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Abstract. Summariaing results from Joseph Mecke's last fragmentary manuscripts, the
generating function and the Laplace transform for nonnegative random variablos are
considared. The concept of thickening of  random variable, a8 an inverse operation to
thinning (which is usually applied to point processes) is introduced, based on generating
functions, aad & characteraation.of thickable: random variablos i given. Purther, some
new relations between i and thelr i in terms of
Poisson point processes are derived with the help of the Laplace transform.
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1. INTRODUCTION

Joseph Mecke passed away in February 2014, a few days after his 76th birthday.
Until his last days, he was dealing with mathematical problems, and he wrote fragments
of i saved on his His brother, Norbert Mecke, was able to
identify the corresponding files; he handed them over to the authors of the present
paper, in order to see whether some of the material can be published. The present
paper is the result of this compilation,

As emphasized in the introduction of [8], Joseph Mecke preferred to work deep into
problems in order to reach a clear insight and a maximum of mathematical clegance.
After his last paper published in a journal [6], he formulated several new ideas and a
wider working agenda. The fragments compiled here date from July 2011 to December
2011 and then from February 2013 to June 2013.

Joseph Mecke made outstanding contributions to the theory of point processes,
mainly in the 1960s and early 1970s. Nowadays the Campbell-Mecke formula (Mecke
himself referred to it as the 'refined Campbell formula’) and the Slivnyak-Mecke
formula (see [12], referred to as the Mecke formula in [4]) are cited oftentimes. Since
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the late 1970s, Joseph Mecke worked in stochastic geometry, a field in which he applied
the point process theory strikingly. Thus he i d to a sound h
foundation of this field, proving rigorously quite a few new results.

At a first glance, the content of the present, paper ~ involving gencrating functions
and the Laplace transform for nonnegative random variables — seems to be far away
from the main subjects of Joseph Mecke’s work, described above. It is not so surprising,
however, because in his earlier work he applied and appreciated these powerful tools.
Although they appear only occasionally in his published proofs during a long carcer,
this use often gave deeper insight into a problem.

‘We (the authors of the present paper) remember a situation in a seminar (in 2006)
when we dealt with the length distribution of I in planar STIT At
‘We had found an expression for the density of this distribution which looked rather
strange and we had no clue how to interpret it. Joseph Mecke immediately started
his calculation (using the Laplace transform) and soon he revealed this ’mysterious’

distribution as a mixture of much more is

known about STIT tessellations, and there are other methods to prove the mentioned

result. But Joseph Mecke opened a door - as he did it in many other cases.
Probably, the present paper will inspire other mathematicians to study and to

generalize some of the problems which Joseph Mecke considered.

2. NONNEGATIVE INTEGER-VALUED RANDOM VARIABLES AND GENERATING
FUNCTIONS

2.1. Generating function. We denote Np = {0,1,2,...}, N = No \ {0}, and 1{-}
the indicator function which has the value 1, if the condition in braces is fulfilled and
with value 0 otherwise.

Generating functions are widely used in mathematics and they play also an important
role in probability theory. In this paper they are considered for nonnegative integer-
valued random variables to introduce later the concept of thinning and thickening
of a random variable. Let ¢ be a discrete random variable taking values in No with
distribution

(21) L0 = axdi,
k=0
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where ax > 0, Yoy ax = 1 and 6 the Dirac measure assigning mass 1 to k. The
corresponding generating function G : [0,1] = [0, 1] is defined by

(2 CE) =BG =Y met, 0<z<lL
k=0

Note that in the following we will consider the series on the right-hand side also for
general z € R if it is defined.

Recall that a function G : [0,1] =+ [0, 1] is a generating function of & nonnegmve
integer-valued random variable if and only if G(1) = 1, limg x G(z) = 1 G(0) =20
and all derivatives of G are finite and nonnegative on [0,1) (see [3]). Furthermore,
the uniqueness theorem conveys that two random variables have the same generating
function if and only if they have identical distributions.

Examples:

(a) If ¢ is almost surely (a.s.). constant, P(¢ = m) = 1 for some m € Ny, then
G(z) =™

(b) If ¢ has a two-point distribution, £(C) = (1—7)8+76n, m,n € Ny, r € (0,1),
then the generating function is G(z) = (1 — r)a™ + ra™.

(c) For a random variable ¢ which is Poisson-distributed with parameter A > 0
we have G(z) = eX==1).

(d) If ¢ has a binomial distribution with parameters n € N and r € (0,1) the
generating function is G(z) = (1 — r + rz)", which is the n-th power of a
generating function of a Bernoulli random variable with parameter 7.

(e) The generating function of a geometric random variable ¢ with parameter r
and distribution £(¢) = Yoy (1 — r)¥rdy is G(z) = T=={i=- A negative
binomial random variable with distribution £(¢) = ¥pe, (7) (r — 1)kr" éy.
(parameters r € (0,1) and n € (0,00)) has the generating function G(z) =
(m{m)ﬂ which is the n-th power of the generating function of a geometric
random variable with parameter r.

2.2. Thinning and thickening. Thinning is an operation applied to point processes,
see [2] and the references therein. Given a realization, for each single point it is
decided (independently of the other points) whether it survives or not. If the survival
probability is p for all points, and if ¢ is the (finite) random number of points
before thinning, then the distribution of the number of the thinned point process
is described in Definition 2.1. In this definition, thinning is introduced for arbitrary
nonnegative integer-valued random variables. And one can ask whether there is an
16
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inverse operation to thinning. So, given a nonnegative integer-valued random variable,
can this be the result of thinning of a ’thicker’ one, and if so, what is its distribution?
This will be formalized in Definition 2.2 and studied in this section.

Definition 2.1. Let a1, az,... be independent and identically distributed random
variables with the two-point distribution £(ax) = (1 — p)dy + pd, k ¢ N. For a
nonnegative integer-valued random variable ¢ the thinning with parameter p € (0,1)
is defined as the random variable

<
(2.3) Dy = Z a.
k=1
If € has the distribution given in (2.1), then the distribution of D,¢ can be written

as ~

S ke
@4) £(D6) =Y an (1~ p)do +p8)™,

k=0

where x denotes the convolution of measures. This means that £(D,() is the mixture
of binomial distributions with parameters k and p, weighted with ay, respectively.

Because P(D,¢ =m) = Y02 ax (v',‘,)p”'(l —p)*=™, a straightforward calculation
yields the generating function Gy, of D,(,

(2.3) Gp(z) = G(1 - p + pa).
Exampl:
(a) For 5. constant ¢, P(¢ = m) = 1 for some m € Ny, the gencrating
funeiion of the thinning is Gy(z) = (1 — p+ pa)™. The uniqueness theorem

vields that D¢ has a binomial distribution with parameters m and p, which
is obvious in this case.

(b) For ¢ wirh a two-point distribution, £(¢) = (1 — r)d, + 1d,, the thinning
D¢ is a mixture of two binomial distributions with weights 1 — 7 and r and
parameters m.n respectively, and p.

(c) For a Poisson-distrit ¢ with A >0 the ing function of
its thinning is Gp(2) = e*==1), which confirms the well-known fact, that

D, has again a Poisson-distribution with parameter pA.
(d) If ¢ has a binomial distribution with parameters n and r, then the thinning
D,( is again binomially distributed but with parameters n and pr.
17
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(e) Also for geometric and negative binomial distributions thinning retaines the
type of the distribution. In both cases the parameter r of ¢ changes over to
0= x5y OF Dl
Now consider G(z), represented by a series as in (2.2), for arbitrary z € R if the
value of this series is defined. For 0 < p < 1 let us formally modify the function (2.5)
to

28 Gil)=G (1 —:;+§z) ,  if this is defined for all 0 < 3.< 1,

»
As a function of z, this is not necessarily a generating function of a random variable,
Definition 2.2. Let( be.a ive integ lued random variable with generating
Junction G. We say that ¢ is p-thickable for 0 < p < 1, if the function G;(z)

G(1- l + —:n) is defined for all z € (0,1], and if it is the generating ]unctum of a
narmagnhue integer-valued random variable. Such a variable will be denoted by D e

A combination of formulas (2.5) and (2.6) yields that
(&), =@y =c
‘This means that thinning and thickening are somehow mutually inverse operations.
But note, that (G;) = G is meaningful only for those p for which the distribution
is p-thickable. The other equation, (G,) s G, holds for all 0 < p < 1. This confirms
the meaning of thickening as the i mversa operation of thinning.

First we i i the ive integer-valued random variables given in the
examples above whether they are p-thickable or not. From the characterization of a
generating function it follows that all the (right-hand side) derivatives at z = 0 are
nonnegative. Hence if, for a fixed p € (0,1), the function G; given in (2.6) is the
generating function of a nonnegative integer-valued random vmable then

(2.7) ¢ (1——) >0 forall?=0,1,2,.

where G® denotes the £-th derivative of G.
Examples:
(8) An a.s. constant ¢ with P(¢ = m) = 1 is p-thickable for all 0 < p < 1 if
m =0, and it is not thickable for any 0 < p < 1 if m is a positive integer. For
m=0wehaveG =G, —G; = 1.In contrast, if m > 0, then G(z) = 2™ and
hence Gy(z) = G(1-1+—z) 1- +;a:)"‘. If m is odd, then G%(:c] <0
18 C
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for 0 < z < 1—p. And, if m is even, then the first derivative at z = 0 is
negative. This contradicts the necessary condition given in (2.7).

(b) Analogous considerations show that ¢ with a two-point distribution is not
thickable for any 0 < p < 1.

(c) If¢ is Poisson-distributed with parameter A > 0 then Gi(@) = 3= ghich
yields that ﬂJ}( has a Poisson-distribution with parameter ’-1,A. Therefore the
Poisson-distributions are p-thickable for all 0 < p < 1.

(d) If ¢ has a binomial distribution with parameters n and r, i.e. the generating
function is G(z) = (1—7+rz)", then ( is p-thickable if and only if r < p < 1.
For r > p the function G. = (l—r,l,+r%z)“ i8 no longer a generating function.
This follows with the same argument for the derivative which was given for
¢ a.s. constant. For r < p < 1 the p-thickening of ¢ is again binomially
distributed with parameters n and ,!,. In particular, the r-thickening of ¢ is
the constant n.

(e) As in the case of thinning also thickening retains the type of geometric and
negative binomial distributions. Thickening is possible for all p € (0,1) and
the new parameter for i)#( is E‘_f_i

2.3. Ch ization of unb ded thickability. In the examples above we
have seen that some of the nonnegative integer-valued random variables are p-thickable
for all 0 < p < 1 and others only for some p.

Definition 2.3. 4 ive- integ lued random variable is called unbounded
thickable if it is p-thickable for all p € (0,1).

Random variables with a Poisson, a geometrical or a negative binomial distribution
are unbounded thickable. A random variable with a binomial distribution is not

1 hickable. In the following theorem the class of unbounded thickable
random variables is described.

Theorem 2.1. (Ch ization of unbounded thickability)

A nonnegative integer-valued random variable ¢ with generating function G as in
(2.2) is p-thickable for all p € (0,1) if and only if it has & Coz distribution (a mizture
of Poisson distributions and the constant 0), i.e. if and only if there ezists a probability
measure Q on [0,00) such that
©8) Glz)= / DM, 0<z<1.

[0,00)

19



‘W. NAGEL, V. WEISS -

Proof. If a function G satisfies (2.8), then obviously G(1) = 1, G(0) > 0 and
limg » G(z) = 1, because for all 0,< z < 1, ¢ > 0, the function ¢4~ is monotone in
zand 0 < ¢!®= < 1., Furthermore, because for all £ = 0, 1,..... the function tfc!==1),
t > 0 can be dominated on (0,00) by a constant, we obtain that the derivatives
G(_”(:L-) = [te!@=DQ(dt) > 0 and they are finite. Hence, G is indeed the generating
function of a nonnegative integer-valued random variable. With analogous arguments
it can be shown, that also Gt(::) =G(1- :7 + %a:) =1 ef(“')Q(dt) is ths generating
function of a nonnegative integer-valued random variable.

Now we show that (2.8) is necessary for unbounded thickability. If ¢ is p-thickabl
for all p € (0,1), then according to (2.7)

GO@) >0 forallw<0, £=0,1,2,...

For s > () we define L(s) = G(1 — s), which implies
(-1)"L(s)(s) 2 O for all s > 0, £=0,1,2,...
ie. L is completely monotone on (0,00). Furthermore, L is right-continuous at 0
(because the generating function G is left-continuous at 1) and L(0) = G(1 =
1. Hence the characterization theorem for Laplace transforms (also referred to as
moment generating functions; see [3]) yields that I is the Laplace transform of a
probability measure @ on the half-axis [0, 0c), and hence
ca-0= [ qu, 520
or, equivalently,
G(x) =/r"“‘)Q(df), z<1.
Examples: Referring to the examples above, special Cox distributions are:
(c) The Poisson distribution with parameter A, and according to (2.8), Q@ = dy.
(e) The negative binomial distribution with parameters n and 7, where Q is the
gamma distribution with parameters n and 1= In the particular case of
a geometric distribution, we have n = 1 and hence Q is the exponential
distribution with parameter i

2.4. Relati to point p In [1], R.V. Amb jan introduced the

concept of 1/p-condensation of point processes (p € (0, 1)) as the inverse operation to

thinning. Hence condensation is also related to splitting of point processes. Moreover,

he provided a i dition for 2-cond ility (which is related to 1/2-thickability

considered in the present paper) of point processes in RY, d > 1. It remains an open
20 h
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problem to characterize the class of all point pro which are 1/7
if a value p € (0,1) is fixed. Recently, thinning, splitting and condensation were
studied in [9, 10], and in [10] a generalized concept of thinning is introduced, both
for nonnegative integer-valued random variables and for point processes.

In an early paper [5] (where thinning is named 'Auswiirfelverfahren’), J. Mecke
already proved that a point process ® on the real axis R is a Cox process if and only
if for any p € (0, 1] exists a point process @, such that the p-thinning of ®, has the
same distribution as @ (Satz 4.2 ibidem). This means that a point process on the
real axis is unbounded (i.e. for all p € (0,1]) condensable if and only if it is a Cox
process. This result immediately implies Theorem 2.1 of the present paper. But the
proof given here is much shorter and more elegant than that one in [5]. And vice
versa, with the help of the i i for point (see [7] or [2]),
one can easily deduce Satz 4.2 in [5] from Theorem 2.1.

2.5. M- The ing function G of a ive integer-valued random
variable ¢ in (2.2) can also be i as the lative distrit
(c.d.f.) of a probability measure concentrated on the interval [0, 1]. Consequently, in
this section we consider the problem how to find for a given ¢ a random variable &
whose c.d.f. F¢ coincides with G on [0, 1]. To avoid complications due to P(¢ = 0) > 0,
i.e. ag > 0, in this section only positive integer-valued random variables with values

function

in N are considered.

Proposition 2.1. Let 1, %,... be i.i.d. random variables with uniform distribution
on the interval (0,1) and ¢, independent of this sequence, a positive integer-valued
random variable with generating function G as in (2.2) with ag = 0. Then the random
variable

&= max{n,...,nc}
has the c.d.f. Fe with Fe(z) = G(z) for allz € [0,1]. ,

Proof. Straightforward calculations yield for 0 < z < 1

Fe(z) = P(<z)=) P(max{m,...,nc} Sal¢ = k) P(( =)
k=1

= Y P(max{m,...,m}<z)-P((=k)= i:"nk-
k=1 k=1

Under the assumptions of Proposition 2.1 the following transform of a positive integer-
valued random variable can be specified.
21
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As the Laplace transform depends only on the distribution of a random variable, we
can also speak of the Laplace form of a distrik Since 1— L is
nondecreasing with 1—L¢(0) = 0 and lim,—c0 1— L¢(8) = 1, it can also be interpreted
as the c.d.f. F¢ of some nonnegative random variable €, i.e. F = 1— L¢. Equivalently,
L¢ =1 - Fg is the survival function of .

An open problem: Let be given a nonnegative random variable ¢ and a sequence
71,72, - .. of i.i.d. random variables, uniformly distributed on (0,1). Find a random
variable (if it exists) & = €((,m1,72,...) which transforms ¢,71,72,... such that
Fg =1~ L. And as for the M-transform in Section 2.5 we could ask for an inverse
transform: For a given £ find a random variable ¢ with Laplace transform L equal
to the survival function of §.

3.2. Laplace and i ion. Recall that for a nonnegative
integer-valued random variable ¢ with generating function G, the Laplace transform
is L¢(s) = G(e™) for all 8 > 0.

Now we consider an arbitrary nonnegative random variable.

Proposition 8.1. Let ¢ be a nonnegative random variable with Laplace transform
L¢ and define for all t > 0 the function G; : [0,1] = [0,1] by
Gi(z) = L¢(t(1 —2)) for allz € [0,1].
(1) Then for all t > 0 the function G is the ing function of a
integer-valued random variable.
(2) If, for all t > 0, &, is a nonnegative inieger-valued random variable with
generating function Gy, then
Hm Lie,ze)(s) = Le(s),

o0
which implies that fort — oo the random variables s/t converge in distribution

to (.

Proof. As it can be seen in the proof of Theorem 2.1, G; is the probability generating
function of a nonnegative integer random variable, x; say. Now define the nonnegative
random variable f; = &/t which has the Laplace transform Lg, with values
() = Ln (3) = G () = Le (t (1 - 7H))..
This yields
1=
[

i Eao) = By I (250 = 1t

23
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An open problem is again the construction of the random variables £, as a transform
of a given (.

3.3. Roots of survival functions. Let 7,7s,... be a sequence of i.i.d. nonnegative
random variables with c.d.f. F. As it is well-known, for n € N the survival function

of the random variable ¢ := min{ny,...nn} is 1 — F¢(z) = (1 — F(z))" for all z > 0.
This immediately yields for the survival function of 7 that

(3.1) 1-F=y1-F.
How can a random variable 5 with c.d.f. F according to (3.1) be generated from a
sequence (1, Cz, ... of i.i.d. copies of ¢?

Proposition 8.2. Let (1,(2, ... be a sequence of i.i.d. nonnegative random variables
with c.d.f. F¢ and a a random variable, geometrically distributed with parameter 1/n,
n € N, and independent from the sequence. Further, define the sequence £;,&,, ... of
record times by

=1, G=minfk>&:G20G} .. Gy =min{k>ém: G2 G}
Then the random varisble (¢, has a c.d.f. F satisfying (8.1).

Proof. As it is well-known (see e.g. [11]), the process (g, , (e, .. of records can be
represented as a Poisson point process on [0, 0).
Given Fy, define the measure  on [0, c0) (with the Borel o-algebra) by

(3.2) exp(—p([0,z))) =1 - Fe(z) forallz>0.

This measure can be interpreted as a failure measure for ¢. If F¢ has the density fe,
then for z > 0 with F¢(z) < 1, the failure rate of ¢ is —”’L%E‘E» __F( =y Note that
{4 is not necessarily a Radon measure.

Now let ¥ be a Poisson point process on the positive half-axis with intensity
measure 4, and denote the ordered sequence of its points by f; < 2 < ... This
implies £(Bm) = £(Ce,,) for m =1,2,... Now consider the Poisson point process ¥’
generated from ¥ by independent thinning with the probability 1— (1/n) for deleting
a point from . Then ¥’ has the intensity measure ' = (1/n). Therefore, according
to (3.2) its first point B (in the ordered point ss',) has the c.d.f. satisfying (3.1).
Furth if @ is i and i dent from all the other
random variables, we obtain that £(8]) = £(Cc, ), which completes the proof. O

2% g
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3.4. Relati: b ial distributi It is well-kny , that the
of finitely many ind dent and i istri d random variables
is ially distri as well. F the sum of n i.i.d. exponentially

distributed random variables with parameter A > 0 has an Erlang distribution, which

is a special gamma distribution with parameters n and A. In order to study the sum of

not necessarily identically distributed random variables, we consider now particular
s o e

Some of the results have an inter i ing Poisson point The

intervals between the points of a homogeneous Poisson point process on the real axis

are i.i.d. exponentially distributed.
Denote the ial distribution with A > 0 by E[A] and by E*¥[)]
its k-fold convolution, k € N.

Theorem 3.1. Forall0<A<ocand0<p<1,
o

(33) E[p) =p) (1~ p) ¢+,
k=0

Proof. The proof is easy, using the Laplace transform L(s) = A/(A+s), s > 0,
for the ial distribution with A >0, and the fact that the Laplace
transform of a k-fold convolution of a distribution is just the k-th power of the Laplace
transform of the respective distribution.

This result has also an interesting interpretation in terms of Poisson point processes
on the positive real axis. Let ® be a homogeneous Poisson point process on (0, c0) with
intensity A. Then the coordinate of the first point of & has the exponential distribution
E[)], and the coordinate of the (k + 1)-st point has the distribution E**+1[}]. Now
consider the independent thinning of ® where the points are deleted with probability
1—p. This yields an homogeneous Poisson point process with intensity p A. Thus the
coordinate of the first point of the thinned point process has the distribution E[pA].
The probability that this first point of the thinned process (i.e. the first point which
survived the independent thinning procedure) is the (k+ 1)-st point of @ is p(1 —p)*.
This is expressed by (3.3).

Decomposing the summands in (3.3) for k > 1 as

1= *IN = 1 -p)(1 - p)* BN« E* O

straightforwardly yields:
25
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Corollary 3.1. Forall0<A<ooand0<p<1
PE[N + (1 - p) (B[N * ElpX]) = E[pA}.
Substituting A by Az and p by A1/Az for 0 < A < Az < 0o, this immediately
supplies:

Corollary 3.2. For all0 < )\ < )3 <00
M-M
Az

] = SLED] + 252 500+ )
or eguivalently,

A
A—-M

M
-M

E[M] *E[A] = E[M] - E[a).

Now, we formulate the main result of this section for the convolution of two
exponentially distributed random variables. Similarly as in Theorem 3.1 it is given as
a mixture of Erlang distributions. Note that the two exponential distributions have
different parameters.

l\l_'\l)’
A2+ M

Theorem 8.2. Forall0<); <A <ocoandp= (
o
@49 E\i]+Ea] = (1 -p) 37 B[00 + X))
5 k=0
Proof. Let L denote the Laplace transform ofzthe distribution on the right-hand

side of (3.4). Then, for s > 0 and p= G’;;‘) !
2 1

(- (220 £ o)™ ()™

1_(,\,—,\1’ Jatd \? 1
A +M N+A+28) 11— Cad)?

+X1+29

I

L(s)

M Az
M+s dats’
and the term in the last line is just the product of the Laplace transforms of E[\]
and E[Ag).
Alternatively, the result in Theorem 3.2 also follows from an iterated application
of the equation given in the next corollary.
26
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Corollary 3.3. For all 0 < A < )y < 00 andp = (A“ = '\‘)
N

(@3 En]=EDs] = B30 + )]+ (L ~2) 60+ p (BN ] + EDa]).

Again the proof is straightforward using the Laplace transforms.
Concludi; ks and ack led| In Joseph Mecke’s fragments almost:
no references are given. Therefore we cannot reconstruct and cite the sources which
he probably used. Consequently, we do not claim priority concerning all details. We
are indebted to Hans Zessin for his valuable comments and hints.

CNHCOK JIMTEPATYPEL

[1] R. V. Ambartsumian, “On condensable point processes” In: Sazonou, V. V. and Shervashidse,
T. L. (eds.): New Trends in Probability and Statististics, VSP, Mokslas, Utrecht, Vilnius , 655
- 667 (1991).
[2] . Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes, 2nd ed. Springer,
1(2008), II (2008).
[3] B. Fristedt, L. Gray, A Modern Approach to Probability Theory, BirkhSuser Boston (1997).
[4] G. Last, M. Penrose, Lectures on the Poluon m c.mhnd;e University Press (2017).
5] J. Mecke, “Ei Prozesse”
Z. Wahrscheinlichkeitstheorie verw. Geb., 11 74 m (lm)
(6] 3. Mecke, “Inhomogeneous random planar tessellations generated by lines”, Tav. Nata. Alad.
Nauk Armenii Mat., 48, 63 - 76 (2010).
[7] 3. Mecke, Random Messures, Walter Warmuth Verlag (2011).
[8] W. Nagel, V. Weiss, “Limits of sequences of stationary planar tessellations”, Adv. Appl. Prob.
(SGSA), 35, 123 - 138 (2008).
(5] B. Nehring, M. Rafler, H. Zessin, “Splitting-characterizations of the Papangelou process”, Math.
Nachr., 289, 85 - 96 (2016).
[10] M. Rafler, General thinning characterisations of distributions and point processes,
arXiv:1704.0757%v1 [math.PR].
[11] S. 1. Resnick, “Extreme values, regulsr variation, and point processes”, Springer Berlin,
Heidelberg, New York (1987).
[12] R. Schneider, W. Weil, Stochastic and Integral Geometry, Springer Berlin, Heidelberg (2008).

Tlocrynuna 29 mapra 2017
Tlocne popaGorku 25 mas 2017
Tpwnrstra x myGmakamym 20 mons 2017

27



