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1. INTRODUCTION AND STATEMENT OF RESULTS

The geometrical relation between the maximum modulus of a complex polynomial
on a circle and the location of zeros of this polynomial within or outside this circle is
one of the attractive and fertile subjects in geometry of polynomials. Bernstein-type
inequalities play a fundamental role for many propositions in the area of polynomial
inequalities. There are many results on Bernstein’s theorems and their generalizations
in different forms. Before proceeding towards specific results concerning the zeros of
polynomials, we find it useful to consider certain fundamental theorems, which will
be used throughout this paper. We begin by stating a classical result due to Bernstein
[5]. Let P(z) be a polynomial of degree n. Then
1) max |P'(2)] < nmax [P(2)

We also state an inequality which is a simple consequence of maximum principle (see
[9, 20]).

(1.2) max |P(z)] < R"max|P(z)|, R> 1.
- |z|=R |s]=1

The above results are best possible and the equalities hold for polynomials having -
zeros at the origin. -

Observe that (1.2) can also be obtamed from (1.1) by using Gauss-Lucas theorem
(see [12]). Refinements of inequalities (1.1) and (1.2) can be found in a number of
important papers (see [2, 4, 6, 8, 10, 11, 16, 18, 19], and references therein).
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If P(2) is a polynomial of degree n, having all its zeros in |z| < 1, then Aziz and
Dawood [3] proved that for |z| =1,
in |P(z)| > R" min |P(z)|, R>1.
(13) i |P(z)| > B* min |[P(z)]
This inequality is sharp for the polynomial P(z) = me*2", m > 0.

Jain [14], generalized inequality (1.2) by proving that if P(z) is a polynomml of
degree n, then for |z| = 1 and |a| <1,

(1.4) IP(Rz)+&( - P( z)| < IR“-!-O( )"|mulP(z)| R21.

This result is best possible for P(z) = 8 + vz", where |8]| = ||
Tt was shown by Ankeny and Rivlin [1] that if P(z) # 0 in |z| < 1, then (1.2) can
also be replaced by
R"+1

(1.5) Ir;;g-’;ills'(z)l

max|P(z), R21.
Inequality (1.5) is sharp for P(2) = ﬁ+'yz" where |8 = |y| = 1/2.

Aziz and Dawood (3], improved the above inequality by introducing the minimum
value of |P(2)] on |z| =1 as follows:

R
1.6 Inax P(z)| <

(16) - max|P()|< =5 max|P
This result is best possible for P(z) = 8 + 72", where |8| > |7

Jain [15), improved (1.4) for polynomials having no zeros in |z| < 1 with |a] <
1, R>1and |s]—1asgivenbelow

IP(R2) + a(ZE2) " p(a)

min |P(z)], R>1.
|z|=1

@) < 30R + a2y 1+ a(BEL) ) max |P)).

l =1
Equality in (1.7) holds for P(z) = B + 2", where ],8| =ll=1/2

Recently, Dewan and Hans [7], proved a result concerning minimum modulus of
polynomials P(z), which is an analog of inequality (1.3).
Theorem A. If P(2) is a polynomial of degree n having all its zeros in |z| < 1, then
Jor every real or complex number 8 with || <1 end R> 1,

R“+ﬁ(R+1

)l'l-

The inequality (1.8) is best possible and equality holds for P(z) = me*2", m > 0.
Dewan and Hans [7] also improved inequality (1.7) by proving the following theorem.
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Theorem B. If P(z) is a polynomial of degree n having no zeros in |2| < 1, then for
every real or complex number 8 with [8| <1, R> 1, and |z| =1,

(P(Rs) + B(EA) P(a) < S11E + By 41+ AR hmax ()]

(19) ~UR + 8320 = 1+ B ) min [P
Equality in (1.9) holds for P(z) = a + vz", where |a| = hrl =1/2.
Recently, Mezerji et al. [17], generalized Theorems A and B to a class of polynomials
having zeros in the closed interior and closed exterior of a circle |z| = K, given by
the following two theorems.
Theorem C. .[fP(z] is a polynomial of degree n having all its zeros in Iz] <K, K<
ik thenforeverymal or complex number tmth]ﬂ[ <l,and R>1,

: R+K\" (s
(1.10) Im:'lllP(Rz)+ﬁ(1—_-'_—K-) P(z)|> |R" +‘8(1+K)
The result is the best possible and equality holds for P(z) = az™.
Theorem D. If P(z) is a polynomial of degree n having no zeros in |z) < K, K > 1,
then for every real or comp!e:.': number B with [8| <1, R> 1, and |z| =1,

i‘n{m}‘7 | P(2)]-

|P(RK?z) + ,6‘( ?1}1) P(K22)|
RK n
< g g (B e p(BEEL) ) e 1P
1 ni o RE+1 RK +1
(1.11) -3 {K"|R +ﬁ( TR ) [—ll+ﬁ( T+ K ) ]}I o KlP(z)]

The result is best possible and equality in (1.11) holds for P(z) = 2™ — K™
While making an attempt towards the generalization of the above inequalities, the
author found that there is a room for the generalization of the condition R > 1 in the
above theorems to R > r > 0, which induces inequalities towards more generalized
form. The essence in the papers by Govil et al. [13] and Mezerji et al. [17] is the origin
of thought for the new inequalities presented in this paper.

Now we are in position to state our main results. Our first result, Theorem 1.1, is a
further generalization of Theorem C. It involves an inequality on a class of polynomials
having all its zeros in (2| £ K, K > 0.

Theorem 1.1. If P(z) is a polynomial of degree n, having all its zeros in |z| <
K, K > 0, then for every real or complex number § with |8] < 1, |2| > 1, and
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R>r, Rr> K3,
(112)  min |P(Rz) + AEts — K R+ Kynp(ra)) 2 & IR" + ﬁr"( )“I i, |P(2)].
The result is best possible and equality in (1. 12) holds for P(z) me‘ﬁz , m>0.

Remark 1.1. Ifr =1 and K < 1, then Theorem 1.1 reduces to Theorem C; if K = 1,
then it further reduces to Theorem A, and if, in addition, 8 =0, thenmequahty(f 12)
becomes inequality (1.8).
Remark 1.2. If r = K, then inequality (1.12) takes the following simple form:
R+ K R+ K
Py + 8( ) P2 |72+ (BEE) | i 1Pca

Our second theorem extends Theorem D to the class of polynomials having no

zerosin |[z| < K, K > 0.

Theorem 1.2. If P(2) is a polynomial of degree n, having no zeros in |z| < K, K >
0, then for every real or complez number 8 with |8 <1 and R > 7, TR > #r,

=1

[P(RK’z)+ﬁ(f;:,{::) P(rk®;)
< g+ () |+|1+ﬁ(f,’§jj) [} max |P(2)
1) s+ o (BN - p(BEEL) ) min 1P

The result is best possible and equality in (1.18) holds for P(z) = az™+bK™, |b| > |a|.

Remark 1.3. Ifr =1 and K > 1, then Theorem 1.4 reduces to the Theorem D, and
if =0 and K = 1, then inequality (1.18) becomes ineguality (1.6).
Remark 1.4. If 8 =0, then inequality (1.18) becomes

4

|P(RK?2)| < -l-(K“R" + 1) max |P(z)| — (K™R" — 1) min |P(2)|.
2 lzl=K |z]l=K
2. LEMMAS
‘We begin with a lemma due to Govil et al. [13].

Lemma 2.1. If P(2) is a polynomial of degree n having all its zeros in |z] < K,
K > 0, then for every R > r and Rr > K2, we have

R+ K\"
(21) 1P > () WP for 1s]=1.
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Lemma 2.2. If P(z) is a polynomial of degree n having no zeros in |z| < K, K > 0,
then for any B with |8 <1, R> 1, TR > 3, and |z| = 1, we have

RK +1 RK +1

1) Pexel < ko) +5 (ZEEL) Qoo

(2.2) |P(RK?z)+ 6(
where Q(z) = z“}"(Tl!).

Proof. Since P(z) # 0 in |z| < K, the polynomial Q(z) has all its zeros in |z| < %
Note that [@Q(2)] = rl-.-IP(K’z)l for |z| = -k Therefore by Rouche’s theorem, the
polynomial §(z) = K"Q(z) — aP(K?z) of degree n has all its zeros in |z| < % for
la| < 1. Hence using Lemma 2.1, for R>r, Rr > gy and [z| = 1, we have

RK +1\"
|S(R=z)| > (-r?t’Tl—') [S(rz)l,
implying

f.rf ;" 11) |K*Q(rz) — aP(rK?2)|.

|K"Q(Rz) — aP(RK?z)| > (
Denote

T(z) = K"{Q(R2)+8 (

%KR%)“'Q(’Z)}_“{P(EK%)*'B (fﬁ:;) P(rK?z)},

and note-that T'(z) # 0 for |8 < 1 and |z| = 1. This implies that (2.2) is true. Indeed,
if it is not true, then there exists a point z = zg with |2g| = 1 such that

RK+1\" - n RK +1\"
;I-H—l) P(rK%z)| > K |Q(Rm)+ﬁ(rK+1) Q(rzo)|.

|P(RK?z0) + ﬂ(

We take

_ KMQ(Rzo) + BB Qr0))

~ P(RK?z) + B(3EH)"P(rK )’
and observe that |a| < 1. Clearly with this choice of o, we have T'(z) = 0 for
|z0| = 1, yielding a contradiction to the fact that T'(z) is nonzero on the circle |2| = 1.
If |8| = 1, inequality (2.2) follows by continuity. Hence the proof is complete.

Lemma 2.3. If P(z) is a polynomial of degree n, then for every real or complex
number B with |B| < 1 and K > 0, and for every R>r, rR > K? and |2| > 1, we
have

09 1P@Re)+BCEEE yp(ra) < 1R 1 prn ™) me o
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Proof. Consider the reciprocal polynomial of P(z) given by @(z) = z"P(EI). Take

M= ma.x Q=) = —1- pa |P(z)]. By Rouche’s theorem, for every a with |a > 1,

Izl=
the polynomla.l i) = Q(z) — oM does not vanish in |z < . Hence the polynomial

Y(z) = "E = P(z) — GMz"

has all its zeros in |z| < K, K > 0. Applying Lemma 2.1 to the polynomial Y(z) for
|z| = 1 and every R > r and rR > K?, we obtain
YR 2 ()Y (r2))

Since Y (R2z) has all its zeros in |z] < 'I[ < 1, again applying Rouche’s theorem, w@;
conclude that for every 8 with |8| < 1, all the zeros of the polynomial

R+ K
r+ K
lie in |2| < 1. In other words, all the zeros of the polynomial

Y (Rz)+ B(

)*Y (r2)

M1 2™)

(24)  T()=P(RD) + Bt \"P(ra) - S(MB"#") + p ALK

lie in |2| < 1. We claim that this implies inequality (2.3). We prove the claim by
contradiction. If the claim is not true, then there exists a point z = zg with |z > 1,
such that

IP(RZG)+B(R+K i

r+K) P(rzo)| > =l "l —=|R" + pr* (;ﬁ) llgfg}c‘,IP(z)l,

or equivalently,

R+ K
+ K

R+K)"I

TEE) Pl > Misiae + pon (B

|P(Rz0) + B (

We take
_ _ P(Rz0) + B(3HE)"P(rzo)
Mzg{R™ + prn(ZHE )"}’
and observe that |a| > 1. In view of (2.4), it is easy to see that with this choice of
@, we have T'(z) = 0 for |2| > 1, yielding a contradiction to the fact that T'(z) is
nonzero in the closed exterior of the circle [z| = 1. Tf | 8] = 1, inequality (2.3) follows
by continuity. Hence the proof is complete.

Lemma 2.4. If P(2) is a polynomial of degree n, then for any f with |8] < II, K>0
and R>r, Rr2> g, and |z =1, we have
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RK +1\"
Tert) P+ krie) +8( L) qea)

@s) sl () 1 s (BN ) e 2o,

[P(RE?z) + ﬂ(

where Q(z) = z“F(_%-i.

Proof. Let M = lﬁnﬁ.}c‘ |P(2)|. Then [P(z)] < M for |z] = K. Therefore, for a given
real or complex number A with |A| > 1, it follows from Rouche's theorem that the
polynomial T'(z) = P(z) + AM does not vanish in |z| < K. Hence a.pplying Lemma
2.2 to the polynomial 7'(z) for g with || <1, |z|]=1and R>r, Rr> R]’, we get

|P(RK?2) + AM + p(R‘K i 1) (P(rK22) + AM)|

K +1

RK +1\"

< K"|Q(Rz) + A\MR"z" + B (W) (Q(rz) + XMT™2")]|,

implying

|P(R.K22)+ﬂ(RK+1

rK+1

< KrlQ(r) +8( ML) Q) + Tatan (e + oo

Now choosing the argument of A appropriately, we get

1ps) + 6( ) bkl - ina + p (L

RK+1)“| '

)HP(rK“z) +AM(1+ﬂ(fK+ -

RK +1 "I
rtK+1) "
RK +1 |

rK+1

RK +1\" RK +1\"
fK+l) I-K“IQ(Rz)hB(W) Q(‘r'z)u

Next, applying Lemma 2.3 to the polynomial Q(z), we can write

< INME"||"{B™ + ﬁr"(

pinkrlePie + e (B |2 welawa) + 6Ty ) Q6
Therefore o s
|P(RK?z) + ﬁ(f‘g:ll) P(rk?z)| - [AIM]1 + ﬂ(ﬁ,{:ll) |

RK +1\" RK +1
LY - ki +8( L) Qe

< |A|MK“|z|“|R"+a(

implying L y
\P(RK2) + B( B58h) " Pric?a)| + K™Q(R2) + B(HEE) "Q(r2)

B+ wiaei ()]
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Letting |A| = 1 in the last inequality, we get the desired inequality (2.5), and thus

the proof is complete.
3. PROOFS OF THE THEOREMS

Proof of Theorem 1.1. Let m = ]nl1in |P(2)|, then 0 < m < [P(2)| for |z| =
Therefore if A is a complex number such that |A| < 1, then by Rouche's theorem, it
follows that the polynomial
: A
(3.1) G(z) = P(z) — E;mz"
of degree n has all its zeros in |2| < K. Applying Lemma 2.1 to the polynomial G(z)
with K >0, R>r and 7R > K?, for |z| = 1 we get
R+ K
(G(Re) > ( 22 166

Since G(Rz) has all its zeros in |z| < £ < 1, then applying Rouche’s theorem, for
real or complex number 8 with |8| < 1, one can show that the polynomial
(3.2) T(z) = G(Rz) + B (R t& )nG'(rz)

: r+K
has all its zeros in |z| < 1. Substituting G(z) from (3.1) into (3.2), we conclude that
for every A with [A| <1, |8| <1 and |z| > 1 the polynomial

n = n

63) 7 = (PR +8 (T ) P} - gemimrsn + oo (K ) )

is nonzero. In view of the above facts, we can conclude that for every 8 with |8 < 1

and [z] > 1
@) (pwa+8( P2 > gttt +rn (2 o

We prove our conclusion by contradiction. If the inequality (3.4) is not true, then
there exists a point z = zg with |2] > 1, such that

R+K) R+ K\"

K*1p(Rz0)+ 8 (FE) Plraol <18+ (B

We take

_ Kn(P(Re0) + B (2 ) P(rz))
(R™ + Brm ({,-*555) ymag
and observe that |A| < 1. In view of (3.3), it is easy to see that with this choice of ),
we have T'(z9) = 0 for |2g| > 1, yielding a contradiction to the fact that T'(z) # 0 for
|z| > 1. This completes the proof.

48



ON THE GENERALIZATIONS OF POLYNOMIAL INEQUALITIES ...

Proof of Theorem 1.4. By the assumption the polynomial P(z) has all its zeros
in |z| > K. Let m = |£?_i.lrlc |P(z)|. Then |P(2)| > m for |2| = K. If a is a complex
number such that |a| < 1, then it follows from Rouche’s theorem that the polynomial
H(z) = P(z) — am has no zeros in |z| < K. Hence by Lemma 2.2, we get for |2| = 1,

RK
I{p(nxﬂz) +ﬁ( K:_rll) P(rK?2)} — om{1 + (fg:ll)
RK +1
< K"l(Q(Re) + 8 (T ) Q) - mamsn e o (L)'
By a proper choice of argument of a, we get
RK n
|P(RK?z) +p( KL‘) P(rK?2)| - |a|m|1 +8 (%)
(35) < IK"IQ(Rs)+ At )" Qra)] — mElalel” R + A (T 1‘)

An application of Theorem 1.1 to the polynomial Q(z) yields

Q)+ 8 (Tt QN lalmlze + 6 (L)) oy =,

and hence (3.5) can be rewritten as

1PK?) +8( BEEL) Pkt - it + A
< kIQRe) +8 (g ) Q- lelmkrir + prn (BEELY'
Therefore BRI B D
(pricte) +B( BEEL) Peeacta) - KlQ@Rs) +6 (L) Qe
< mla| |1 +8 (’;‘}{‘f%) — |ajmK® ‘R“ +6r" (%’{f—}% [ ik
Letting |a| — 1, we obtain for |z| = 1, o
IP(RIC2) + B( )" PrK2)| ~ K™{Q(Re) + B "Q(2)
6o s—grrir+pe (B - (B .
Next, by Lemma 2.4, we have
poacte) + 6( ) pera) + kg + (BT ) "t
1) <R +or (B 1+ [ies (BT | mag b, =1

Finally, adding (3.6) and (3.7) and rearranging, we get the desired result. Hence the
proof is complete. We conclude the paper by the following remark.
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Remark 3.1. It would be of interest to find the analogues of the above theorems for
polynomials all of whose critical points lie within & unit distance away from each root.
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