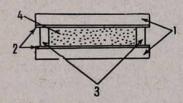
жидкие кристаллы в качестве диэлектрических СРЕД В ЭЛЕКТРОЛЮМИНЕСЦЕНТНЫХ ЯЧЕЙКАХ


л. т. кантарджян, к. а. манташян

Электрооптические эффекты у нематических жидких кристаллов, наблюдаемые при наложении внешнего постоянного или переменного и низкочастотного электрического поля, сводятся к рассеянию внешнего излучения [1], что и используется при их практическом применении в качестве носителей информации, осуществляющих преобразование света в устройствах визуализации информации. Последнее обстоятельство значительно ограничивает возможности применения жидких кристаллов в устройствах, в которых требуются носители информации, обладающие одновременно свойствами преобразователя и излучателя света, например, в цифровых индикаторах, предназначенных для работы как при высоких, так и при низких уровнях внешней освещенности, в также при полном ее отсутствии.

Электролюминесценция порошковых поликристаллических люминофоров обычно наблюдается в органических и керамических диэлектрических средах, не обладающих электрооптическими свойствами [2]. Поскольку нематические жидкие кристаллы являются диэлектриками с диэлектрической проницаемостью с 3+3,5 [1] и обладают электрооптическими свойствами, то представляет интерес выяснить возможности их использования в качестве диэлектрической среды в электролюминесцентных ячейках. Такие ячейки с рабочим веществом "электролюминофор—жидкий кристалл" найдут широкое практическое применение в индикационных системах благодаря возможности их работы при любых уровнях внешней освещенности, вплоть до абсолютной темноты.

С этой целью нами были приготовлены взвеси электролюминофоров ЭЛ-510 и ЭЛ-670 в нематическом жидком кристалле MBBA

(п-метоксибензилиден — π^1 -бутиланилин) и экспериментально исследованы их электрооптические свойства. Содержание люминофора во взвеси составляло примерно $0,2^0/_0$ объема жидкого кристалла. Взвесь ю заполнялась ячейка, которая представляла собой два стекла, покрытых токопроводящим слоем окиси олова (SnO_2) , разделенных тефлоновыми прокладками толщиной 30 мкм (см. рис.).

Электрооптическая ячейка: 1— стекла, 2— токопроводящий слой, 3— тефлоновые прокладки, 4— электролюминесцирующая жидкокристаллическая взвесь.

При подаче на ячейку переменного напряжения начиная с $\sim 25~s$ до 120+130~s при частоте $20~\imath y$ у первой взвеси наблюдалось одно-

временно и динамическое рассеяние и электролюминесценция, заметные при обычном дневном освещении. При повышении частоты полоса люминесценции смещалась в синюю область, а динамическое рассеяние ослабевало. Оптимальная частотная область одновременного существования электролюминесценции и динамического рассеяния системы ЭЛ-510 — MBBA оказалась 50+100 гу при напряжении 120 в. При 300 гд динамическое рассеяние полностью исчезало и ячейка работала как обычный электролюминесцентный конденсатор. Значения порогового напряжения (~3 в) и напряжения насыщения (~120 в) динамического рассеяния для МВВА не изменялись при внесении в жидкий кристалл порошка электролюминофора. Точно также присутствие жидкого кристалла не влияло на напряжения порога и насыщения электролюминесценции. Однако контрастность ячейки с рабочим веществом "электролюминофор-жидкий кристалл" была несколько ниже контрастности ячейки с жидким кристаллом или ячейки с электролюминофором.

У взвеси люминофора ЭЛ-670 в MBBA одновременного динамического рассеяния и электролюминесценции практически не наблюдалось.

В оптимальном режиме в ячейках со взвесью электролюминофора ЭЛ-510 в жидком кристалле МВВА при любых уровнях внешней освещенности визуально наблюдаются либо динамическое рассеяние, либо электролюминесценция, или и то и другое вместе. При абсолютной темноте и низких уровнях внешней освещенности, где жидкий кристалл в электрооптическом отношении практически не играет роли, повышением частоты и напряжения можно достигнуть достаточной контрастности ячейки за счет повышения яркости электролюминесценции. При средних уровнях внешней освещенности хорошо заметны как динамическое рассеяние, так и электролюминесценция. При высоких уровнях внешней освещенности эффективность динамического рассеяния обеспечивает достаточную контрастность для использования таких ячеек в устройствах индикации.

Наблюдаемое поведение взвеси электролюминофора в жидком кристалле во внешнем электрическом поле в определенном интервале напряжений, где одновременно присутствуют динамическое рассеяние и электролюминесценция, свидетельствует о том, что компоненты взвеси ведут себя независимо в отношении электрооптических свойств, т. е. введение электролюминофора не действует на процесс образования доменов, на которых происходит динамическое рассеяние света, и обратно, наличие жидкого кристалла не подавляет электролюминесценцию. Электролюминесцирующие жидкокристаллические взвеси, обладающие способностью одновременно люминесцировать и давать динамическое рассеяние, могут быть приготовлены из электролюминофоров и жидких кристаллов, у которых интервалы напряжений от порога до насыщения динамического рассеяния и электролюминесценции при данной частоте перекрываются полностью или частично. Подбор

жидкого кристалла в отношении его температурного интервала существования должен производиться с учетом области температурного тушения свечения электролюминофора.

Авторы выражают благодарность М. Р. Карапетяну за помощь в работе.

Поступила 20. П 1973

AUTEPATYPA

G. H. Heilmeier, Z. A. Zanoni, Z. A Barton. Proc. IEEE, 56, 1162 (1968).
 Г. Хениш. Электролюминесценция. Изд. Мир. М., 1964.

ՀԵՂՈՒԿ ԲՅՈՒՐԵՂՆԵՐԸ ՈՐՊԵՍ ԴԻԷԼԵԿՏՐԻԿ ՄԻՋԱՎԱՅՐԵՐ ԷԼԵԿՏՐԱԼՅՈՒՄԻՆԵՍՑԵՆՅՈՂ ԲՋԻՋՆԵՐՈՒՄ

L. S. QUEPUPABUE, 4. U. UULPUTBUE

Ստացված է էլնկարաօպաիկական բջիջ, որի մեջ որպես ակտիվ նյութ օգտագործված է ՅՈ-510 էլնկարալյումինոֆորի կախույթը MBBA (պ-մետօքնիրեննգիլիդեն պ՜-բութիլանիլին) նես՝ատիկ հեղուկ բյուրեղում։ Նման բջիջներում գուգակցվում են լույսի առաքիլի ձևափոխիչը հատկությունները։ Այս հանգամանքը թույլ է տալիս օգտագործել վերոհիչյալ կախույթներով բջիջները ինդիկացիոն սարքավորումներում, օրինակ, թվային ինդիկատորներում, որոնք պետք է աշխատեն արտաքին լուսավորման ցանկացած մակարգակների դեպքում, ինչպես նաև բացար-ձակ մթության պայմաններում։

LIQUID CRYSTALS AS DIELECTRIC MEDIUM IN ELECTROLUMINESCENCE CELLS

L. T. KANTARGIAN, K. A. MANTASHIAN

The electrooptical cell is obtained in which an active substance is the suspension of electroluminophor in nematic liquid crystal. It combines properties of a transformer and a radiator capable of operation at any level of illumination including the absolute darkness.