# ВНУТРЕННЕЕ ТРЕНИЕ В МОНОКРИСТАЛЛАХ ВИСМУТА А. А. ДУРГАРЯН, В. В. ЕСАЯН

Исследовано внутреннее трение в кристаллах висмута в зависимости от амплитуды на частотах 29,9 и 42,6 кгд при температурах 90—373°К. Получены два пика: низкотемпературный пик (при 180°К), который имеет гистерезисный характер, и высокотемпературный релаксационный пик с энергией активации 0,24 эв, обязанный взаимодействию дислокаций с точечными дефектами. Фон внутреннего трения состоит из двух областей: низкотемпературной области, с энергией активации 0,18 эв, и высокотемпературной термоактивационной области, с энергией активации, зависящей от амплитуды колебаний.

Механизм внутреннего трения, связанный с движением дислокаций и их взаимодействием с точечными дефектами и примесями, в кристаллах с низкой симметрией (напр., в кристаллах висмута) изучен еще недостаточно. Исследования, в основном, проведены при комнатной температуре и при T = 1,4°K на низких частотах [1-3], а также на средних частотах с висмутом технической чистоты [4].

Целью насгоящей работы было исследование зависимости внутреннего трения (BT) и модуля упругости ( $f^2$ ) монокристаллов висмута в зависимости от амплитуды, деформации, температуры и частоты в области средних частот.

Монокристаллы выращивались методом Таммана после многократной зонной очистки из висмута технической чистоты. Измерения проводилисьв геллиевой среде под давлением 10<sup>-3</sup> ат. ВТ измерялось методом составного осциллятора [4] на частотах 29,9, 42,9 и 42,6 ки на монокристаллах, плоскость (111) которых составляет с осью образца приблизительно 18°. Скорость охлаждения образца составляла 0,3 град/мин. При такой скорости изменения температуры значения BT с повышением и понижением температуры в пределах ошибок совпадали. В исследуемом интервале температур значение BT изменялось в пределах от  $10^{-2}$  до  $10^{-5}$ , поэтому применялись два метода измерения. Чтобы сшибка не превышала 5-6% для значений BT 10<sup>-2</sup> — 10<sup>-3</sup>, измерения проводились методом резонанса и антирезонанса, а для более низких значений использовался метод затуханий свободных колебаний. Переход от одного метода к другому проводился при значениях  $BT \ 8 \cdot 10^{-4} \ -1.2 \cdot 10^{-3}$ , где оба метода дают совпадающие результаты. Образцы склеивались с пьезокварцем под давлением 30—40 г/мм<sup>2</sup>. Полимеризация клея проводилась при температуре 85°С. Величину критической амплитуды, разделяющей амплитудно-зависимую область BT, определяли путем измерения амплитудной зависимости BT при комнатной температуре. Она оказалась разной ек = 0,95. 10-5, где оба метода дают совпадающие результаты.

Влияние температуры на амплитудно-зависимое внутреннее трение в слегка наклепанном образце монокристалла висмута на настоте 29,9 кгц при амплитудах  $\varepsilon_k$  приведено на рис. 1 и 2. Наблюдаются два пика *BT*. Высожотемпературный узкий пик, возникший на термически активированном фоне, смещается в сторону высоких температур (вплоть до 80°С) при каждом последовательном измерении при амплитуде г<sub>к</sub> (рис. 1). После меисячного отдыха при комнатной температуре пик не сместился, а его вели-



ІРнс. 1. Температурная зависимость ВТ и модуля Юнга (j<sup>2</sup>) кристаллов Ві на частоте 29,9 ки: △ — 1-е измерение, ▲ —2-ое измерение, □ —3-е измерение, ◆ — 4-ое измерение, ◇ — 5-ое измерение, ● — после месячного отдыха; ○ — при ε = 28 · 10<sup>-5</sup>.



Рис. 2. Амплитудная и температурная зависимости *BT* кристаллов *Bi* на частоте 29,9 ки: О — при амплитуде  $\varepsilon = 2,8 \cdot 10^{-5}$ , △ —  $\varepsilon = 9,5 \cdot 10^{-5}$ , □ —  $\varepsilon = 19 \cdot 10^{-5}$ , □ —  $\varepsilon = 28 \cdot 10^{-5}$ , ▲ —  $\varepsilon = 38 \cdot 10^{-5}$ , ● — повторное измерение при  $\varepsilon = 2,8 \cdot 10^{-5}$ .

чина возросла вдвое. Измерения в амплитудно-зависимой области после месячного отдыха при амплитудах, больших  $\varepsilon_{R}$  (2,8 · 10<sup>-5</sup>, 9,5 · 10<sup>-5</sup>, 19 · 10<sup>-5</sup> 28 · 10<sup>-5</sup>, 38 · 10<sup>-5</sup>), не привели к смещению и изменению величины пижа (рис. 1,  $\varepsilon = 28 \cdot 10^{-5}$ ).

198

Для выяснения характера пиков были проведены измерения температурной зависимости *BT* при амплитуде  $10^{-5}$  на частоте 42,6 кгg (рис. 3 и 4). При каждом последовательном измерении на этой частоте высокотемпературный пик также смещался. Дальнейший отжиг (пятичасовой и де-



Рис. 3. Температурная зависимость *BT* кристаллов *Bi* на частоте 42,6 кгу: О — 1-ое измерение, ● — 2-ое измерение, ▲ — 5-е измерение, ■ — после 5-часового отжига при 100°С, △ — после 10-часового отжига при 100°С, □ — висмут с 6°/<sub>0</sub> примесью *Pb*.





сятичасовой при 100°С в вакууме) не привел к заметному смещению пика. Окончательной температурой высокотемпературного пика на частоте 42,6 кгц является 97°С. Исходя из частотного сдвига пика, была вычислена энергия активации, которая оказалась равной 0,24 эв. Частотный фактор  $f_0$  равен 9,5 · 10<sup>7</sup> сек<sup>-1</sup>. Высокотемпературный пик не устранялся отжигом, но он подавлялся при введении примесей, на что указывает измерение для образца висмута с 6%-ой примесью *Pb* (рис. 3).

Плотность дислокаций, рассчитанная по ямкам травления на плоскости (111), в образцах оказалась порядка 10<sup>7</sup> см<sup>-2</sup>, а плотность дефектов упаковки—порядка 10<sup>4</sup> см<sup>-2</sup>. Нужно отметить, что изменение амплитуды колебаний не приводило к изменению порядка плотности дислокаций и плотности дефектов упаковки, что контролировалось с помощью металлографического микроскопа.

Исходя из экспоненциального роста термически активированного фона, на рис. 5 дана зависимость  $\ln \Delta$  от  $\frac{1}{T}$  при различных амплитудах колебаний для образца с частотой 29,9 кгу. Как видно, эти зависимости состоят



Рис. 5. Логарифмическая зависимость BT от  $\frac{1}{T}$  для различных амплитуд:  $\Box$  — измерение при амплитуде  $\varepsilon = 0.95 \cdot 10^{-5}$  на частоте 29,6 игд,  $\Delta - \varepsilon = 9.5 \cdot 10^{-5}$ ,  $\bigcirc -\varepsilon = 19.5 \cdot 10^{-5}$ ,  $\bigcirc -\varepsilon = 23 \cdot 10^{-5}$ ,  $\triangle$  — измерение при амплитуде  $\varepsilon = 10^{-5}$  на частоте 42,6 игд.

нз двух линейных участков. Энергия активации низкотемпературного участка, равная 0,18 эв, не зависит от амплитуды и частоты, а энергия активации фона, соответствующего более высоким температурам, зависит от амплитуды. Для амплитуд  $\varepsilon = 0.95 \cdot 10^{-5}$ ,  $9.5 \cdot 10^{-5}$ ,  $19 \cdot 10^{-5}$  и  $28 \cdot 10^{-5}$ энергии активации соответственно равны 0,5, 0,46, 0,42 и 0,38 эв. На рисунке приведена также зависимость  $\ln \Delta$  от  $\frac{1}{T}$  для образца с частотой 42,6 кгц при амплитуде  $\varepsilon = 10^{-5}$ . Энергия активации низкотемпературного участка также равна 0,18 эв, а эторому участку соответствует более высокая энергия активации — 0,82 эв.

Механизм поглощения низкотемпературного участка фона не зависит от амплитуды и обязан перераспределению точек закрепления вдоль дислокаций под действием внешнего напряжения. Повышение фона поглощения

200

под действием температуры и амплитуды обязано увеличению числа точек перераспределения. С учетом критической амплитуды ( $\varepsilon_{\kappa} = 0.95 \cdot 10^{-5}$ ), разделяющей амплитудно-независимую и амплитудно-зависимую области BT, можно оценить критическое напряжение перераспределения точек закрепления

 $\sigma_c \equiv \varepsilon_{\kappa} \mu = 10^{-5} \mu (\mu - MOZYAB CZBИГА).$ 

Высокотемпературный участок фона, где энергия активации уменьшается с увеличением амплитуды колебаний, соответствует термоактивационному отрыву дислокаций от точечных дефектов [11]. В этом случае поле дефектов преодолевается дислокацией под действием внешнего воздействия (ультразвука) и термической флюктуацией. Как и следовало ожидать (рис. 5), при таком механизме поглощения переход нетермоактивационного процесса при высоких амплитудах в термоактивационный происходит начиная с более низких температур.

Из зависимости энергии активации от амплитуды внешнего напряжения был вычислен активационный объем по формуле [11]

$$v = -\frac{dH}{dz},$$

где *H* — энергия активации, т — амплитуда напряжения. Величина активационного объема оказалась равной 10<sup>-21</sup> см<sup>3</sup>. Из экстраполяции зависимости энергии активации от амплитуды напряжения к нулевой амплитуде была получена величина энергии связи (*H*<sub>cb</sub>) дислокации с точечными дефектами, которая оказалась равной 0,65 эв.

Зная энергию связи дислокации с точечными дефектами, можно определить критическое напряжение механического отрыва точек закрепления при комнатной температуре, используя зависимость [10]

 $\sigma_{a} = \left(\frac{2 H_{ca}}{kT}\right)^{1/2} \sigma_{c} \approx 5 \sigma_{c}.$ 

Так как в области высокотемпературного пика амплитуда приложенного внешнего напряжения имеет порядок критического напряжения механического отрыва точечных дефектов, то с учетом того, что высота пика не зависит от амплитуды, можно предположить, что механизм поглощения связан не с краевыми дислокациями, а с дефектами упаковки.

Для оценки коэффициента демпфирования (В) применим релаксационную теорию дислокационного поглощения по модели Келлера—Виртмана [13]. Согласно этой модели декремент затухания записывается в следующем виде:

$$\Delta = \frac{\pi E a^2 N B \omega}{16 \left( G_0 + G N - M \omega^2 \right)^2 + E^2 \omega^2},$$

где G<sub>0</sub> — коэффициент восстанавливающей силы закрепленной дислокации, G — коэффициент восстанавливающей силы, обусловленной взаимодействием с другой дислокацией, M — эффективная масса дислокаций.

Если принять  $M\omega^2 \ll GN + G_o$ , что имеет место при исследуемых частотах, это равенство можно записать в следующем виде:

$$\Delta = \frac{\pi E a^2 N}{16 (G_0 + GN)} \frac{B_{\rm in}/(G_0 + GN)}{1 + B^2 \omega^2 / (G_0 + GN)^2}$$

Из сравнения с выражением

$$\Delta = \Delta_0 \, \omega \tau / (1 + \omega^2 \tau^2)$$

получаем

$$\tau = \frac{B}{G_0 + GN}, \quad \Delta_{\max} = \frac{1}{2} \Delta = \frac{\pi E a^2 N}{32 (G_0 + GN)}.$$

Из этих уравнений с учетом плотности дефектов упаковки ( $N = 10^4 \text{ см}^{-2}$ ), экспериментального значения максимума декремента затухания для данной частоты и соответствующих значений модуля упругости E и параметра решетки a в плоскости (111) для B получим значение порядка  $10^{-3}$  дин сек/см<sup>-2</sup>.

Такое же значение коэффициента демпфирования получается из теоретических расчетов Лейбфрида [12]. По этой теории

$$B=\frac{3\,kZ}{10\,v_{l}\,a^{2}}\,T,$$

где а — параметр решетки, U<sub>1</sub> — скорость упругих поперечных волн, Z число атомов в элементарной ячейке, k — постоянная Больцмана, T температура пика.

Совпадение значения коэффициента демпфирования, рассчитанного из эксперимента, с теоретическим указывает на то, что высокотемпературный лик обусловлен релаксацией дефектов упаковки. Смещение же пика объясняется увеличением длины частичных дислокаций вокруг дефектов упаковки при отжиге за счет диффузии неравновесных вакансий в области дефектов упаковки.

Низкотемпературный пик для образца с частотой 29,9 кгу возникает при амплитудах, больших  $\varepsilon_{\kappa}$  (рис. 2). После амплитудно-зависимых измерений измерение при амплитуда  $\varepsilon_{\kappa}$  приводит к исчезновению пика, что указывает на обратимый характер низкотемпературного пика. На образце с частотой 42,6 кгу была получена серия аналогичных кривых. Часть этих кривых представлена на рис. 4. После предварительной деформации низкотемпературный пик наблюдается при амплитуде, равной  $\varepsilon_{\kappa}$  (рис. 4). Этот пик подавляется отжигом при 100°С (рис. 4) и вновь возникает при амплитудах, больших  $\varepsilon_{\kappa}$ . Величина низкотемпературного пика в исследуемой области амплитуд линейно растет в зависимости от амплитуды, а начиная со значений  $\varepsilon = 8,5 \cdot 10^{-5}$  росг не наблюдается (рис. 2*a*).

Поведение амплитудно-зависимого поглощения в области пика для образцов с плотностью дислокаций  $10^8 - 10^7$  см<sup>-2</sup> можно объяснить в рамках модели [8], в которой предполагается, что движение дислокации. оторвавшейся от точек закрепления, ограничивается не только ее линейным натяжением (К-Г-Л), но и полем напряжений, обусловленным соседними примесными атомами. Зависимость *BT* от амплитуды, предсказываемая этой моделью, имеет независимую от амплитуды область (плато). Лишь при очень высоких амплитудах наблюдается экспоненциальная зависимость

202

от амплитуды, совпадающая с теорией К—Г—Л. Полученный пик носит, по-видимому, дислокационно-гистерезисный характер, так как потери в этом случае зависят от амплитуды колебаний.

Ереванский государственный университет

Поступила 20.IV.1975

## ЛИТЕРАТУРА

- 1. K. K. Copinathan, A. Padmimi. J. Phys. Japan, 39, 1169 (1972).
- 2. А. П. Королюк. ЖЭТФ, 49, 1009 (1965).
- В. С. Постников, И. М. Шаршаков, Э. М. Масленников. Релаксационные явления в металлах и сплавах, Труды III Всесоюзной научной конференции, 1963, стр. 165.
- 4. Е. Г. Швидковский, А. А. Дургарян. НДВШ, серня физ.-мат., 6, 211 (1958).
- 5. Е. Г. Швидковский, А. А. Дургарян. НДВШ, серия физ.-мат., 5, 217 (1958).
- 6. T. Nikone, N. Komitomi, M. Abe. J. Phys. Soc. Japan, 10, 960 (1955).
- 7. A. C. Roberts, Am. Cottrell. Phil. Mag., 1, 111 (1956).
- 8. J. C. Swariz, J. Weertman. J. Appl. Phys., 32, 1860 (1961).
- 9. У. Мезон. Физическая акустика, Изд. Мир, М., 1968, том 3, часть А, стр. 180.
- 10. К. Jamafuji, Ch. L. Bauer. J. Appl. Phys., 36, 3228 (1965). Сб. Актуальные вопросы теории дислокаций, 1968, стр. 115.
- В. А. Инденбом, В. М. Чернов. Сб. Механизмы релаксационных явлений в твердых телах, Изд. Наука, 1972, стр. 87.
- 12. G. Leibfried. Zs. Phys., 127, 344 (1950).
- 13. J. Weertman. J. S. Kochler. J. Appl. Phys., 24, 624 (1953).

### ՆԵՐՔԻՆ ՇՓՈՒՄԸ Bi ՄՈՆՈԲՅՈՒՐԵՂՆԵՐՈՒՄ

#### Ա. Հ. ԳՈՒՐԳԱՐՅԱՆ, Վ. Վ. ԵՍԱՅԱՆ

## INTERNAL FRICTION IN Bi MONOCRYSTALS

## A. A. DOURGARYAN, V. V. ESAYAN

The amplitude dependence of the internal friction in Bi crystals is investigated in  $90^{\circ}$ —373 °K temperature range at frequencies 29,9 and 42,6 kc. Two peaks of internal friction are observed, the hysteretical type low temperature (180°K) peak and the high temperature one which was due to the interaction of dislocations with point defects. The amplitude dependence of the activation energy of the thermoactivation process was calculated.