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Introduction

Let p be a measurable function on Rn with range in [1,∞). Lp(·)(Rn) denotes the set of

all measurable functions f on Rn such that for some λ > 0,∫
Rn

(
|f(x)|
λ

)p(x)
dx <∞.

The set becomes a Banach function space when equipped with the norm

‖f‖Lp(·) = inf

{
λ > 0 :

∫
Rn

(
|f(x)|
λ

)p(x)
dx ≤ 1

}
.

These spaces are referred to as variable Lebesgue spaces, since they generalized the standard

Lebesgue spaces. Note that one can define variable Lebesgue spaces on any measurable

subset of Rn, see [16]. However, in this paper we only work on the whole space Rn.

Denote P(Rn) the set of all measurable functions p on Rn with range in [1,∞) such that

1 < p− = ess inf
x∈Rn

p(x), ess sup
x∈Rn

p(x) = p+ <∞.
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In the classical Lebesgue spaces one can work with Lp where 0 < p < 1. In this paper,

we also consider analogous spaces with variable exponents. Define P0(Rn) to be the set of

all measurable functions p on Rn with range in (0,∞) such that

p− = ess inf
x∈Rn

p(x) > 0, ess sup
x∈Rn

p(x) = p+ <∞.

Given p(·) ∈ P0(Rn), one can define the space Lp(·)(Rn) as above. This is equivalent to

defining it to be the set of all functions f such that |f |p0 ∈ Lq(·)(Rn), where 0 < p0 < p−,

and q(x) = p(x)
p0
∈P(Rn). Then one can define a quasi-norm on this space by

‖f‖Lp(·) = ‖|f |p0‖1/p0
Lq(·) .

Let f ∈ L1
loc(Rn). Then the standard Hardy-Littlewood maximal function of f was defined

by

Mf(x) = sup
B3x

1

|B|

∫
B

|f(y)|dy,

where B denotes balls in Rn, and |B| is the volume of ball B.

It is well known that the boundedness of the Hardy-Littlewood maximal operator on

Lebesgue spaces plays a key role in classical analysis. So does it on variable exponent

Lebesgue spaces. Let B(Rn) be the set of all p(·) ∈P(Rn) such that the Hardy-Littlewood

maximal operator M is bounded on Lp(·)(Rn). There are some sufficient conditions on p(·)
for p(·) ∈ B(Rn), see examples [5, 6, 8, 17, 18]. If the maximal operator M is bounded on

space Lp(·)(Rn), then many classical operators such as singular integrals and commutators

are also bounded on the same space Lp(·)(Rn), see [4] and references therein.

In recent decades, many attention has payed to the study of variable Lebesgue spaces,

the corresponding variable Sobolev spaces W k,p(·)(Rn) and variable Bessel potential spaces

Ls,p(·)(Rn) with p(·) ∈ P(Rn). In fact, likewise to the classical situation, variable Bessel

potential spaces Lm,p(·)(Rn) coincide to variable Sobolev spaces Wm,p(·)(Rn) when p(·) ∈
B(Rn) and m is any integer. This result was obtained firstly by Almeida and Samko in [3]

and again by Gurka, Harjulehto and Nekvinda in [12]. Moreover, these spaces have been

applied to partial differential equations and the calculus of variation, see [1, 3, 4, 5, 6, 7, 8,

10, 11, 12, 16, 17, 18, 19, 21, 22, 29] and references therein.

It is well known that Besov and Triebel-Lizorkin spaces include many classical spaces

as special cases, for example, the Hölder spaces, the Sobolev spaces, the Bessel potential

spaces, the Zygmund spaces, the local Hardy spaces and the space bmo(Rn). All the above

mentioned spaces have been studied intensively and applied in many fields of analysis, such

as ordinary and partial differential equations; see for examples, [2, 20, 23, 24, 25, 26].

Inspired by the mentioned references, similar to classical Besov and Triebel-Lizorkin

spaces, the author introduced the variable Besov spaces and Triebel-Lizorkin spaces in [27].

In fact, the author obtained a characterization of these new spaces by maximal operator.

Then in [28], the author proved that if p(·) ∈ B(Rn) then the variable Bessel potential
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spaces Ls,p(·)(Rn) and variable Triebel-Lizorkin space F s
p(·),2(Rn) are coincident for s ∈ R, a

relationship similar to the classical setting.

It is known that atomic decomposition is an important property for classical function

spaces. In this paper, we will consider the atomic decomposition of the variable Besov and

Triebel-Lizorkin spaces. Our results will be stated in the next section. At the end of this

section we recall the definition of these spaces.

Let S (Rn) be the Schwartz space of all complex-valued rapidly decreasing infinitely

differentiable functions on Rn. Let S ′(Rn) be the set of all the tempered distribution on Rn.

If ϕ ∈ S(Rn), then ϕ̂ denotes the Fourier transform of ϕ, and ϕ∨ denotes the inverse Fourier

transform of ϕ. Let Φ ∈ S(Rn) satisfy the following conditions:

supp Φ̂ ⊂ B(0, 1), and supp Φ̂ = 1 on B(0, 1/2).

Set Φj(x) = 2njΦ(2jx), x ∈ Rn, for j ∈ Zn. We also put

θj = Φj(x)− Φj−1(x).

Denote θ0 = Φ. It follows that
∞∑
j=0

θ̂j(ξ) ≡ 1.

Definition 1 Let s ∈ R, 0 < q ≤ ∞, p(·) ∈ P0(Rn). Suppose θj, j ∈ N0 = N
⋃
{0}

as above, then the variable exponent Triebel-Lizorkin space F s
p(·),q(Rn) is the collection of

f ∈ S ′(Rn) such that ‖f‖F s
p(·),q

<∞, where the norm of f is

‖f‖F s
p(·),q

=
∥∥{2sjθj ∗ f

}∞
0

∥∥
Lp(·)(`q)

.

Similarly, the variable exponent Besov spaces Bs
p(·),q(Rn) is the collection of f ∈ S ′(Rn) such

that ‖f‖Bs
p(·),q

<∞, where the norm of f in this space is

‖f‖Bs
p(·),q

=
∥∥{2sjθj ∗ f

}∞
0

∥∥
`q(Lp(·))

.

Here Lp(·)(`q) and `q(L
p(·)) are the spaces of all sequences {gj} of measurable functions

on Rn with finite quasi-norms

‖{gj}‖Lp(·)(`q) = ‖‖{gj}‖`q‖Lp(·) =

∥∥∥∥∥∥
(
∞∑
j=1

|gj(x)|q
) 1

q

dx

∥∥∥∥∥∥
Lp(·)

,

and

‖{gj}‖`q(Lp(·)) = ‖‖{gj}‖Lp(·)‖`q =

(
∞∑
j=1

‖gj‖qLp(·)

) 1
q

.

Throughout, the letter C denotes positive constants, but it may change line to line.

Constants may in general depend on all fixed parameters, and sometimes we show this

dependence explicitly by writing, e.g. CN .
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1. Atomic decomposition

Set

xjk = 2−jk for j ∈ N0 and k ∈ Zn,

then we define dyadic cubes Qjk by

Qjk = xjk + 2−j[0, 1)n.

The characteristic function of Qjk is denoted by χjk.

For any cube Q, its side is denoted by l(Q), and for λ > 0, λQ denotes the cube concentric

to Q with side λl(Q). Denote 3Qjk by Q̃jk, and χ̃jk denotes the characteristic function for

Q̃jk.

Definition 2 Let S, T be a nonnegative integer. A function ajk in CS(Rn) is called a (S, T )

atom for a cube Qjk if it satisfies the following conditions:

supp ajk ⊂ Q̃jk;

sup
x

2−j|γ||Dγajk(x)| ≤ 1 for all |γ| ≤ S;

if j > 0,

∫
Rn

xγajk(x)dx = 0 for all |γ| ≤ T.

Now we can state our first result.

Theorem 1 Let p(·) ∈P0(Rn) with 0 < p0 < p− such that p(·)/p0 ∈ B(Rn).

(i) Let f belong to Bs
p(·),q then there exist (S, T ) atoms {ajk} for the dyadic {Qjk}, and

coefficients {tjk} such that

f =
∞∑
j=0

2−jsuj in S ′ with uj =
∑
k∈Zn

tjkajk,

and denoting tj =
∑

k∈Zn tjkχjk, there is a constant C independent of f such that

‖{tj}∞0 ‖`q(Lp(·)) =

(
∞∑
j=0

∥∥∥∥∥∑
k∈Zn

|tjk|χjk

∥∥∥∥∥
q

Lp(·)

)1/q

≤ C‖f‖Bs
p(·),q

. (1)

(ii) Let f belong to F s
p(·),q then there exist (S, T ) atoms {ajk} for the dyadic {Qjk}, and

coefficients {tjk} such that

f =
∞∑
j=0

2−jsuj in S ′ with uj =
∑
k∈Zn

tjkajk, (2)

and denoting tj =
∑

k∈Zn tjkχjk, there is a constant C independent of f such that

‖{tj}∞0 ‖Lp(·)(`q) =

∥∥∥∥∥∥
(
∞∑
j=0

∑
k∈Zn

|tjkχjk|q
)1/q

∥∥∥∥∥∥
Lp(·)

≤ C‖f‖F s
p(·),q

.
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To prove Theorem 1, we follow the method used in the classical setting in [13, 14, 15].

Firstly, we need a preliminary.

The following lemma is the estimate for vector-valued setting in variable Lebesgue spaces,

one can see Corollary 2.1 in [4].

Lemma 1 If p(·) ∈ B(Rn), then for all 1 < q ≤ ∞,

‖{Mfj}‖Lp(·)(`q) ≤ C‖{fj}‖Lp(·)(`q),

where M is the Hardy-Littlewood maximal operator.

For convenience, we use the notation Mr(g) = (M(|g|r))1/r.

Proof of Theorem 1. From the notation in last section, we have that

f =
∞∑
j=0

θj ∗ f =
∞∑
j=0

2−jsuj,

where uj = 2jsθj ∗ f for j ∈ N0.

Let η ∈ C∞0 (Q00),
∫
η(x)dx = 1, ηj(x) = 2jnη(2jx). Set ηjk = ηj ∗χjk, so that supp ηjk ⊂

Q̃jk and
∑

k∈Zn ηjk ≡ 1.

Set bjk = ηjkuj,

tjk = max
x∈Q̃jk,|γ|≤S

2−n|γ||Dγbjk(x)|,

and

ajk =
bjk
tjk
,

of course if tjk = 0, then ajk = 0.

Then

f =
∞∑
j=0

2−js
∑
k∈Zn

tjkajk.

Observe that Φ̂j+1(ξ) = 1 on supp ûj, so that uj = Φj+1 ∗ uj. Since for x ∈ Q̃jk and

z ∈ Qjk, there exist constants C1, C2 independent of j such that 0 < C1 ≤ 1+2j |x−y|
1+2j |z−y| ≤ C2
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for y ∈ Rn, then for |γ| ≤ S and z ∈ Qjk, we have

|Dγuj(x)| ≤ |DγΦj+1| ∗ |uj|(x)

=

∫
Rn

|DγΦj+1(x− y)||uj(y)|dy

≤ C2j|γ|2jn
∫

Rn

|uj(y)|
(1 + 2j|x− y|)L

dy

≤ C2j|γ|2jn
∫

Rn

|uj(y)|
(1 + 2j|z − y|)L

dy

≤ C2j|γ|2jn
∫

Rn

|uj(y)|
(1 + 2j|z − y|)n/r

1

(1 + 2j|z − y|)L−n/r
dy

≤ C2j|γ|Mr(uj)(z)

∫
Rn

2jn

(1 + 2j|z − y|)L−n/r
dy

= C2j|γ|Mr(uj)(z)

∫
Rn

1

(1 + |y|)L−n/r
dy

≤ C2j|γ|Mr(uj)(z)

∫ ∞
0

1

(1 + t)L−n/r−n+1
dt

≤ C2j|γ|Mr(uj)(z)

≤ C2j|γ| infz∈Qjk
Mr(uj)(z),

where we supposed L > n+ n/r, and we used

sup
y∈Rn

|uj(y)|
(1 + 2j|z − y|)n/r

≤ CMr(uj)(z) (3)

for uj ∈ S ′(Rn) such that supp ûj ⊂ B(0, 2j). We leave the proof of (3) to the end of the

proof.

By the Leibniz’s formula

tjk ≤ C max
x∈Q̃jk,|γ|≤S

2−j|γ||Dγuj(x)|.

Therefore tjk ≤ CMr(uj)(x) for all x ∈ Qjk, and thus

tj(x) =
∑
k∈Zn

tjkχjk ≤ CMr(uj)(x).

Now the inequalities (1) and (2) follow by the boundedness of the Hardy-Littlewood

operator and its vector-valued operator, Lemma 1. Let us check (2). Choose r such that

r < min{q, p0} (for (1), only 0 < r < p0), by Theorem 8.1 in [8], p(·)/r ∈ B(Rn). Hence, by
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Lemma 1 we have

‖{tj}∞0 ‖Lp(·)(`q) =

∥∥∥∥∥∥
(
∞∑
j=0

∑
k∈Zn

|tjkχjk|q
)1/q

∥∥∥∥∥∥
Lp(·)

≤ C

∥∥∥∥∥∥
(
∞∑
j=0

|Mruj|q
)1/q

∥∥∥∥∥∥
Lp(·)

= C

∥∥∥∥∥∥
(
∞∑
j=0

|M |uj|r|q/r
)r/q

∥∥∥∥∥∥
1/r

Lp(·)/r

≤ C

∥∥∥∥∥∥
(
∞∑
j=0

|uj|q
)1/q

∥∥∥∥∥∥
Lp(·)

= C‖f‖F s
p(·),q

.

Finally, we show (3) is true. From Theorem 1.3.1 on page 16 in [23], we know that for

0 < r <∞
sup
y∈Rn

|φ(x− y)|
(1 + |y|)n/r

≤ CMr(φ)(x)

holds for all x ∈ Rn and φ ∈ S such that supp φ̂ ⊂ B(0, 1). Then with the argument in Step

1 of the proof of Theorem 1.4.1 on page 22 in [23],

sup
y∈Rn

|φ(x− y)|
(1 + |y|)n/r

≤ CMr(φ)(x)

holds for all x ∈ Rn and φ ∈ S ′(Rn) such that supp φ̂ ⊂ B(0, 1). Thus by scaling and

translation,

sup
y∈Rn

|φ(x− y)|
(1 + 2j|y|)n/r

≤ CMr(φ)(x)

holds for all x ∈ Rn and φ ∈ S ′(Rn) such that supp φ̂ ⊂ B(0, 2j). In other words,

|φ(y)|
(1 + 2j|y − x|)n/r

≤ CMr(φ)(x)

holds for all x, y ∈ Rn and φ ∈ S ′(Rn) such that supp φ̂ ⊂ B(0, 2j). This is (3).

This completes the proof.

Conversely, we have

Theorem 2 Let p(·) ∈P0(Rn) with 0 < p0 < p− such that p(·)/p0 ∈ B(Rn).

(i) Let {amk} be a sequence (S, T ) atoms for the dyadic {Qmk}m∈N0,k∈Zn , where S >

s, T > −1− n− s+ n/min{p0, 1}, and let coefficients {tmk} such that

‖{tm}∞0 ‖`q(Lp(·)) =

(
∞∑
m=0

∥∥∥∥∥∑
k∈Zn

|tmk|χmk

∥∥∥∥∥
q

Lp(·)

)1/q

<∞,
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where tm =
∑

k∈Zn tmkχmk. Then the function f defined in S ′(Rn) by

f =
∞∑
m=0

2−ms
∑
k∈Zn

tmkamk

belongs to Bs
p(·),q, and there is a constant C independent of f such that

‖f‖Bs
p(·),q
≤ C‖{tm}∞0 ‖`q(Lp(·)) = C

(
∞∑
m=0

∥∥∥∥∥∑
k∈Zn

|tmk|χmk

∥∥∥∥∥
q

Lp(·)

)1/q

.

(ii) Let {amk} be a sequence (S, T ) atoms for the dyadic {Qmk}m∈N0,k∈Zn , where S >

s, T > −1− n− s+ n/min{p0, q, 1}, and let coefficients {tmk} such that

‖{tm}∞0 ‖Lp(·)(`q) =

∥∥∥∥∥∥
(
∞∑
m=0

∑
k∈Zn

|tmk|qχmk

)1/q
∥∥∥∥∥∥
Lp(·)

<∞,

where tm =
∑

k∈Zn tmkχmk. Then the function f defined in S ′(Rn) by

f =
∞∑
m=0

2−ms
∑
k∈Zn

tmkamk

belongs to F s
p(·),q, and there is a constant C independent of f such that

‖f‖F s
p(·),q
≤ C‖{tm}∞0 ‖Lp(·)(`q) = C

∥∥∥∥∥∥
(
∞∑
m=0

∑
k∈Zn

|tmk|qχmk

)1/q
∥∥∥∥∥∥
Lp(·)

.

To prove Theorem 2, we require the following two lemmas, for them, see [13], [14].

Lemma 2 Let {θj}∞0 as in Section 1 and let amk be a (S, T ) atom for Qmk. Then for x ∈ Rn

|θj ∗ amk(x)| ≤ C2−(m−j)T

(1 + 2j|x− xmk|)L
for 0 ≤ j ≤ m,

and

|θj ∗ amk(x)| ≤ C2−(j−m)S

(1 + 2m|x− xmk|)L
for 0 ≤ m ≤ j,

where L is sufficiently large, for our purpose, L > n/min{1, p−, q}.

Lemma 3 Let 0 < r ≤ 1, L > n/r, and η ≥ 0. For any sequence {tjk}j∈N0,k∈Zn, there exists

a constant C such that

∑
j=µ,k∈Zn

|tjk|
(1 + 2µ−η|x− xjk|)L

≤ C2ηn/rMr

( ∑
j=µ,k∈Zn

|tjk|χQjk

)
(x), x ∈ Rn.
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Now we show Theorem 2.

Proof Let f(x) =
∞∑
m=0

2−ms
∑
k∈Zn

tmkamk(x). By Lemma 2 and 3,

2js|θj ∗ f(x)| ≤
j∑

m=0

2(j−m)s
∑
k∈Zn

|tmk||θj ∗ amk|

+
∞∑

m=j+1

2(j−m)s
∑
k∈Zn

|tmk||θj ∗ amk|

≤ C

j∑
m=0

2−(j−m)(S−s)
∑
k∈Zn

|tmk|
(1 + 2m|x− xmk|)L

+C
∞∑

m=j+1

2−(m−j)(T+1+n+s)
∑
k∈Zn

|tmk|
(1 + 2j|x− xmk|)L

≤ C

j∑
m=0

2−(j−m)(S−s)Mr(tm)(x)

+C
∞∑

m=j+1

2−(m−j)(T+1+n+s−n/r)Mr(tm)(x),

(4)

where in the last inequality, we used η = 0 in Lemma 3 for the first part and η = m− j for

the second part.

Thus, by the assumption, if we choose 0 < r < min{p0, 1} such that T+1+n+s−n/r > 0,

then by Theorem 8.1 in [8], p(·)/r ∈ B(Rn). Therefore by Lemma 1 we obtain

2js‖θj ∗ f‖Lp(·) ≤ C

j∑
m=0

2−(j−m)(S−s)‖Mr(tm)‖Lp(·)

+C
∞∑

m=j+1

2−(m−j)(T+1+n+s−n/r)‖Mr(tm)‖Lp(·)

≤ C

j∑
m=0

2−(j−m)(S−s)‖M(|tm|r)‖1/rLp(·)/r

+C
∞∑

m=j+1

2−(m−j)(T+1+n+s−n/r)‖M(|tm|r)‖1/rLp(·)/r

≤ C

j∑
m=0

2−(j−m)(S−s)‖tm‖Lp(·)

+C
∞∑

m=j+1

2−(m−j)(T+1+n+s−n/r)‖tm‖Lp(·)

= C

∞∑
m=0

Cj−m‖tm‖Lp(·) ,
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and
∑∞

m=−∞Cm <∞. Using Minkowski’s inequality ‖a ∗ b‖`q ≤ ‖a‖`1‖b‖`q , we obtain that(
∞∑
j=0

‖2jsθj ∗ f‖qLp(·)

)1/q

≤ C

(
∞∑
m=0

‖tm‖qLp(·)

)1/q

.

This is (i).

For (ii), let us pick 0 < r < min{p0, q, 1} such that T + 1 + n+ s− n/r > 0, from (4) by

Minkowski’s inequality again, we have(
∞∑
j=0

|2jsθj ∗ f(x)|q
)1/q

≤ C

(
∞∑
m=0

|Mr(tm)(x)|q
)1/q

.

By Theorem 8.1 in [8] again, we have p(·)/r ∈ B(Rn). Thus, by Lemma 1 we have

‖{2jsθj ∗ f}∞j=0‖Lp(·)(`q) ≤ C‖{Mr(tm)}∞m=0‖Lp(·)(`q)

= C‖{M(|tm|r)}‖1/rLp(·)/r(`q/r)

≤ C‖{|tm|}‖Lp(·)(`q).

.

This finishes the proof.

Remark When this manuscript was finished, the author received the preprint [9] by

Professor Hästö. In [9], Triebel-Lizorkin spaces with variable smoothness and integrability

were introduced, which include the variable Triebel-Lizorkin spaces while s > 0 in this

paper as a special case, but do not include those for s < 0. In fact, atomic and molecule

decompositions and applications of these new Triebel-Lizorkin spaces were gave, for detail,

see [9]. However, the variable Besov spaces in this paper was not considered in [9], thus the

author presented these results here.

Acknowledgments

The author would like to thank the referee for his careful reading which made the manuscript

more readable. When this manuscript was written the author was visiting Karlsruhe Uni-

versity. He is deeply grateful to Professor Lutz Weis and Department of Mathematics of

Karlsruhe University for their hospitality. The author would also like to thank Hästö for
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