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Abstract. In this paper we consider an inverse problem associated with
equations of the form X f = g, where X is a convolution-type operator. The aim
is to find a solution f for given function g. We construct approximate solutions
by applying a wavelet basis that is well adapted to this problem. For this basis
we calculate the elementary solutions that are the approximate preimages of the

wavelets. The solution for the inverse problem is then constructed as an appropriate
finite linear combination of the elementary solutions. Under certain assumptions
we estimate the approximation error and discuss the advantages of the proposed
scheme.
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1. INTRODUCTION

We consider convolution type operators of the form
(1) xf(z) =2r [ (w)f(w)e™=ds,
where k € €1(R) and f is a measurable function. Defining
(1.2) Dy = {measurable f : (x f) € L*(R)}

it results K : D, — L2(R). If g = Xf, then its Fourier transform is §(w) = (k f)(w)-

Although, in the general case, the integral operators X defined by (1.1) do not
represent a convolution, by analogy, we call them convolution-type operators. The
inverse problem (IP), associated with these operators consist in finding f € D, such
that

(1.3) - Xf=g

for a given g € L*(R).
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Notethatingenera.lwaca.nnotmurethatasolutionfoft.heIPint.herurier
transform of a distribution f. In the ideal case we could construct f as : f(w) =
3(w)(x(w)) "2, but it is generally non viable because of its numerical instability if x
approaches to zero on a set of positive measure, or due to irregularities on g.

In order to find an approximate solution for the IP, we construct a sequence f; €
D, N L3(R) such that
(1.4) Jlim 1% f7 —gll =0,

and the approximate solution will be the limiting function f: f; — f.

If we choose band-limited functions f(w), |w| < ws, we have f; € D, N L2(R).
In that case if we set ky(w), the restriction of x(w) to the band of frequencies, then
X f is actually a convolution and we can write

(1.5) o lm [k fs—gll=0.

Based on this idea, we construct f;, the solution of the IP restricted to a compact
set of frequencies, and consequently, the approximate solution f as the limit of f;.

In this paper we choose an orthonormal wavelet basis ¥;x(z) associated with a
hierarchical structure of the space, the multiresolution analysis (MRA) (see [15]). The
scale function and the wavelets belong to the Schwartz class 8. They are smooth and
infinitely oscillating functions with fast decay and compact support in two-sided bands
Q;. They are well localized in both, time and frequency domains, and are well adapted
to this problem (see [20]). Under suitable hypothesis on &, it is possible to construct
the elementary solutions, smooth functions u;i that are nearly the preimages of the
wavelet basis 9, (z):

 Kupn(e) = (Rran)(o) = 2m [ n)ge)emdu
2y
. o quk(z).

In this way, from the coefficients of the decomposition of g in the wavelet basis, we
can estimate the components of the solution f on the subspaces generated by the
elementary solutions (band limited) and the f; are obtained. We also estimate the
error of the approximation and discuss the advantages of the proposed scheme.
Integral operators, and in particular deconvolution problems, have been extensively
studied, since they appear in various applications (electromagnetic measurements,
design of digital filters , etc.). For instance, in (18] an efficient method for solving
one dimensional deconvolution problems with noisy discrete data is presented and a
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regularizer is introduced, provided that the underlying operator can be decomposed
into a sum of a compact and an invertible operators. Numerical aspects of this problem
were analyzed in [19] and an optimal regularizer is constructed. The case of sampled
independent identically distributed variables with random measurement error with
deconvolution kernel density estimator is revisited in [7]. The relationship between
deconvolution and correct sampling is explored in [13].

The Galerkin method for the case of integral operators with Hilbert kernels was

proposed in [1]. In [11], [12] and [24] solvability and properties of the solutions of
some integral and integro-differential equations were studied.
Techniques based on Wavelet Galerkin Methods and Wavelet Vaguelet Decomposition
were studied in [5], [8] and [9] to find approximate solutions to IP associated to
Pseudodifferential Operators (see [23]). Inverse problems associated with this kind
of operators have been studied in [5], [8] and [9], where techniques based on wavelet
Galerkin methods and wavelet Vaguelet decompositions were developed. In [22], using
deconvolution techniques, we obtained approximate solutions for the equation Xf =
kxf = gwith k(w) = (1+w?)™, a > 1 for n = 1. In [22] a wavelet Vaguelet
decomposition (WVD) was used to approximate f for a more general case. In [21]
the inverse problem associated with a pseudodifferential operator whose symbol has
separated variables is analyzed.

The present paper is organized as follows. In Section 2 we introduce the wavelet
basis. In Section 3 we construct an approximate solution for IP, and analyze the
approximation error. Two examples are discussed in Section 4. Finally, we state our
conclusions in Section 5.

2. THE WAVELET BAsIS

We choose a mother wavelet ¥, which is well localized in both time and frequency
domains and possesses the following properties (see [14]):

o the family 9;k(z) = 2/2¢(2/z — k), j,k € Z, forms an orthonormal basis in
L?(R) associated to MRA;
e 13 € 8, where 8 is the Schwartz space, is a smooth, infinitely oscillating mother
wavelet with fast decay;
e the spectrum |$(2~7w) | is supported on the two-sided band
Q= {w:2(r—a) < |w| <2 (r+a)}, forsome 0 < @ < /3.
e the numerical implementation of the associated scheme is efficient.
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FIG. 1. (a) Mother wavelet with a = /4 , (b) 9] for w > 0

There also exists ¢ € Vj such that {¢(z — k), k € Z} is an orthonormal basis for V5.
The design of this basis and the implementation algorithm based on the Fourier fast
transform (FFT) have been developed by authors in [22].

Let W; = span{v;k, k € Z} and Vj = ®5<J% be the wavelet and the scales
subspaces, respectively. Observe that each family ¢ (z) = 2//2¢(2z — n), n € Z, is
an orthonormal basis of V.

For any signal s € L*(R) we denote by Q;(s) and ;(s) the orthogonal projections
of s onto the subspaces W; and Vj, respectively. Then for any index J, the following
representation holds:

s(z)

> 958(a) = Pys(a) + Y Qys(z) =

JeZ j2J
(2.1) = E (8' ¢Jﬂ) ¢Jﬂ("‘) + E Z (f! ‘&53) 'ﬁjk(z)-
nezZ j2J keZ

We remark that Q;s(w) is supported on Q;, while P 78(w) is supported on Uj<sf;.
Notice also that the properties of 1 ensure uniform convergence on each W;. In
addition, since 4 is infinitely oscillating, it has vanishing moments: Jpz™(z)dz =0
for all n € N, and the same occurs to its polynomials’ components.
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3. AN APPROXIMATE SOLUTION TO THE IP

3.1. The alternative problem. Without loss of generality we can assume that g
is a real function and that the real and imaginary parts of the kernel s(w) are even
and odd functions, respectively. If it is not the case, we can split the corresponding
problems into two subproblems associated to the kernels x;(w) = ﬂﬂ)iﬁ“—"’l and
Kp(w) = =2 respectively.

Regarding the given function g, called also the data function, we suppose that there
exist an integer J such that an appropriate approximation g; € V; of g is available,
given by

95(2) = Pag(s) = 2m jlwlm“ K(w) (@)™ dw,
where Wmaz = 271 (7 + @). Then we consider the following alternative problem:
(3.1) Xf =g
Taking into account that
(3.2) 9s(z) =Y Qjg(=),
i<J

it seems natural to solve the IP on each subspace W;:

93(z) = Qyg(z) = 2 fn K(w) F (W)™ dw,

(3.3) gi(z) =X;f(z).
Observe that, in general, the subspaces W; are not in the rank of the operator and

we cannot assure that the problem (3.3) has a solution in the strict sense. In order
to solve it, we propose to construct functions f; € D, N L?(R) to satisfy

X;fi(z) = gj(z) +e;
with ||e;]| € € || g; || for some small e.

In that case we will have

gr=) Kifj+es=% (Zf.i) +ey

i<J i<J
with [les]| < € || g7 |- We remark that each f; is a band limited function supported on
;, and hence the approximate solution fy = Yj<y fi is & band limited function in
D, N L3(R). We hope that under suitable assumptions, the sequence f; will converge
in some sense, to be explained later, to an appropriate approximate solution of
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(1.3). In order to construct such solutions f7, in the next subsection we consider
the decomposition (3.2) and define the preimages of the wavelet basis.

3.2. The elementary solutions. In this subsection we construct the elementary
solutions pjx to be the preimages of the wavelet basis ;. To this end, we will
distinguish the following two cases:
e the functions u;x are the preimages of the wavelet basis Yik: Kjpie = Yijk.
o the wavelet basis ;i is not in the rank of K;.
In the first case, it is worth noting that if [s(w)| = ¢ > 0 on Q;, then we can
compute pjx = f:?‘"- :
In the second case, where the wavelets ¥;x are not in the rank of the operator X,
we can construct approximate preimages u;x that satisfy Xju;x = :}'jk & k.

We observe that if |«<(w)| = 0 on some interval w; < |w| < wy in Q;, then the same
occurs to |kfj(w)|. In this case the problem X;f; = g; either has no unique solution
or it is incompatible. For these reasons, in what follows we assume:

Hypothesis 3.1. The set g; = {w € Q; : |s(w)| = 0} has null measure for all j € Z.
Then the eventual roots of x must be isolated.

Deflnition 8.1. Under the Hypothesis 3.1 the elementary solutions px, j, k € Z, for
the operator X; are defined by

Dik(w) 5* (w)

4 k(W) =

el Hir) = TP+ ot @ S M

where p; are even smooth functions satisfying pj(w) > p > 0 in some neighborhood
of the roots of x(w) in Q2.

Definition 3.2. For j,k € Z we define %3 £ X;pu;x. For the following proposition
we refer to [21].
Proposition 3.1. Under the Hypothesis 3.1 the following properties hold:
o pjk(w) = pjn(w) B_ﬁ"kw, that 18, fijx(z) = ﬂ,n(x =5 2_jk).
® If pjo is a band limited function on Q;, then fjo inherits the smoothness
properties of 1.
o If [k(w)| > ¢ >0, then p; =0 on §);. On the other hand, p; can be chosen
based on k(w) for each level j, such that |support(p;)| < e.

e In such cases, || ¥jx —'fﬂ;jk < e
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o For each j there ezist constants m; and M; such that for all w € Q;

k 2
(|J:(w)]|2 -(:Ji?alj(wnz)z <mj, |ail® < Mj, k € K;.

o The functions p; can be chosen such that pjo preserves the smoothness properties
of 9.

o The family {fijx, k € Z} consists of linearly independent elements. Moreover,
it is a basis of the subspace U; = span {jj, k€Z} c L*R) and it is a
Bessel sequence (see [4]).

3.3. The proposed solution. Observe first that by Proposition 3.1, the families
{®;i} and {t;x} consist of exponentially decaying functions and are nearly biorthogonal,
that is, (s, Yk ) = 1 and (Fyn, Yk ) = 0 for n # k. Also, the family {;x} consist
of linearly independent functions and, in addition, it is a Bessel sequence.

In order to calculate a solution for the alternative problem (3.1), for each j < J
we choose appropriate finite subsets K;, and construct an approximate solution on
W; = spau{¥jk, k € Z} C La(R) as follows: Qjg = ¥y, djxtjk. We define Q;f =
Y kek, dikijk, and observe that

X9;f =99 = Qg+ Ajg.
We propose to select the coefficients djx to satisfy the linear system:
> @) bk =Y, dik ik,
kEK; kEK;
that is,

(9, %in) = Y dik (%m@jk). n € Kj,

keK;
yielding
Ajg= Z (9, ¥ji) -
kK

We observe that Ajg is a projection that is nearly orthogonal to W; on W,-.

Since the error of the approximation will depend on the wavelet coefficients of the
data function g, it can be controlled by choosing for each Jy < j < J, the finite sets
K; to satisfy

€
(3.5) 1asl? = 3= Ho ) P < 5 1l Q4 I
kK,

for some small € > 0.
61



E. P. SERRANO, M. L TROPAREVSKY AND M. A. FABIO

To carry out the numerical implementation of the scheme, we choose a minimum

level Jo, such that
€ 2
(3.6) los= glP<zllos I* -
i<Je
Finally, .
= X Bif= 3 D dwmn
Jo<i<d Jo<i<J keK;

is an apprmumate solution for the IP associated with the alternative problem (3.1).

We have %
xfr= Y, Q9= 3o D (o) ik =95+ Aug.

Jo<i<J Jo<i<J keK;
3.4. The Error. Under the hypothesis and definitions described above, from (3.5) -

(3.6) we have
lasgl? = les=%Fal?
= 1S GelP+ > X Hewa P
i<l Jo<i<J kgK;

£ €
< llarlP+3 > N9glP=ellgs|?
Jo<j<J

Assuming that the initial approximate data function gs satisfies
lg—gs 12 = I3 G@tin) vk Pl g IP< e

jzJ
we obtain || g — Xf7 [2< 2€.
Remark 3.1. We note that it is not always convenient or even possible to disregard
the low frequency components around w = 0. In particular, this is the case if g is
not an oscillating function or if it is a distribution. In such cases it is important to
include the component in the scale space Vj,, and consequently the low frequencies
of elementary solutions must be defined and included in the approximation scheme.

4. EXAMPLES
Example 4.1. We consider integro-differential operators ‘with kernels:
sw) = (1+w)%
where 0 < || < 1. Inthiscaset.hekerneln(w) is real and even.
Note that if & < —4 we have x € L?(R) and Dy 2 L*(R). On the other hand, if

a>—3,then D C L’(R) Since x(w) > 0, we have Wik(w) = yx for all j and k.
62



SOLVING DECONVOLUTION TYPE PROBLEMS ...

Example 4.2. We consider transfer furictions of the form:

P(s)

=

where P and Q are polynomials of degree m and n (m < n), respectively. Observe
that H describes the relationship between the input U and the output Y of a linear
time-invariant system:
% P(s
¥ (s) = H(s)U(s) = a—(s%U(a).

When the poles and zeros of H lie in the half-plane C~, the system is stable and
we have x(w) = H(w) € L*(R). In this case, for a given output Y it is possible to
identify the input U based on the relationship between the Fourier transform and the
convolution operator. In this case the assertion @'jk(w) = ;) remains true.

When the output Y is a distribution, it is necessary to consider the low frequency
clementary solutions as explained in the Remark 3.1.

In this frame, we could also propose an identification scheme, that is, a scheme
that identifies H, considering the kernels x,, = U, as test-inputs.

5. CONCLUSIONS

In this paper approximate solutions for inverse problems, associated with the
equation Xf = g, where X is a convolution-type operator, are constructed, and
the corresponding approximation error is analyzed. A perturbed data function g is
considered. The data function g is decomposed in a suitable orthonormal wavelet basis
1;x and the elementary solutions ji;; are calculated, which are the preimages of the
wavelet basis trough X. The case when v are not in the rank of X is also studied. In
both cases the data function g can be expressed as a linear combination of the images
of the elementary solutions via the operator K. The approximate solution of the IP is
constructed as an appropriate finite linear combination of the elementary solutions.
In this way the proposed scheme takes into account both, the characteristics of the
data we want to invert and the properties of the underlying operator.

The proposed scheme can be adapted to make it applicable for the cases of noisy
data and for convolution-type operators with more general kernels.
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