ФОТОРОЖДЕНИЕ ЗАРЯЖЕННЫХ ПИОНОВ НА ЯДРАХ *Аl²¹* И *В*¹¹ ПРИ МАКСИМАЛЬНОЙ ЭНЕРГИИ ФОТОНОВ ОТ 2 ДО 4,5 Гэв

А. С. ДАНАГУЛЯН, Н. А. ДЕМЕХИНА

Методом наведенной активности измерены выходы фотоядерных реакций Al^{27} ($\gamma\pi$ +) Mg^{27} и B^{11} ($\gamma\pi$ -) C^{11} в области максимальных значений энергии тормозного спектра от 2 до 4,5 Гэз. Получены следующие оценки для сечений указанных реакций: 2,7 мкби для Al^{27} ($\gamma\pi$ +) Mg^{27} и 3,5 мкби для B^{11} ($\gamma\pi$ -) C^{11} .

Введение

Взаимодействие высокоэнергетичных фотонов с ядрами в большинстве случаев приводит к расщеплению ядра и сильному изменению зарядового и массового чисел мишени. Согласно каскадно-испарительной модели это есть двухступенчатый процесс: первая ступень — образование каскада в ядре с вылетом нескольких быстрых нуклонов, вторая ступень — испарение, т. е. снятие возбуждения ядра путем испускания сравнительно медленных нуклонов или более тяжелых частиц. Очень незначительную группу составляют реакции, в которых масса исходного ядра остается постоянной, а изменяется только заряд [1]. Такого типа процессы протекают при очень малых значениях передаваемых энергий, так как энергия возбуждения остаточного ядра не должна превышать энергию связи нуклона, в противном случае произойдет испускание нуклона или образование каскада с последующим расщеплением ядра. Импульсное распределение нуклонов остаточного ядра также мало отличается от первоначального.

В настоящей работе приводятся результаты исследования реакций $Al^{2^{\gamma}}(\gamma \pi^+) Mg^{2^{\gamma}}$ и $B^{11}(\gamma \pi^-) C^{11}$, относящихся к указанному выше типу. Ранее проведенные измерения выходов этих реакций относились к максимальной энергии фотонов 0,8 Гэв [2—4] и 1,2 Гэв [5]. С целью получения новых данных об этих реакциях в области высоких энергий нами были продолжены измерения до энергии 4,5 Гэв. Результаты измерений выходов реакции $Al^{2^{\gamma}}(\gamma \pi^+) Mg^{2^{\gamma}}$ до максимальной энергии фотонов 7 Гэв [6], опубликованные после окончания настоящего эксперимента, были использованы нами при обсуждении полученных данных.

Эксперимент

Эксперимент выполнен на Ереванском электронном ускорителе. Тормозное излучение, полученное на тонкой вольфрамовой мишени толщиной 0,1 радиационной единицы, проходя через первый коллиматор, очищающий магнит и второй коллиматор, попадало в камеру, где находились облучаемые мишени. Измерение интенсивности пучка про-

изводилось квантометром. Толщина мишеней не превышала 1,3 ι/cm_{ε} для Al^{z_7} и 0,6 ι/cm^2 для B^{11} , чистота составляла соответственно 99,9 и 99,7%.

Мишени облучались при энергиях в интервале от 2 до 4,5 Γ эв через каждые 0,5 Γ эв, длительность экспозиций составляла 30 мин. Измерения выхода Mg^{27} производились через 5 мин, а C^{11} — через 30 мин после кояца облучения.

Выходы изучаемых реакций измерялись по наведенной активности ядер Mg^{27} и C^{11} в мишенях под действием 7-квантов. Для измерения активностей использовался 7-спектрометр, состоящий из кристалла Nal(Tl) с размерами 40×40 мм², фотоумножителя ФЭУ—36 и многоканального анализатора NTA—512. Энергетические спектры изотопов Mg^{27} и C^{11} приведены на рис. 1. Энергии регистрируемых ли-

Рис. 1. Энергетические спектры, полученные при облучении Al^{27} (a) и B^{11} (b) фотонами тормозного излучения с $E_{7max} = 4,5$ Гзе.

ний и соответствующие периоды полураспада составляли 511 Кэв и 20,7 мин для С¹¹ и 840 Кэв и 9,5 мин для Mg^{27} .

Выходы реакций рассчитывались по формуле

$$\sigma_{Q} = \frac{\Delta N \lambda}{N_{\rm T} N_{\rm g} \varepsilon_{\rm W} k e^{-\lambda t_{\rm g}} (1 - e^{-\lambda t_{\rm g}}) (1 - e^{-\lambda t_{\rm g}})}, \qquad (1)$$

где с_о — выход реакции, отнесенный к эквивалентному кванту,

 ΔN — число отсчетов под фотопиком γ -линии за время измерения t_3 ,

N_я — число ядер мишеней на см²,

N₇ — число эквивалентных 7-квантов по данным квантометра,

- в фотоэффективность сцинтилляционного детектора,
- телесный угол,

λ-постоянная полураспада,

- k коэффициент поглощения испускаемых фотонов самой мишенью и алюминиевой крышкой кристалла,
- t₁ время облучения,
- t₂ временной интервал между концом облучения и началом измерений,
- t₃ время измерения.

Измерение тормозного спектра парным спектрометром показало совпадение его формы с "идеальным спектром", описываемым формулой Бете-Гайтлера с поправкой на толщину мишени и коллимацию

322

пучка. Фотоэффективность спектрометра определялась по выходам реакций $C^{12}(\gamma, n) C^{11}$, $Mn^{55}(\gamma, n) Mn^{54}$ и $Mn^{55}(\gamma, 3n) Mn^{52}$ [7]. В каждой серии измерений дополнительно определялся выход мониторной реакции $C^{12}(\gamma n) C^{11}$.

Экспериментальные результаты и обсуждение

Выходы измеренных реакций представлены в таблице и на рис. 2 и 3. На рис. 2 приведены экспериментальные результаты по выходу реакции $B^{11} \rightarrow C^{11}$, полученные в настоящей работе, вместе с данными работы [5]. На рис. 3 выходы реакции $Al^{27} \rightarrow Mg^{27}$, измеренные нами, хорошо совпали с данными работы [6].

Рис. 2. Выход и поперечное сечение для реакции $B^{11} \rightarrow C^{11}$: О —экспериментальные результаты настоящей работы, \times — данные [5], • — сечение [5]. Сплошная линия — сечение, полученное в настоящей работе (заштрихованная область указывает ошибки).

Рис. 3. Выход и поперечное сечение для реакции $Al^{27} \rightarrow Mg^{27}$: О — результаты настоящей работы, • — данные [4], Δ — данные [6]. Сплошная кривая — сечение [6], прямая линия — сечение, полученное в настоящей работе (заштрихованная область указывает ошибки).

Таблица

Тип реакция	Выходы реакций с _Q (10 ⁻²⁹ см ²) Максимальная энергия фотонов (Гэв)						Сечение реакции 5.** (10 ⁻²⁹ см ²)
	B ¹¹ →C ¹¹	6,5 <u>+</u> 0,6	6 <u>+</u> 0,6	S. 0=1.2	6±0,6	6,5 <u>+</u> 0,6	7,1±0,7
A 127 → Mg27	5,3 <u>+</u> 0,5	4,6 <u>+</u> 0,5	5,3 <u>+</u> 0,5	4,6±0,4	4,9±0,5	5,7±0,6	0,27±0,13

Указанные ошибки носят статистический характер. Абсолютные ошибки составляют 20% с учетом точности определения фотоэффективности спектрометра.

** Расчет сеченый производился методом наименьших квадратов с учетом точности измерений.

Сечения фотоядерных реакций связаны с выходом, измеренным экспериментально, следующим соотношением:

$$\sigma_Q = \frac{E_{\tau_{\max}} \int_{E_{nop}}^{E_{\tau_{\max}}} \sigma_k N(E, E_{\tau_{\max}}) dE}{\int_{E_{nop}}^{E_{\tau_{\max}}} EN(E, E_{\tau_{\max}}) dE}$$

где

 σ_Q — выход реакции, отнесенный к эквивалентному кванту, σ_k — сечение реакции, отнесенное к реальному фотону,

N(E, E_{їтах}) — формула, описывающая тормозной спектр с максимальной энергией E_{їтах}.

Для решения этого интегрального уравнения можно использовать несколько методов. При этом для описания тормозного спектра $N(E, E_{\text{тmax}})$ берется одно из приближенных выражений. Нами были оценены сечения исследуемых реакций в области энергий от 2 до 4,5 Гэв с учетом статистической точности полученных экспериментальных результатов на основе использования прямоугольного приближения для аппроксимации тормозного спектра и предположения о постоянстве сечения в исследуемой области энергий [8].

Полученные оценки приведены на рис. 2, 3. На тех же рисунках указаны сечения, рассчитанные для реакции $Al^{27} \rightarrow Mg^{27}$ [6] и для реакции $B^{11} \rightarrow C^{11}$ [5].

Во всех ранее выполненных работах большое внимание уделялось вопросу фоновых реакций, протекающих в мишенях и их примесях под действием фотонного пучка и сопровождающих его частиц. Подробно этот вопрос рассматривался в работах [2, 4, 5]. Для алюминиевой мишени реакции на примесях не имеют большого значения из-за высокой чистоты образца (99,9%)) и основной фон, очевидно, обусловлен реакцией $Al^{27}(np) Mg^{27}$, вызываемой нейтронами. Нами проводились дополнительные измерения, позволившие определить нейтронный фон и оценить выход указанной выше реакции в исследуемой области энергий. Что касается фона от вторичных реакций внутри мишени, то простые расчеты показали, что этим фоном можно пренебречь. Основной вклад в фон реакции $B^{11}(\gamma \pi^{-}) C^{11}$ будет давать выход реакции $C^{12}(\gamma n) C^{11}$, протекающей на углеродной примеси борной мишени. Учитывая чистоту образца (99,7%)), был оценен вклад этой реакции в измеряемый выход.

В заключение авторы выражают благодарность Г. А. Вартапетяну и А. Г. Худавердяну за постоянный интерес к работе и ценные советы, а также персоналу ускорителя Ереванского физического института за обеспечение хороших параметров пучка.

Ереванский государственный университет Ереванский физический институт

Поступила 23.Х.1972.

(2)

324

ЛИТЕРАТУРА

- 1. T. Ericson et al. Nucl. Phys., 36, 353 (1962).
- P. Dyal, J. P. Hummel. Phys. Rev., 127, 2217 (1962); W. B. Walters, J. P. Hummel. Phys. Rev., 143, 833 (1966).
- 3. A. Masaike. J. Phys. Soc. Japan, 19, 427 (1964).
- 4. G. Nydahl, B. Forkman. Nucl. Phys., B7, 97 (1968); I. Blomqvist, G. Nydahl, B. Forkman. Nucl. Phys., A162, 193 (1971).
- 5. В. И. Нога, Ю. Н. Ранюк, П. В. Сорокин, В. А. Ткаченко. ЯФ, 14, 904 (1971). 6. G. Andersson, I. Blomqvist et al. DESY 72/22, May (1972).
- 7. Г. А. Вартапетян и др. ЯФ, 17, 685 (1973).
- 8. G. Rudstam. Zs. Naturf., 21a, 1027 (1966).

ԼԻՑՔԱՎՈՐՎԱԾ ՊԻՈՆՆԵՐԻ ՖՈՏՈԾՆՈՒՄԸ A127 ԵՎ B11 ՄԻՋՈՒԿՆԵՐՈՒՄ 2_ԻՑ ՄԻՆՉԵՎ 4,5 ԳԷՎ ՄԱՔՍԻՄԱԼ ԷՆԵՐԳԻԱՆԵՐԻ ԳԵՊՔՈՒՄ ●

Ա. Ս. ԳԱՆԱԳՈՒԼՅԱՆ, Ն. Ա. ԳԵՄՅՈԽԻՆԱ

Այս աշխատանջում ներմուծված ակտիվության մեթողով չափված են $B^{11}(\gamma, \pi-) C^{11}$ և $Al^{27}(\gamma\pi+) Mg^{27}$ ֆոտոմ իջուկային ռեակցիաների ելջերը արդելակման ֆոտոնների 2-ից մինչև 4,5 Գէվ մաջսիմալ էներդիաների դեպջում։ էներդիաների այդ տիրույթում դնամատված են $B^{11}(\gamma\pi-) C^{11}$ և $Al^{27}(\gamma, \pi+) Mg^{27}$ «հակցիաների ընդլայնական կտրվածջների արժեջների կերին սամմանները, որոնջ մամապատասխանաթար մավասար են 3,5 և 2,7 վկրաբն,

PHOTOPRODUCTION OF CHARGED PIONS ON Al²⁷ AND B¹¹ AT MAXIMUM ENERGIES BETWEEN 2 AND 4,5 GeV

A. S. DANAGULIAN, N. A. DEMIOKHINA

The yields of the reactions $B^{11}(\gamma\pi^{-}) C^{11}$ and $Al^{27}(\gamma\pi^{+}) Mg^{27}$ are measured by the activation method at maximum bremsstrahlung energies from 2 up to 4,5 GeV. The cross sections for above mentioned reactions equal to 3,5 μb and 2,7 μb res-

pectively are obtained for this energy interval.