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1. INTRODUCTION AND AUXILIARY CONSTRUCTIONS

Let U™ = {z = (21,..-,2a) € C": |25] < 1,1 < j < n} be the unit polydisk in
the n-dimensional complex plane C" and let T" = {z = (21,..., 2z e T |zy] =
1,1 < j < n} be its torus. We denote by H (U™) the set of holomorphic functions on
U™, by L(U™) the set of bounded measurable functions on U™ and by H®(U™) the
subspace of L>(U™) consisting of holomorphic functions.

Let S be the class of all non-negative measurable functions w on (0, 1) for which
there exist positive numbers M., o, Mo (Mw, @ € (0, 1)) such that
w(Ar)

w(r)

mw( EMw

for all 7 € (0,1) and X € [qu, 1]. Some properties of functions of the class S can be
found in [12]. We put
log M,

_ logmy, e
loggst’

~ logga’

Bu

Qyy

For example, w € S if w(t) = t* with —1 < a < co. Using the results of [12] one can

w(t) = exp {n(t) 4 [ %m} ‘

prove that
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TOEPLITZ OPERATORS ON WEIGHTED BESOV SPACES ..

where n(u) and ((u) are bounded measurable functions and —a, < ((u) < Ju.

Without loss of generality we assume that n(t) = 0. Then we have
e st 0tz

Below, for convenience of notations, for € = (£1,...,&.) and 2 = (21,... ,Zn) We put
n
w(l - Jzl) H%lwm 1- 2] = Huww 1-&z=[J(-&z).
a=1

Furthermore, for m = (my, ..., my) we put m + 1= [[7_;(m; +1).
(z)] € |g(z)] £ Ca|f(z)| for some
positive constants Cy, Cy that are independent of z.

The notation |f| =< |g| will mean that Ci|f

Throughout the paper the capital letters C(...) and Cy will stand for different
positive constants depending only on the indicated parameters.
Let wy € S, 1 < j < n. It is not difficult to show that

(1.1) Wl = [Z) = wll = 2", if 2] =2, 2 2 e U

Definition 1.1. Let 1 € p < oco. We denote by L,(w) the set of all measurable

functions on U™ for which

I8 = [ WGP Tapaman(2) < oo

where dmay, (2) is the 2n—dimensional Lebesgue measure on U".
Now define the notion of the fractional derivative.

Definition 1.2. (1) For a holomorphic function f(z) = Z(k) (G)a""‘ , z € U™ and
for B = (B1,...,Bx), Bj > —1,1 < j < n, we define the fractional derivative D? as

follows:

(c) n
3 o E : | | F(ﬁ -+ + R‘?) k e n
D f(Z) =) F(BJ _:_ 1)].‘(k1 e l)ﬂ-kz .} k =T (kll B, !k’ﬂ-)l z € U 1

(k)y=(0) 5=1
where I'(+) is the Gamma function and ZE:O) ) = Z:‘: ch' o
(2) The inverse operator D™ is defined to satisfy D~ SD*{’f(z) (z) for z € U™,

We put Df(z) = D?f(z) if 8 = (1,...,1). It is not difficult to show, that

(1.2) f(z]:/ Df(rz)dr.

0
Next, we define the holomorphic Besov spaces on the polydisk (see [8]).
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A. HARUTYUNYAN AND W. LUSKY

Definition 1.3. Let 1 < p < co. The holomorphic Besov space B,(w) is defined to
be the class of functions f € H(U™) satisfying

W1, = [ 1P 2 dmanz) < oo
Numerous authors have contributed to holomorphic Besov spaces in the unit disk of
C and in the unit ball of C™ (see, e.g., [1], [2], [4], [9], [13]). The study of holomorphic
Besov space on the polydisk thus is of special interest. In Theorem 2.1 below we show
that By(w) is a Banach space with respect to the norm || - ||g, (o). We first define
the Toeplitz operator on the spaces H(U™). Let L'(T") be the class of all integrable

functions on T™.

Definition 1.4. A Toeplitz operator with symbol h € L!(T™) is defined by formula:

1 f(&)h(i)
2mi)" Jpn §-2

= 1 f{&v-wgn.)h('fl;--wﬁn}
(21”')" ™ (‘fl = ,Z]) s (En = -?r'u}

Remark 1.1. The above defined Toeplitz operator T}, can be extended to functions

Tu(f)(2) ==

d{‘l ...d{nn fe II(U“)

f € Bp(w) as follows. First, one can consider Ty on some everywhere dense subset of
By(w), for instance, on the set of all polynomials, where T}, is obviously well-defined.
Then one can show that if the operator T, is bounded with respect to the norm ||-|| g, ()
on the set of polynomials, then it has a unique extension to B,(w), again denoted by
T

The present paper extends the result obtained in [6]. Our main aim is to describe
the symbols h, for which T}, defines a bounded operator By(w) — By (w). To this end,
in Section 2 we show that the set of polynomials is dense in By (w). In Section 3, we
give a description of a special class of bounded Toeplitz operators on B,(w) in the

case where 1 < p < oc.

2. AUXILIARY RESULTS

In this section we show that By(w) is a Banach space for 1 < p < oo, and the set
of polynomials is dense in By(w). The proofs of our main results are based on the

following lemmas.

Lemma 2.1. The following statements hold.
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TOEPLITZ OPERATORS ON WEIGHTED BESOV SPACES ...

(e} If fe HU"), v728i+ay, —2(1<j<n)and (1- |2[2)2D?f € L'(w),
then for some C > 0

1 €%)7| DA £(8)]

(
(2.1) |Df(z)| < C-/U" |1 — €2|7+3-8 dmay ().
() If f € Bi(w), % > aw, =1, (1 €5 <n), v = (i, ), then for some
=0
g (L= P IDfE)
(2.2) D@l <0 [ S amanle)

For the proof we refer to [8], Lemma 1.

Lemma 2.2. Let f € By(w). Then

ClIfllB, (w)
WP =21 = J2)’

Proof. The function |Df(2)|” is subharmonic in U™, where 0 < p < oc. Therefore

|Df(§)|pr‘;'?n‘2ﬂ-(£)$ E = b'ns

|Df(2)] <

IDf(2)P <

|7 (2)] Jirm 2
where U™ (2) = {& & — 2] < (1= |2])/2,1 € j < n}. It is clear that U"(z) c U”
and 1 — |§] = 1— || (1 €7 < n), |[U*(z)| = 27"x"(1 — |2|)2. Then using (1.1), we
get

DI [Pt~ 1) < 0 [ IDAOP( - PPl ~ lhma.e)

, w(1—l€])
c f( Dol

and the result follows. O

IA

dm'21l(£) ] c”f“%u{w)'

Lemma 2.3. For any K cC U™ and any number s € {0.1} there exists a constant
Cy = Cy(s,p,w, K) such that

rglg}f[D’f(z)[ < CollfllBywy  for all f € Bp(w).

Proof. We have w(t) > t*. Then, using Lemma 2.2, we get

ClifllB, () ClIfllB, )
1Df(2)| 5 (.l % JZ[)““!;H”I = (1 = |z|)[‘*w/1°]+2’

implying that max.ex |Df(2)| < Ci||f||, (w)-
Let s = 0. Using (1.2) we get

1
|1 £1l5, (w42 C(p, ) 1
@) < C/U (1= rlz])fow/e¥2 = |g ((l — |z])fearpl T T I) 1£l5, )

L Clel) il =1 = |z]) P41
L (l =5 |zi)[aw/p}+1 ”f”B,,(w}-

39
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A. HARUTYUNYAN AND W. LUSKY

Setting
Clo, 0 .
9(z)) = %l(l - (1— |z|_)[ ...,/1’1]+1),
we get |£(2)] < g(l2)(1 = |zI) /P~ f||p,(u), implying that max.ex |f(2)] <
Coll fll B, (w)- -

Lemma 2.4. Letn=1, wES’ a+1—8,>0,b>1andb—a—2>w,. Then

e i=RF=F

For the proof see ]5], Lemma 1.6.

Definition 2.1. Let p > 1, @ = (1,...,an), aj > —1 (1 £ j < n). We define the
class A”(a) to be the set of all functions f € H(U") satisfying

ey = [ 1S = el dmants) < oo

The integral representation formula for functions of the class A”(a) that follows
is a trivial consequence of the well-known Djrbashian representation formula of the
one-dimensional case (for details we refer to [3, 11]):

= a+l [ (1-]P)"
(23) 10 =22 [ e ©dman )
Note that the generalization of A”(a) spaces in terms of w—weighted spaces was

first studied by F.A.Shamoyan, who greatly contributed to the theory of weighted

classes of functions on the polydisk (see, e.g., [11]).

Lemma 2.5. Let f € By(w) and oj > @, — 2+ p for al!j Then
— |£]2)\

Ez)(z-i—l

where
PE ) =(1-(1-E))z,  a=(a1..an),a€N.

Proof. Note that Df € Al(a) if & > &, — 2+ p (1 < j < n). Then using (2.3), we
get

— £y
pis= 2 [ R D € aman(o).

On the other hand by (1.2) we ha.ve

J@) = Clam [ (- kP DI e)[ (€)=
eDf(
S - rDIE)

Ez}n:-!-l
40
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TOEPLITZ OPERATORS ON WEIGHTED BESQV SPACES ...

Setting
5. 1= (1:— Ezyatl :
P(E! Z) — _(_.AZ_E:Z)__T Q= (Q] L] "'}aﬂ)r a; € Nv
we et the desired result. O
Theorem 2.1. By(w) is a Banach space with respect to the norm || - [|B,(w) for any
1<p<oo.

Proof. We use the standard arguments. First, it is not difficult to show that ||-|| By (w)
is a norm in By(w) for any 1 < p < oo. So, it remains to prove that Bp(w) is closed.
Let {fn} C By(w) be a Cauchy sequence. It is clear that {Df,,} is a Cauchy sequence
in LP(@), where @(t) = w(t)tP. We assume that g € LP(@) is the limit function of
{Dfn} in LP(@), and show that g(z) = Df(z) for some f € By(w). Let K cC U™,

Using Lemma 2.3, we conclude that there exists a constant C' = C(p,w, K') such that
X [Df(2) = Din(2)| < Cllfo ~ fnll, 1

Therefore { D f,(z)}2, is a uniformly convergent sequence of holomorphic functions
in K which converges to some h on K.
Next, we show that h(z) = g(z), z € K. To this end observe that

(/ lg(=) = )lp ( !2|;g|)pdm2n(z})1h, <
< (/;(IDfn(z) —g(z)pﬂ“’ (I_JTL)|L;;{:E,;(3))1/1J+

w(l = |2|)dman(2)\ /7
(4) + (1) -Gt )

Taking into account that Df, converges uniformly to h(z) on K, for the second

integral on the right-hand side of (2.4) we obtain
w(l = |z])dman (2
/’;JD.{?&(Z) — h(2)|? ( |2])dman (2)

—+ 0 as n— 0o,

R e
For the first integral on the right-hand side of (2.4) we have

w(1 = [el)dman )
[ 1Ds) - s R

1 IZI)dmZ-u(z)

(1—[2?)?

< / [Dfn(z) - Q(Z)F’w( = ||Dfn - gllze(z) = 0,
Un

as n — oc. Therefore

w(l — |z|)dman(z) e
Jlatr - e = <o
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In particular, for any é € (0, 1) we have

_ w(l — |z])dmagn(z)
L= f& lg(z) — (= )Ep 1= |z%) 22;: =0.
Hence
, - . w(l — |z|)dman(2) ]
;1_1;{1 Is = /; lg(z) — h(z)? (1—[z[2)2» =10,

implying that g(z) = h(z) in U™. Taking f(z) = D~ 1g(z) we conclude the proof of

the theorem. Theorem 2.1 is proved. ]

Theorem 2.2. Let f € By(w) and f-(2) = f(r2). Then ||f- — fllg,w)y — 0 as
T—1-=0.

Proof. We have

1fr = £l oy = / IDf+(2) ~ Df(2)[? (;’_‘E‘Fz!_f_ﬁ;mnh(z)
L
g(/;m |Df:(2) — Df(2)| li? 3 dman(2)

+]} o |Dfr(2) — Df(z )[P( | I2)2 =dman(z), 1> &> 0.

Using the fact that |Df(z)|” is a subharmonic function, and hence

w(l = |z]) / w(l = [2])
D ﬂ_'_“'__dm‘Zn z E Df(z)[p'—dnlﬂn(z ]
Jovge PP Gy dmante) e s )
we can write
w(l — |z
l1f+ — FlI’ T C‘/ |Df-(2) Df{z);pﬁdnm(zH
(1 —|z])
+2P+1/ 13105 e i | B B
Fe\sU (1 = eF)pp=r (
Letting 6, 7 — 1 — 0, we complete the proof of the theorem. O

Theorem 2.3. The set of polynomials is dense in Bp(w).

Proof. Let f € By(w). Then by Theorem 2.2 we have ||f> — fl|p,w) = 0 as T —
1 —0. Taking into account that the Taylor polynomials of the function f,(z) converge
uniformly to f-(z), we complete the proof of theorem 2.3. O

To prove the main theorem we also will need the following lemma.

Lemma 2.6. If f € By(w), then z;f € By(w) (1 < j <n).
42



TOEPLITZ OPERATORS ON WEIGHTED BESOV SPACES ...
Proof. We assume that j = 1. Then

an—1 o

Using Lemma 2.5 and the inequality (1 —|&1]%) €1 we can write

‘.0“—1(f(z)z) [ A DHOPE 2 )i
o

7 : = C(m,) i
dZQ‘,..()Z,,_ ( 1 '-'6121)"‘”1 g Z(‘l fj::j:]"*:"'zl

itk
< C(‘.‘n,?l')/uu ‘(_I'H_IE%;!_‘—mdmZH(E),

where P(£1,21) = (1 - (1= &z)™ ) /2, myeN, 1<j<nandk; =my—1,
ki =1m; 2<j<n.

IA

In the case p > 1 with some § > () we get

=t f(=)2) | C(m,p) e iV ok (3]
i, 00 = er'z)ﬁp/q /r = gz[’“” dmay, (£).
Then, using Lemma 2.4, we obtain
0" 1 (f(2)2)|" w(l—|z]) .
./[7” (72:2 az” (} —I | )? pd?n2n(~) =
d T
<Clmp) [ (1~ 1gfy-rip g 2L Kina®
D P
=clmp) [ (- g P20 T dman(€) = 111, < oo
Let now p = 1. Then we can write
I (f(2)2) | w(l - |2])

dmagn(z) <

f

0z3...02, | 1—|2)?
g R w(l = |2[)dmgn (€)dmian(z)
< [ o=t [ O Eimn@dnat)
(1 - KA E)lw(1 — [¢])dman(€) .
< O e T O
Therefore z, f € B (w), and the result follows. O

3. TOEPLITZ OPERATORS ON Bj(w)

In this section we give a description of those symbols h for which the corresponding

Toeplitz operator is a bounded mapping By(w) — By(w).

Definition 3.1. A function g € H(U™) is called a factor of the space B,(a) if
fg € By(a) for any f € By(a).
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Definition 3.2. We say that h € LY(T") is of the class LR if the Fourier coefficients
of h vanish outside R} UR".

Theorem 3.1. Let p > 1 and B, < 0. Then the following assertions are equivalent:
1) T, is a bounded operator By(w) — By(w) (p > aw,, 1< j < n).
2) h has the formn h = hy + hy, where hy is a factor of By(w) and hy € Bg(w*),
where w*(t) = w™YP(t)t? and 1/p+1/q=1.

Proof. 1) = 2). Let T} : By(w) = Bp(w) be a bounded operator on By(w). Then
we have || T).(f) |l B,(w) < oc. It is known that the operator T}, is bounded on B, (w) if

and only if

ITall = sup  |[|Th(f)ll B, (w) < o0-

Fllo, <1

Now we prove that for every z € U™ the functional Ty (f)(z) is bounded on Bp(w).
To this end, let z = (r;e*®,...71e") and V" be the polydisk centered at (ry, ...,r,)

with radius of V™" < (1 —r) and V™ C U". Then using the fact that |7} (f)(z)[? is

n-subharmonic we get

MNP € s [ M) w)Pdman ()

wtl-r)

STa-m fv 1T (/) () Pw (1 = [w)dman (w)

< (e | 1)@t = ful)dman(w) = CODIT) @I,

which proves our assertion. Consequently T5,(f)(0) is a linear bounded funetional on

B, (w) and can be written in the form

10O = [ (0~ 67 DS DaEdman(e)

where 8 € R", g € By(@©) with @;(t) = tﬁi"’w;q/p(f-), Bi>ay +p-2(1<j< n)
(for details see Theorem 1.2 in [7]).

Using the representation

_ 1 F(b)tdt
D1(6) = oy . e
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we can write

T3 (/)(0) G

_— 1
[, 0=t B [ O ame

= BDale)
= .(2‘”;1‘)“‘[1‘" tf(t) (1 (|£| L)Dg(g)d van(€)dt

. o ,"3
= ﬁfr- f(t){[ %}@ﬁ—)dmgn(f)dt,

Next, we set
- S (=P Dy
t) =1 T T Tl L]
and show that F' € B,(w"), where w*(t) = w™97(t)t?. To this end we use the Holder
inequality to obtain
c (L={E[FyCtoerE-he Dg(erle

[DE()]7 < (1= [t)%P [y [1-¢t)?

dmgn(f), d>0.

Then we have

/ |DF(t}I"" (1|¢|){2ﬂ1d 2n(t)

—4+8g+(f— *(1 — [¢])drng, (t)dman (€)
<O e 1-8+8g+(=1)y ,;/ w*( .
=8 Un( I61%) Dy ()] o (1= [t|2)2-e*da/p|1 — &¢)3

1pI9E wP(1 - |¢])
<c /U"(]. P

So, we have proved that F € By(w"). Then T} has the form

T,(£)(0) = 2ni) " [ s F @
Tﬂ
On the other hand, we have
T1)0) = Cri)™ [ f(eTTEe
TH
Setting f(t) = t* we get m—m = hy(€£) € H(U™). So, h = h; + ha, where
hy € H(U") and hy € By(w*). Thus Tj(f) = Tj;,(f) + fhi.

Next, we show that if hy € B,(w*), then T} (f) € B,(w). Using Lemma 2.5, we
get

dman (€ ) C”QHB @)

15, 006) = gy [, (- ePImDste) [ PG €

i _l 2ym hz P(t é)fmdt
= /m(l — [§1°)"Df(¢) s it )de nan(€).
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Without loss of generality, we assume that P({,€&) = '£'. Then we get

Ty, (f)(2) = _(213?'.)“- .L“(l — €YD (€) ] . hg(tltlfl(t]’“dt )J ran(€)
1 = am W
(2#1 “?Tl' ( = |E1 ) Df(f)fl Em (#T)dmﬁn(e}

We set hg(£)¢™m! = hg(ﬁ . It follows from Lemma 2.6 that hg € By(w*) (we can take
m € N™.) Therefore

(m) A
OMha(§) _ dman(€)

T = 2 mD m+k lct.L 2 2n ;

S 2m)“m’/ (- kAT (HXEU) i e

We set,

_ |e]2ym 1 | k| F,
aio - [ L-EDIOE ey,

(]_ dic E_z)'m.—k+l. 6&-1&1 i '86'1':"
and show that ®4(z) € Bp(w). One can prove that
P / OMha(z) | w1 ~z))
Jum [0z, g | (1= ]alf)p

for all 0 < kj < my (1 < j < n). To this end observe that

d‘fn?n(g) S C”h"ﬂ'q(w‘ < 00

T gt ¢
hz(z) = .[U" WP(&, Z)D’i'g(f)(hnzn(g)
By Holder’s inequality we get
¥ hy(2)
a2k .0z

Then we can write

! _1g]2\8—d+8 =
c [ S () rdman ).

(= ePYEFTT2 Jyo 1= Ez]o7HH1

e : w*(1 — |z])dmzn(z)dma, (€)
0= j;m(l - €% JMQIth(E}V[U [T = Ez|-+FHi(1 — iz:zlz)(é+k—2;)q/p+2~kq

(1 — |€12)*—+%4| Dhy(€)|w* (1 = |2i)
(1 — |€]2) stk 1+(52+f~-llq/p+2 Fa dman(£)

n
L
Hence we have
(A —eP)™ | O™k, 8)
|D®y(2)] < /U 1= &2mr2 | ek 26&,’; |Df(§)ldm2n ()
= (1 — [)2ym—*+2/a(1 — |g2)* | Ay, €) (w*(1 — [¢])*/a
- /U [1 = Ez|m=M+2(w (1 — [€]))/a 3&:1 .. Ok 'f(g)lﬁ—_mz)z/q dma, (€)

. (1 — [€[2)(m=k+2/0P| D (£)[Pdman (€) \
S C”h2||ﬂq(t~") (fU |1 i £z|(m-k+2)p(wk(1 = |£|))P/q ) ’
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Therefore

[ - (a2 D g o) < e
O’n

(12 Mz, -

x/“ — g2 un- SRR D F(6)|Pw(1 - |€]) / (lll—-J;ll)iwil_'-:iﬁ)f?]?:|ngi).

Now we estimate the following integral in the one dimensional case

= =201 —
o= [ (L= 3)P—2u(1 — |g])

e £z|<m—sc+2)p 2(2)-
() (m—k+2)p—1—p+2+f, <1, and hence (m—k+1)p < —B,, then I(¢§) < C
with some constant C, ]
(i) If (m — k + 1)p > —B,, then I(€) < C/(1 — |€])™=F+Dp+8e with some constant
c.
(ifi) If (m — k + 1)p = —B,,, then I(€) < log(1 — [¢])~

For the case (i) we have

| - leym- “”’"”’IDf(E)I”U i

/ i f(E (1 JEJ I)Eg')pdm‘2 =7 ||j||3 olw)

where p(m — k) + 2p/q+ 2 — 2p = p(m — k) > 0.
For the case (ii) we have

J =ty p pypat - g Al

w(l — dmy (&
=f IDFOFG (iEiJ}é"’D”(l—lﬁl ﬁi(z;); 573 < CllfIl5, ):

provided that 3, + 2p — 2p/q -2 = 8, < 0.
Let (m — k+ 1)p = —B,,. We have

. (m—k+2/q) = 1+
f (1 [¢f?) PIDF(E)Pull - ) log( m)dnm
= [ prerr o ey rani g (=) amat®

< Cllf 1, w)-

Then it follows that ®; € Bp(w), and therefore T3,(f) € Bp(w). So, we have
Tu(f)(2) = Tn, (f)(2) + T, (f)(2), where T}, and Tj;, are bounded operators B,(w) —
Bp(w). Then Ty, is a bounded operator By(w) = By(w). On the other hand, we have
Th,(f)(z) = h1(2) f(2), showing that h, is a factor of By(w). This completes the proof
of implication 1) = 2).
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To prove the implication 2) = 1), let h = hy + k2. Then we have Th(f)(z) =
T, (f)(2) + Ti, (f)(2). We have proved that, if hz € Bgy(w*), then Tj, is a bounded
operator. The boundedness of Ty, is evident. Thus, Tj, is a bounded operator Bp(w) —
By(w). ]

Next, we consider the case p = 1. We need the definition of holomorphic Bloch
spaces:

Definition 3.3. The holomorphic Bloch space B, is defined to be the class of

functions f € H(U™) satisfying

- ~12P)
s, = sup { S

—12?)

Definition 3.1 can be regarded as the definition of Besov space B, (w) in the case

————|Df(z }|} < +o00.

p = 00, that is, Be(w) = B.. The following theorem holds.

Theorem 3.2. Let B < 1. Then T}, is a bounded operator B)(w) — Bi(w) if and
only if h = hy+hg, where hy is a factor of By(w) and ha € Bz, where w; = w;j (£ A,

B; > au, —1,1<§<n.

Proof. Assume that Tj : Bi(w) — B (w) is a bounded operator. Then as in the case
of p > 1, T, (f)(0) is a bounded linear functional on B;(w), and by Theorem 3 of [7],

has a representation of the form

1.0)0) = [ DAEODRE( - e dman(®),

where 8; > aw, —1,1< j <n, and h € By, @;(t) = w;(t)t1 A1, 1< j < n. Asin the
case p > 1 we obtain
1 (1 - |¢12)’Dh(€)
T 0 / t)t —t——=tdm dt.
h{f)( ) (2‘”3),, : ( } L (t ) f) (5}

We set T

—— - [ (1-[¢*)°Dh(&)

F(l) = r..[ N o dman(§),
and show that F € B,,. Indeed, we have

- |€12)#| Dh
IDF()| < c/ { :fl_)téﬁr(e)ldm%m
1B din: e
< Cllhllss [U = Illgl-)g;m(g) Scuh”_gf_(l]_ lljl)_

Hence F' € B,,. Therefore we have

Tu(£)(0) = ] £ (O F@)dman(t)
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and
T0)0) = 2ri)™ [ f(OhOdman o).

As in the case p > 1 we have h(z) = hi(z) + ha(z), where h; € H(U™) and
h2 € B,,. So, we obtain Ty(f) = Th,(f) + Ti,(f). Next, we show that if h; € B,,
then T}, (f) € By(w) for all f € By(w). Indeed, we have

St ha(€) [ (1-lEP™Ds()
T0E) = e [ G e T (e

(m)

M hy(t)  dma,(t)
1-|tH™Df(t ck — o
-/U“( i I ) J‘( )“_IEU) dtk (1 s tz}m.—k

Il

. Hence we can write

T3Pl
Eoh ] S [ L0
< [ a-uprser Lacl | A
< [ -ty |2l UM,
-l

< [lhalls, f DT (1 |21 ~ el)dman ().

and (1 — |z])w(1 — |z|) £ C with some constant C provided that 3, < 1. So, we have
that Ty P : B)(w) — Bi(w) is a bounded operator. It follows that T}, : By(w) —
By (w) is a bounded operator. On the other hand, we have Ty, (f)(z) = f(2)hi(2).
Hence f(2)h1(2) € Bi(w) for all f € By(w). Therefore h; is a factor of B; (w).
Conversely, let h = hy + ha, where hy € B, and h, is a factor of By (w). In the first
part of the proof we have shown that T}, : B(w) = B, (w) is bounded if hy € B,,. It
follows from the definition of a factor that Ty, (f) € B;(w) for all f € B (w) provided
that hy € B,,. O
Now we provide an application of our results to division theorems in the spaces
By(w), (p > 1). To this end, we need the following well-known definitions (see [10]).

Definition 3.4. A function g € H*®(U™) is called an inner function, if its radial
boundary values satisfy |¢*(w)| = 1 almost everywhere on T".
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Definition 3.5. An inner function g € H(U") is said to be good if u[g] = 0, where

ulg] is the least n-harmonic majorant of log|g| in U™.

Theorem 3.3. Let 8, <l ifp=1and B, <0ifp>1. Let f € By(w) and J be a
good inner function and F = f/J € H(U™). Then F € By(w).

Proof. We have

[(QJ -
THNE) = g [ Le i =
iyl 1N 4 ! i) s
=G e -2 ©T @mr fT e
By Theorems 3.2 and 3.3 we obtain F € B,(w). O
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