УДК 622 765 (479 25)

КРАТКИЕ СООБЩЕНИЯ

А Л. САГРАДЯН, Р. М. СИРУНЯН

ИСПЫТАНИЯ МЕТОДА ВОССТАНОВИТЕЛЕП ПРИ ФЛОТАЦИИ ЗОЛОТОСОДЕРЖАЩЕП ПОЛИМЕТАЛЛИЧЕСКОЙ РУДЫ ШАУМЯНСКОГО МЕСТОРОЖДЕНИЯ

Во флотационной практике полиметаллических руд в качестве эффективного реагсита депрессора цинковой обманки и пирита широко употребляются цианиды в смеси с цинковым крупоросом.

При флотации золотосодержащих руд, при их употреблении в больших количествах золото растворяется и полностью выводится из процесса вместе со сточными водами. Поэтому весьма желательно заменить цианиды другими реагентами, столь же эффективно депрессирующими циик и лирит, но инертными по отношению к золоту.

В промышленных условиях на ряде иностранных обогатительных фабрик при измельчении руд применяются: $H_2S_2O_4$ и ее соли [8]: двои ные соли гидрасеринстой кислоты (NH₄)₂ Zn (S₂O₄)₂ и Na₂Zn (S₂O₄) [1]. Д. А. Шведов. А. И. Андреева [7] пишут, что из этих реагентов наиболее сильным депрессором является ZnS_2O_4 ; по данным С. И. Митрофонова [3],—гидросульфит натрия.

Изучая депрессирующее действие гидросульфита натрия, П. Д. Трусов [6] показал, что этот эффект слагается из самого реагента и продуктов его распада S_2O_4 . HSO₃, SO₃, S₂O₃. М. М. Римская, П. А. Ребиндер [4] пришли к заключению, что применение восстановительной среды, создаваемой гидросульфитом натрия, вызывает поверхностное восстановление окисленных участков минералов, устраняет вредное их воздействие и препятствует переходу в раствор водорастворимых ионов тяжелых металлов. Одновременно, усиливается депрессия пирита. М. М. Римская, А. Л. Саградян [5] при флотации ново-левинской руды Урала установили, что введение гидросульфита натрия в процесс флотации повышлет извлечение меди в концентрат. Ими же показано, что испытание метода восстановителей на медно-цинковых рудах месторождения им. П1-го Интернационала (Урал) с успехом решает вопрос замены цианида гидросульфитом натрия.

Применение восстановителей во флотации нашло свое развитие в работах ЦНИГРП. А. Л. Лопаткин, З. М. Гирдасова, Н. Л. Горенков [2] осуществили добавку в измельчение наряду с обычными депрессорами сульфооксидного восстановителя. Затем пульпа подвергалась аэрации

и флотировалась. В результате такого возденствия—восстановления и окисления усилилась депрессия пирита и сфалерита, при одновременной активации галенита и халькопирита.

Нами в промышленных условнях, для изучения депрессирующего действия гидросульфита натрия, при флотации золотосодержащей полиметаллической руды Шаумянского месторождения испытана подача в измельчение:

- а) гидросульфата натрия в содовой среде с цинковым купоросом;
- б) то-же с небольшими добавками натрий-циана.

С учетом наличия золота в Pb-Cu конпентрате разделение его производилось в условиях «горячей флотации», при температуре 65—70°, с одновременной подачей двухромовокислого калия в количестве 250 г/т.

По полученным данным сменных технологических показателей (см. табл., 1-ый режим) установлен хороший эффект депрессии цинковых минералов.

Содержание цинка в цинковом концентрате составило 62,52%. т. е. получен весьма чистый продукт с почти теоретическим содержанием цинка в нем. Извлечение цинка в концентрат составило 78,63%.

Содержание металла в хвостах флотации устойчиво выдерживалось на уровне, в %: Pb—0,09, Zn—0,46, Cu—0,08.

Показатели разделения Pb—Си концентрата и флотируемость медных минералов вполне удовлетворительные. Содержание меди в медном концентрате составило 16,13%, при извлечении 69,68%. Разделение и флотируемость свинцовых минералов хорошее. Извлечение свинца в свинцовый концентрат составило 73,51%. Однако отмечено довольно низкое содержание свинца в свинцовом концентрате, равное 13,21%, что объяснялось большим выходом Pb—Си концентрата в цикле коллективной флотации (видимо, вследствие плохой депрессии пирита).

Результаты испытания дополнительной подачи небольших количеств натрий—циана (см. табл., 2-ой режим) показали резкое улучшение качества свинцового концентрата. Содержание свинца в нем поднялось до 30,8%, при извлечении 69,89%.

Показатели, полученные при подаче натрий—циана в измельчение до 40 г/т, весьма близки к результатам с применением в измельчение гидросульфита патрия с небольшими расходами натрий—циана. Отмечено лишь значительное повышение содержания свинца в свинцовом концентрате до 38,42% (см. табл. 3-й режим).

Заключение и рекомендации

Проведенные промышленные испытания позволили сделать следующие выводы.

¹ Испытания проводились на Ахтальской обогатительной фабрике с участнем Л. А Данцевич, В А. Данцевич, Р. И. Исаакяна, В. В. Арутюняна.

Технологические показатели промышленных испытаний на Ахтальской фабрике (апрель 1978 г.)

Режим (условный номер)	Число 8-часовых смен	Pearenrы, г/т				Содержание, %			
		РЬ—Си флотацию (из- мельчение)		селекцию Рb Сп концентрата	Наименование продуктов	Pb	7.0	C	Извлечение ⁰ / ₀ (одноименного
		Na ₂ S ₂ O ₄	NaCN	Бихромат калия при 65—70°	продуктов	Pb	Zn	Cu	металла)
1	15	800		250	Руда Цинковый копцептрат Отвальные хвосты	0.99 0,62 0.09	5,28 62,52 0,46	0,97 1,28 0,08	78,63
					Свинцовый концентрат Медный концентрат	13,21 3,41	5,24 10,87	2,59 16,13	73,51 69,68
2	5	800	15	250	Руда Ципковый конц нтрат Отвальные хвосты	0,03 0,95 0,08	5,13 54,64 0,58	1.04 2,45 0,09	85,69
					Свинцовый концентрат Медный концентрат	30,80 4,74	2,15 6,54	2.07 25,51	69,89 69,74
3	16		40	250	Руда Цинковый концентрат Отвальные хвосты	1.15 1,14 0,09	5,54 61,89 0,49	0,96 1,80 0,14	86,82
					Свинцовый концентрат Медный концентрат	38,42 7,61	4,55 7,98	6,12 21,69	67.99 59,86

- 1. Гидросульфит натрия с небольшими добавками цианида-натрия в измельчение, в сочетании с разработанным технологическим режимом разделения Рb—Си концентрата, обеспечивает устойчивые показатели разделения и извлечения в одноименные концентраты минералов Рb. Zn II Cu.
- 2. Извлечение золота в Pb, Zn и Cu концентраты высокое и распределяется в соответствии с его связью с ведущими минералами.
- 3. Для уменьшения выхода коллективного Pb—Си концентрата и повышения в нем содержания металлов, необходимо ввести третью перечистку концентрата и осуществить подачу депрессора по ходу процесса.
- 4. Разработанный технологический режим рекомендуется к промышленному освоению, при вводе полиметаллической руды Шаумянского месторождения в эксплуатацию.

Армнипроцветмет

Поступила 11.XII.1978

ЛИТЕРАТУРА

- 1. Годэн А. М. Основы флотации. ГИЗ, 1932.
- 2. Лопатин А. Г. Гирдасова З. М. Горенков Н. Г. Труды ЦНИГРИ. 1969.
- 3. Митрофанов С. И. Селективная флотация. «Металлургиздат», 1958.
- 4. Римская М. М. Ребиндер П. А. Цветные металлы. № 9, 1940.
- 5. Римская М. М., Саградян А. Л. Цветные металлы. № 10—11, 1940.
- 6. Трусов П. В. Юбилейный сборник Механобра, том 1-й, ОНТИ, 1935.
- 7. Шведов Д. А. Андреева А. И. Горно-обогатительное дело., № 2—3 1931.
- 8. Peterson A. Recent Developments in Mineral Dressing. London, 1953.