэВ и угле регистрации  $\vartheta = 90^{\circ}$  от массового числа ядер мишени A при разных значениях кинетической энергии  $\pi$ -мезонов  $T_{\kappa}$ :  $\bigcirc -851$  МэВ,  $\square -356$  МэВ,  $\Delta -283$  МэВ,  $\nabla -67$  МэВ.

Рис. 9. Зависимость показателя n от кинетической энергии  $\pi$ -мезонов при различных углах регистрации  $\pi$ -мезонов в реакции  $\gamma A \to \pi X$ :  $\bigcirc$  — угол регистрации  $\theta_{\pi} = 30^{\circ}$ ,  $\triangle - 60^{\circ}$ ,  $\boxed{=} -90^{\circ}$ ,  $\boxed{=} -120^{\circ} \div 160^{\circ}$ ,  $\bigcirc$  — в реакции  $pA \to \pi X$ ,  $\theta_{\pi} = 180^{\circ}$  [14].

Рассматривая подробно поведение  $n_{\pi} = n_{\pi}(T_{\pi})$  для процесса рождения  $\pi$ -мезонов на ядрах под углом 180° протонами с энергией 8,6 ГвВ, авторы работы [14] впервые обнаружили сложную зависимость  $n_{\pi}$  от кинетической энергии вторичных частиц. Оказалось, что по мере возрастания энергии (начиная с энергии  $T_{\pi} = 100 \text{ MbB}$ )  $n_{\pi}$  сначала уменьшается, проходит через минимум (при  $T_{\pi} \simeq 150 \text{ MbB}$ ), а затем возрастает и при больших энергиях (уже в кумулятивной области) снова становится

больший,  $n_{\star} \geqslant 1$ . Минимальное значение  $n_{\star}^{\min}$  (150) $\simeq$  0,8. Такое стравное поведение  $n_{\star}$  было подтверждено в эксперименте [15] с первичными  $\pi^-$ -мезонами с импульсом 4,4  $\Gamma_9 B/c$ , но не для фиксированного угла  $\vartheta_{\pi} = 180^\circ$ , а для интервала  $110^\circ \leqslant \vartheta_{\pi} \leqslant 150^\circ$ . Таким образом, было по-казано наличие сложной энергетической зависимости показателя  $n_{\pi}$  в A-зависимости сечения летящих назад инклюзивных  $\pi$ -мезонов в процессах, вызванных адронами. Если это есть явление универсальное, то оно должно иметь место и в аналогичных реакциях, вызываемых электромагнитным излучением.

На рис. 9 приведены наши данные (темные значки) для зависимости  $n_{\rm g}$  от кинетической энергии вторичных  $\pi$ -мезонов в реакции (1) при углах регистрации  $30^{\circ}(\bullet)$ ,  $60^{\circ}(\blacktriangle)$ ,  $90^{\circ}(\blacksquare)$  и  $120+160^{\circ}(\blacktriangledown)$ . На том же рисунке (светлые кружки) приведены результаты работы [14] в случае угла  $\theta_{\rm g}=180^{\circ}$ . Как видим, в процессах фоторождения также наблюдается минимум в значениях  $n_{\rm g}$  при  $T_{\rm g} \simeq 150$  МэВ, хотя общий характер взаимодействия 7-квантов и адронов с ядрами в исследуемой области первичных энергий различен [15] (если  $\sigma_{\rm g}^{\rm iN} \sim A$ , то  $\sigma_{\rm g}^{\rm iN} \sim A^{2/3}$ ). Авторы работ [14] и [15] не делали попыток объяснить причины указанного поведения показателя  $n_{\rm g}$ .

В работе [16] приведены качественные соображения с целью интерпретировать наличие минимума в распределении  $n_z(T_z)$  по данным работы [14]. Суть этих объяснений заключается в следующем: образованные вторичные л-мезоны при прохождении через ядро рассеиваются на ядерных нуклочах. Сечение этого процесса имеет два резонанса. Первый связан с поглошением л-мезонов нуклонными парами и имеет место при энергии 120 ÷ 130 МэВ [17]. Второй ревонансный процесс общензвестный: пои внеогии ~ 190 МэВ полное сечение п - взаимодействия имеет максимум [18]. Суммарный эффект этих двух процессов обуславливает максимум полного сечения рассеяния п-мезонов внутри ядра при энергия около 150 МаВ. Увеличение сечения приводит к увеличению потерь частиц из данного углового и энергетического интервала. Поскольку рассеянные частицы, как правило, теряют энергию (а не приобретают ее), то происходит «перекачка» частиц из области энергии с резонансным сечением в область меньшей энергии с малым сечением. Такая «перекачка» тем сильнее, чем тяжелее ядро. В результате в области резонансного сечения показатель п \_ имеет минимальное значение, а в области более низких энергий может заметно возрасти и стать больше единицы. Что касается области больших энергий, то исходя из того, что здесь  $n_{\rm x} \lesssim 1$ , авторы [16] делают вывод об уменьшении эффективного поглощения л-мезонов, иными словами, об уменьшении пN-сечения внутри ядра. Поскольку энергии п-мезонов еще малы для учета увеличения продольных расстояний в пN-взаимодействиях, этот вывод кажется не совсем обоснованным.

Несомненно, процесс поглощения регистрируемых частиц влияет на характер A-зависимости. Однако, как нам кажется, вряд ли им можно объяснить наблюдаемый на эксперименте характер A-зависимости. Этс особенно хорошо видно на примере фоторождения.

Если бы не было вторичных взаимодействий п-мезонов и других частиц с ядром-остатком, то сечение  $z_{I}^{\gamma A \to \pi X}$  было бы пропорционально A, так как фотоны взаимодействуют со всеми отдельными нуклонами ядра. Рассеяние пионов на ядерных нуклонах должно приводить к уменьшению показателя  $n_s$  в  $A^{n_s}$ -зависимости. Следовательно, для полного сечения  $\sigma_{1}^{A \to \pi X}$  фоторождения  $\pi$ -мезонов n должно быть меньше единицы. Действительно, в работе [19] нами была измерена А-зависимость полного (проинтегрированного по углу и энергии) сечения образования заряженных  $\pi$ -мезонов фотонами с энергией  $(E_{\tau})_{\max} = 4.5 \, \Gamma$  в В и показано, что показатель  $n_{\pi}$  в этом случае не больше  $0.84\pm0.023$ Очевидно, п= = 3,84 есть средаяя характеризтика продесса фоторож дения т-мезонов на ядрах и не исключает наличия локальных особен\_ ностей в зависимости  $n_\pi = n_\pi(T_\pi)$ . Здесь мы только котим подчерк-нуть, что "включение" вторичного взаимодействия приводит к уменьшению этой средней характеристики от значения  $n_{\pi} = 1$  до  $n_{\pi} = 0.84$ . Поэтому если при каком-то значении энергии благодаря резонансному увеличению сечения взаимодействия увеличивается поглощение т-мезонов, то это должно привести к уменьшению показателя  $n_\pi$  по сравнению со средним значением  $n_z = 0.84$ , что не наблюдается ни в адронных, ни в фотонных экспериментах, показывающих, что  $n_{\pi}^{\min} \simeq n_{\pi}$ (см. рис. 9).

Таким образом, природа возникновения минимума связана не с дополнительными потерями  $\pi$ -мезонов при энергии  $T_\pi \simeq 150$  МвВ, а, наоборот, по-видимому, есть следствие наличия дополнительных источников образования  $\pi$ -мезонов в области  $T_\pi \leqslant 150$  МвВ и при значительно больших энергиях, усиливающих A-зависимость. Для того, чтобы подтвердить вгу гипотезу, рассмотрим приведенные на рис. 9 зависимости  $n_\pi = n_\pi (T_\pi)$  для различных углов регистрации  $\pi$ -мезонов. Видно, что, во-первых, с уменьшением угла положение минимума на шкале энергии сдвигается в область больших энергий, а затем исчезает, и, во-вторых, рост  $n_\pi$  в области  $T_\pi \leqslant 150$  МвВ усиливается в случае малых углов.

Данные для  $\theta_{\pi}=30^{\circ}$  показывают, что в области  $T_{\pi}\geqslant 200$  МэВ показатель  $n_{\pi}$  остается постоянным в интервале 0.8+0.85, т. е. близок
к значению  $n_{\pi}=0.84$ . И это естественно: при малых углах и больших
энергиях определяющим является процесс прямого фоторождения  $\pi$ -мезонов на ядерных нуклонах. Вторичные перерассеяния в ядре
уменьшают  $n_{\pi}$  от значения 1 до  $0.8\div0.85$ . С увеличением угла регистрации наблюдается рост  $n_{\pi}$ , так как начинает давать вклад новый
механизм — кумулятивное рождение  $\pi$ -мезонов, усиливающий A-зависимость. Что касается области кинетической энергии  $T_{\pi}\leqslant 150$  МэВ,
то увеличение роста  $n_{\pi}$  для малых углов связано, по-видимому, с процессом рождения каскадных  $\pi$ -мезонов. Вероятность последних в области малых углов больше, так как высокоэнергичные 'вторичные частицы, являющиеся основным источником малоэнергичных каскадных

 $\pi$ -мезонов, рождаются в основном вперед. Конечно, высокоэнергичные вторичные частицы имеются также и под большими углами, однако их количество несравненно мало (с увеличением угла регистрации спектры как  $\pi$ -мезонов, так и протонов становятся значительно круче). Вследствие этого усиление A-зависимости для больших углов и малых энергий вторичных  $\pi$ -мезонов относительно слабое. Что касается увеличения  $\pi_{\pi}$ , обусловленного механизмом резонансного поглощения [16]  $\pi$ -мезонов, то оп должен иметь место как для больших углов, так и для малых углов регистрации, так как в ядре для вторичных частиц нет выбранного направления. Иными словами, характер зависимости  $n_{\pi} = n_{\pi}$  ( $T_{\pi}$ ) в этом случае должен быть одинаковым для всех углов, что противоречит эксперименту.

На рис. 10 приведены угловые зависимости показателя  $n_{\pi}$  для различных внергий. Видно, что, действительно, для  $T_{\pi} \lesssim 150$  МвВ  $n_{\pi}$  падает с ростом угла, в области  $T_{\pi} \simeq 150 + 300$  МвВ  $n_{\pi} \simeq 0.8 + 0.85$ , а при больших внергиях  $n_{\pi}$  растет с  $\theta_{\pi}$  и становится больше единицы

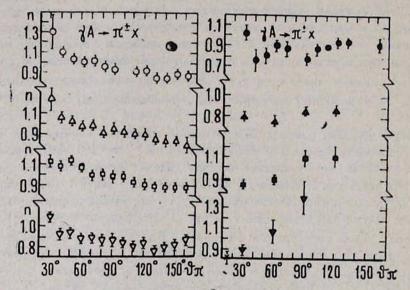



Рис. 10. Зависимость показателя  $n_{\pi}^2$  от угла регистрации  $\pi$ -мезенов при разавичных кинетических энергиях  $\pi$ -мезенов в реакции  $\gamma A \to \pi X$ :  $\Box$  — кинетическая энергиях  $T_{\pi} = 48$  МэВ,  $\triangle$  — 67 МэВ,  $\Box$  — 91 МэВ,  $\nabla$ —108 МэВ,  $\bigcirc$  — 155 МэВ,  $\triangle$  — 238 МэВ,  $\square$  — 356 МэВ,  $\nabla$ —851 МэВ, \*—900 МэВ.

Последнее обстоятельство, как было отмечено выше, связано, по-видимому, с кумулятивным вффектом, физическую сущность которого в настоящее время нельзя считать окончательно ясной.

Протоны. А-зависимость для протонов в процессах фотообразования на ядрах исследована относительно лучше, чем для  $\pi$ -мезонов. Здесь мы приводим A-зависимости реакции  $\gamma A \to p X$ , полученные в тех же условиях, в которых были исследованы A-зависимости для фотописнов (см. выше).

На рис. 11 приведена зависимость показателя  $n_p$  в A-зависимости сечения фотообразования протонов в реакции (1) от энергии протонов. В об-

ласти  $T_p = 60 \div 450$  МвВ никаких резких особенностей не наблюдается, как это имеет место и для  $\pi$ -мезонов (см. рис. 10). Наблюдается лишь слабая тенденция уменьшения  $n_p$  с ростом внергии в области малых углов (30°—60°) и, наоборот, такая же слабая тенденция роста  $n_p$  с ростом внергии в области больших углов (90°, 120°).

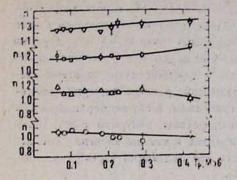



Рис. 11. То же, что на рис. 9, для прото нов: ○ — ∂<sub>p</sub> = 30°, △ — 60°, □ — 90°, ▽ —120÷160°.

На рис. 12 приведены зависимости  $n_p$  от угла регистрации  $\vartheta_p$  для различных энергий протонов. Во всем диапазоне энергий наблюдается рост  $n_p$  с увеличением угла. Для больших энергий этот рост сильнее, чем для малых энергий.

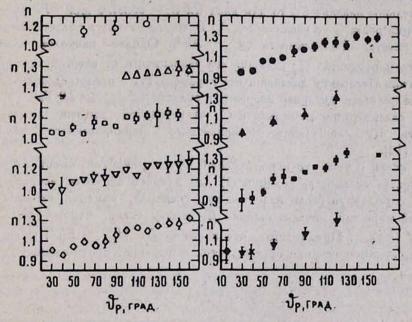



Рис. 12. То же, что на рис. 10, для протонов:  $\bigcirc -T_p = 63$  МэВ,  $\triangle -80$  МэВ,  $\bigcirc -100$  МэВ,  $\nabla -136$  МэВ,  $\Diamond -180$  МэВ,  $\bigcirc -208$  МэВ,  $\triangle -226$  МэВ,  $\bigcirc -290$  МэВ,  $\bigcirc -420$  МэВ,  $\times -1$  ГэВ.

## 3. Функция возбуждения фоторождения кумулятивных протонов на ядрах

В процессах кумулятивного образования протонов на ядрах первичными π-мезонами и протонами наблюдена [4] асимптотическая инвариантность параметра С рпредставления

433

$$\rho_p = \frac{f_p}{\sigma_1^{A}} = C_p \exp\left(-T_p/T_{op}\right) \tag{11}$$

относительно энергии подающих частиц. Если для легчайших ядер (например, для  $^{12}C$ ) эта инвариантность имеет место уже при  $E_{\circ} \simeq 1,5$  ГэВ, то для тяжелых ядер (таких, как  $^{208}Pb$ ) та же инвариантность наблюдается при относительно больших энергиях ( $E_{\circ} \simeq 4,5$  ГэВ). На основе теоретических моделей, согласно которым кумулятивные протоны образуются в акте взаимодействия подающей частицы с ядерными нуклонами или другими нуклонными образованиями, такое поведение параметра  $C_{\circ}$  можно объяснить, если учесть, что первичные адроны взаимодействуют со всеми указанными выше объектами в трубке с радиусом, равным раднусу взаимодействия адронов. Согласно этим представлениям, в случае первичных слабо взаимодействующих частиц (влектроны, фотоны, нейтрино и др.) инвариантность  $C_{\circ}$  должна наблюдаться при одних и тех же энергиях как для легких, так и для тяжелых ядер, так как эти падающие частицы взаимодействуют в ядре в основном один рав.

Исследования свойств параметра  $C_{\rho}$  в фотообразовании протонов на ядрах тормозными  $\gamma$ -квантами были проведены в работах [20, 21]. Одним из важных свойств является различие угловых зависимостей для легчайших и тяжелых ядер. Если, например, для  $^{12}C$  с ростом угла наблюдается значительное падение C, то для ядра Cu  $C_{\rho} = \text{const}$ , а для  $^{208}Pb$  имеется тенденция роста C с увеличением  $\theta_{\rho}$ . Благодаря этому в области больших углов имеется A-зависимость ( $C_{\rho} \sim A^{1/3}$ ). Однако наиболее важным свойством параметра  $C_{\rho}$  является его зависимость от энергии первичных  $\gamma$ -квантов. Поскольку доказано, что параметр  $T_{0p}$  в представлениях (2) и (11) не является функцией энергии в области ( $E_{\gamma}$ )  $_{\max} \ge 2,0$  ГэВ [5], то вместо рассмотрения зависимость  $C_{\rho}$  от первичной энергии достаточно изучать эту зависимость инвариантного нормированного сечения  $\rho_{\rho}$  ( $E_{\gamma}$ ) [14].

В связи с тем, что используемый пучок  $\gamma$ -квантов имеет тормозной спектр, сечение  $\rho_\rho$  реакции (1) для данного значения энергии  $E_{\gamma}$  можно определить (если известен вид спектра), измеряя выходы по крайней мере при двух значениях  $E_{\gamma 1}$  и  $E_{\gamma 2}$ , таких, чтобы  $(E_{\gamma 1})_{\max} < E_{\gamma} < (E_{\gamma 2})_{\max}$ . Предполагая, что в интервале  $(E_{\gamma 2}^{\max} - E_{\gamma 1}^{\max}) \rho_\rho$  не меняется, искомое сечение определяется с помощью соотношения

$$\rho_{p}(E_{\gamma}) = \frac{I_{1} - I_{2}}{\ln{(E_{\gamma 1})_{\max}} - \ln{(E_{\gamma 2})_{\max}}},$$
 (12)

где  $I_1$  и  $I_2$  — выходы реакции (1) соответственно при энергиях  $(E_{\gamma 1})_{\max}$  и  $(E_{\gamma 2})_{\max}$ .

Этот метод определения  $\rho_{\rho}(E_{\uparrow})$  называется методом вычитания-Имеется другой, более точный, но значительно более сложный метод определения  $\rho_{\rho}(E_{\uparrow})$  по измеренным значениям  $I_{t}$  — так называемый «метод обратных матриц». В настоящей работе приводятся результаты, полученные методом вычитания, т. е. по формуле (12).

В процессе вычитания наиболее важным является вопрос ошибок и вклад низкоэнергетической части спектра  $\gamma$ -квантов. Для учета последнего рассмотрим разностный спектр  $\gamma$ -квантов с двумя близкими значениями ( $E_{\gamma}$ )<sub>твх</sub>. На рис. 13 приведены эти спектры для пяти разностей с ша-

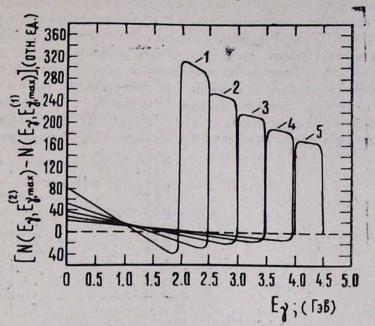



Рис. 13. Разностные спектры  $\gamma$ -квантов соответственно для значений  $(E_{7},2)_{\rm max}$  и  $(E_{7},1)_{\rm max}$ : 1-(2,5 и 2,0) ГэВ, 2-(3,0 и 2,5) ГэВ, 3-(3,5 и 3,0) ГэВ, 4-(4,0 и 3,5) ГэВ, 5-(4,5 и 4,0) ГэВ.

гом 0,5 ГвВ. Как видим, в области малых  $E_{\tau}$  разностный спектр показывает наличие конечного числа у-квантов. Но поскольку интегральное число этих малоэнергичных фотонов не превышает 5% пика в области (Ет) мах то, следуя [22], их вкладом будем пренебрегать. Что касается вопроса ошибок, то, во-первых, были приняты меры для максимального уменьшения статистических и систематических ошибок, которые доведены в настоящей серии измерений соответственно до  $\pm (1 \div 2)\%$  и  $\pm (1,5 \div 2)\%$ , поэтому суммарные ошибки не превышали  $\pm 3\%$ , и, во-вторых, был применен известный метод сглаживания [23]. Для этого были построены зависимости (ненормированных) выходов  $I = I(E_{\tau})_{\text{max}}$ инвариантных ядра и по полученным экспериментальным точкам были проведены методом наименьших квадратов наилучшие по критерию  $\chi^2$  кривые. При этом предполагалось, что в интервале между соседними значениями  $(E_{\tau})_{\max}$ эта кривая не имеет особенностей. Результаты этих процедур приведены на рис. 15. Значками обозначены экспериментальные точки, кривые рассчитаны по формуле

$$I = \sum_{i=1}^{2} \alpha_{i} I_{i}, \tag{13}$$

$$= \sum_{i=1}^{2} \alpha_{i} I_{i}, \tag{13}$$

$$= \sum_{i=1}^{2} \alpha_{i} I_{i}, \tag{13}$$

$$= \sum_{i=1}^{2} \alpha_{i} I_{i}, \tag{13}$$

1272 - 2

SENT.

где коэффициенты  $a_t$  определяются по экспериментальным точкам. Как видим, для всех ядер удается по экспериментальным точкам провести плавно возрастающие по  $(E_7)_{\rm max}$  кривые. Можно утверждать, что в первом приближении аномально большой рост выхода не наблюдается ни у одного из исследуемых ядер.

Для нахождения зависимости  $\rho_{\rho} = \rho_{\rho} (E_{\gamma})$  были вычислены разности  $I_2[(E_{\gamma 2})_{\max}] - I_1[(E_{\gamma 1})_{\max}]$  по кривым на рис. 14 (а не по эксперименталь ным точкам) и на основе данных по полным сечениям  $\sigma_1^{IA}$  [24] из (11) определены  $\rho_{\rho}(E_{\gamma})$ . Результаты приведены на рис. 15. Ошибки приведенных точек включают в себя вклады как статистических, так и систематических разбросов экспериментальных измерений, а также ошибки аппроксимации соответствующих кривых. Ширина «ступеньки» вокруг точек определяется шагом вычитания. Согласно рис. 15, нормированное се-

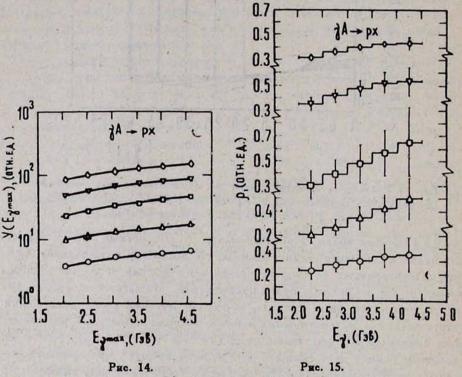



Рис. 14. Зависимость инвариантного сечения (2) от максимальной энергии  $(E_1)$  max тормозных  $\gamma$ -квантов:  $\bigcirc -{}^{12}C$ ,  $\triangle -{}^{27}AI$ ,  $\square -{}^{63}Cu$ ,  $\nabla -{}^{118}Sn$ ,  $\Diamond -{}^{208}Pb$ ; кривые проведены согласно (13).

Рис. 15. Зависимость инвариантного нормированного сечения  $\rho$  ( $E_{\gamma}$ ) от энергии  $\gamma$ -квантов (обозначения те же, что на рис. 14).

чение  $\rho_p\left(E_{\gamma}\right)$  становится инвариантным по отношению к первичной энергии в области  $3\div 4$  ГвВ для тяжелых ядер, что хорошо согласуется с данными по адронным процессам. Что касается легких и легчайших ядер, то наблюдается небольшой рост  $\rho_p\left(E_{\gamma}\right)$  в исследуемой области  $E_{\gamma}=2\div 4.5$  ГвВ, т. е. инвариантность  $\rho_p$  еще не достигнута. Очевидно, нужны новые измерения при больших первичных энергиях ( $E_{\gamma}>4.5$  ГвВ).

Автор благодарит всех сотрудников лаборатории фотоядерных реакций ЕрФИ, совместно с которыми были получены и обработаны приведенные выше экспериментальные данные, А. Ц. Аматуни за постоянный интерес, Г. А. Вартапетяна и С. Г. Матиняна за поддержку, а также весь коллектив Ереваиского ускорителя за обеспечение пучком.

Ереванский физический институт

Поступила 8. І. 1981

#### **ЛИТЕРАТУРА**

- 1. А. М. Балдин. Препринт ОИЯИ, Р7-5769 (1971).
- 2. А. М. Балдин и др. ЯФ, 18, 79 (1973).
- 3. Ю. Д. Баюков и др. ЯФ, 18, 1246 (1973).
- 4. Г. А. Лексин. Труды Международной конференции по физике высоких энергий. Тбилиси, 1976, т. 1, А6-3 (1977).
- М. Дж. Амарян и др. НС ЕФИ-173 (19)—76, 1976.
- 6. К. В. Аланакян и др. ЯФ, 25, 545 (1977).
- 7. К. В. Аланакян и др. НС ЕФИ-155 (76), 1976.
- 8. К. В. Аланакян и др. НС ЕФИ-408 (15)-80, 1980.
- 9. К. В. Аланакян и др. НС ЕФИ-220 (12)-77, 1977; НС ЕФИ-386 (44)-79, 1979.
- 10. К. В. Аланакян и др. НС ЕФИ-467 (9)-1981.
- 11. И. Г. Богацкая и др. ЯФ, 27, 856 (1978).
- 12. М. И. Горенштейн и др. ЯФ, 26, 788 (1977).
- 13. М. И. Стрикман, Л. Л. Франкфурт. ЯФ, 29, 490 (1979).
- А. М. Балдин, В. С. Ставинский. Труды Международного семинара по физике высоких энергий, Дубна, 1978, стр. 261.
  - А. М. Балдин и др. Препринт ОИЯИ, 1-12 396 (1979).
- 15. Ю. Д. Баюков и др. Препринт ИТЭФ-30 (1979).
- М. И. Стрикман, Л. Л. Франкфурт. Материалы XIV зимней школы ЛИЯФ, 1979.
   стр. 82.
- 17. D. Ashery. Proc. of 8th Int. Conf. on High Energy Phys. and Nucl. Str., Vancover, 1979, Amsterdam, New York, Oxf., 1980, p. 385.
- В. С. Барашенков. Сечение взаимодействия элементарных частиц, Изд. Наука, М... 1966.
- 19. К. В. Аланакян и др. НС ЕФИ-153 (75), 1975.
- 20. К. В. Аланакян и др. НС ЕФИ-174 (20)-76, 1976.
- 21. К. В. Аланакян и др. ЯФ, 26, 1018 (1977).
- 22. A. M. Boyarsky et al. SLAC-PUB-1694 (1975).
- 23. О. В. Богданкевич, Ф. А. Николаев. Работы с пучком тормозного излучения, Атомиздат, 1964, стр. 183.
- 24. G. R. Brooks et al. Phys. Rev., D8, 2826 (1973).

### ԿՈՒՄՈՒԼՅԱՏԻՎ ՊՐՈՏՈՆՆԵՐԻ ԵՎ <sub>Պ</sub>–ՄԵԶՈՆՆԵՐԻ ՖՈՏՈԾՆՄԱՆ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆԸ

Կ. Շ. ԵՂՑԱՆ

Բերված են մինչև 4,5 ԳէՎ էներգիայի արդելակային γ-քվանտներով ճառագայթված 12C, 27Al, 63Cu, 118Sn և 208Pb միջուկներից առաքվող կումուլյատիվ պրոտոնների և π-մեզոնների վերաբերյալ նոր էքսպերիմենտալ տվյալներ։ Քննարկվում է այդ պրոցեսնեքի ինվարիանտ կտրվածջների կախումը տեղի ունի միայն կոռնլացված զույգի մեջ նուկլոնների իմպուլսի է « 1 Գէվ с արժեջների դնաջում; ոն սիայում է հրական արտում է « 1 Գէվ с արժեջների դնաջում արտում և հրական եր հրական եր հրական և հրակ

## INVESTIGATION OF CUMULATIVE PHOTOPRODUCTION OF PROTONS AND \*-MESONS

#### K. Sh. EGIYAN

New experimental data on the cumulative photoproduction of protons and  $\pi$ -mesons from  $^{12}C$ ,  $^{27}Al$ ,  $^{63}Cu$ ,  $^{118}Sn$  and  $^{208}Pb$  nuclei irradiated with bremsstrahlung  $\gamma$ -quanta having energies up to 4.5 GeV are presented. The energy, angular and A-dependences of the invariant cross section of these processes as well as the excitation functions of cumulative photoproduction of the proton are discussed. The spectr of protons from  $^{12}C$  are compared with the predictions of two theoretical models—the low-nucleon correlation model (LNC) and the cluster model. It was found that the obtained results are satisfactorily explained by the cluster model only in the cumulative region ( $\theta_P > 90^\circ$ ) and by the LNC model in the two-nucleon correlation approximation in the region of characteristic nucleon momenta in the correlated pair k < 1 GeV/c.

dest. a