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Abstract. In this paper, we define the generalized entropic property for a pair
of operations. We show that for an idempotent algebra, A = (A, f, g), with two
ternary operations,if one of f or g is commutative and the pair of operations
(f, g) satisfies the generalized entropic property, then (f, g) is entropic. Also we
prove that every idempotent and commutative algebra A = (A, f, g), with a
ternary and a binary operation, satisfying the generalized entropic property,
is entropic.
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1. Introduction

The algebra A = (A,F ) is called entropic or medial if it satisfies the identity of

mediality

(1) g(f(x11, ..., xn1), ..., f(x1m, ..., xnm)) = f(g(x11, ..., x1m), ..., g(xn1, ..., xnm)

for every n-ary f ∈ F and m-ary g ∈ F .

In other words, A is medial if it satisfies the hyperidentity of mediality ([1], [2]).

Note that a groupoid is entropic if and only if it satisfies the identity of mediality:

xy.uv ≈ xu.yv [3].

An algebra A = (A, f) with a single ternary operation is entropic if it satisfies the

following identity:

f(f(x11, x21, x31), f(x12, x22, x32), f(x13, x23, x33)) ≈

≈ f(f(x11, x12, x13), f(x21, x22, x23), f(x31, x32, x33)).

A variety V is called entropic (or medial) if every algebra in V is entropic. The

Algebra A is called idempotent (commutative), if every operation of A is idempotent

(commutative). An n-ary operation f is called commutative if

f(x1, x2, . . . , xn) = f(xα(1), xα(2), . . . , xα(n)),
29
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where α ∈ Sn. An n-ary operation f is called idempotent if the identity f(x, ..., x) = x

is true. An idempotent entropic algebra is called a mode [4].

We say that the variety V (respectively, the algebra A) satisfies the generalized

entropic property if for every n-ary operation f and m-ary operation g of V (of

A) there exist m-ary terms t1, ..., tn such that the identity:

(2) g(f(x11, ..., xn1), ..., f(x1m, ..., xnm)) = f(t1(x11, ..., x1m), ..., tn(xn1, ..., xnm)

holds in V (in A) [5].

For example, a groupoid satisfies the generalized entropic property if there are binary

terms t and s such that the identity xy.uv ≈ t(x, u).s(y, v) holds.

An algebra A = (A, f) with a ternary operation satisfies the generalized entropic

property if there are ternary terms t, s and r such that

f(f(x11, x21, x31), f(x12, x22, x32), f(x13, x23, x33)) ≈

≈ f(t(x11, x12, x13), s(x21, x22, x23), r(x31, x32, x33)).

It was proved by T. Evans [6] that any gpoupoid in a variety V of groupoids has the

complex algebra of subalgebras if and only if V satisfies the above identity for some

t and s.

Every algebra in a variety V has a complex algebra of subalgebras if and only if the

variety V satisfies the generalized entropic property [5] (see also [7-11]).

2. MAIN RESULTS

The immediate consequences of the generalized entropic property in the idempotent

algebra A = (A, f) with a ternary operation are the following identities, that can be

treated as pseudo-distributivity laws:

f(t(x, y, z), α, β) ≈ f(f(x, α, β), f(y, α, β), f(z, α, β),

f(β, s(x, y, z), α) ≈ f(f(β, x, α), f(β, y, α), f(β, z, α)),

f(α, β, r(x, y, z)) ≈ f(f(α, β, x), f(α, β, y), f(α, β, z)).

Theorem 2.1. An idempotent and commutative algebra A = (A, f) with a ternary

operation satisfying the generalized entropic property is entropic.

Proof. Using pseudo-distributivity and the commutativity, we obtain

f(t(x, y, z), α, β) ≈ f(f(x, α, β), f(y, α, β), f(z, α, β)) ≈

≈ f(f(α, β, x), f(α, β, y), f(α, β, z)) ≈ f(α, β, r(x, y, z)) ≈ f(r(x, y, z), α, β),
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and also

f(t(x, y, z), α, β) ≈ f(f(x, α, β), f(y, α, β), f(z, α, β)) ≈

≈ f(f(β, x, α), f(β, y, α), f(β, z, α)) ≈ f(β, s(x, y, z), α).

Thus

f(t(x, y, z), α, β) ≈ f(α, β, t(x, y, z)) ≈ f(r(x, y, z), α, β) ≈ f(β, s(x, y, z), α).

Now, using idempotency and the above identity we get

t(x, y, z) ≈ f(t(x, y, z), t(x, y, z), t(x, y, z)) ≈ f(r(x, y, z), t(x, y, z), t(x, y, z)) ≈

≈ f(t(x, y, z), s(x, y, z), r(x, y, z)) ≈ f(x, y, z).

Similarly, for s and r we have s(x, y, z) ≈ f(x, y, z) and r(x, y, z) ≈ f(x, y, z). Thus,

by the generalized entropic property and the last three identities we have

f(f(x11, x21, x31), f(x12, x22, x32), f(x13, x23, x33)) ≈

≈ f(t(x11, x12, x13), s(x21, x22, x23), r(x31, x32, x33)) ≈

≈ f(f(x11, x12, x13), f(x21, x22, x23), f(x31, x32, x33)).

Theorem 2.1 is proved. �
The generalized entropic property for an algebra A = (A, f, g) with two ternary

operations means that the following identities are true:

f(f(x11, x21, x31), f(x12, x22, x32), f(x13, x23, x33)) ≈

≈ f(t1(x11, x12, x13), s1(x21, x22, x23), r1(x31, x32, x33)),

f(g(x11, x21, x31), g(x12, x22, x32), g(x13, x23, x33)) ≈

≈ g(t2(x11, x12, x13), s2(x21, x22, x23), r2(x31, x32, x33)),

g(g(x11, x21, x31), g(x12, x22, x32), g(x13, x23, x33)) ≈

≈ g(t3(x11, x12, x13), s3(x21, x22, x23), r3(x31, x32, x33)),

g(f(x11, x21, x31), f(x12, x22, x32), f(x13, x23, x33)) ≈

≈ f(t4(x11, x12, x13), s4(x21, x22, x23), r4(x31, x32, x33)).

The immediate consequences of the generalized entropic property in an idempotent

algebra A = (A, f, g) with two ternary operations are the following identities that

can be treated as pseudo-distributivity laws:

g(t(x, y, z), α, β) ≈ f(g(x, α, β), g(y, α, β), g(z, α, β)),

g(β, s(x, y, z), α) ≈ f(g(β, x, α), g(β, y, α), g(β, z, α)),

g(α, β, r(x, y, z)) ≈ f(g(α, β, x), g(α, β, y), g(α, β, z)).
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At last, the entropic law for an algebra A = (A, f, g) with two ternary operations

means the following identities:

(a) f(f(x11, x21, x31), f(x12, x22, x32), f(x13, x23, x33)) ≈

≈ f(f(x11, x12, x13), f(x21, x22, x23), f(x31, x32, x33))

(b) g(g(x11, x21, x31), g(x12, x22, x32), g(x13, x23, x33)) ≈

≈ g(g(x11, x12, x13), g(x21, x22, x23), g(x31, x32, x33))

(c) f(g(x11, x21, x31), g(x12, x22, x32), g(x13, x23, x33)) ≈

≈ g(f(x11, x12, x13), f(x21, x22, x23), f(x31, x32, x33)).

Definition 2.1. Let g and f be an m-ary and an n-ary operation on the set A.

We say that the pair of operations (f, g) satisfies the generalized entropic property if

there exist terms t1, ..., tn of the algebra A = (A, f, g) such that identity (2) holds in

the algebra, A = (A, f, g). The pair of operations (f, g) is called entropic or medial,

if identity (1) in the algebra A = (A, f, g) is true. If f = g, then we say that the

operation f satisfies the generalized entropic property.

Theorem 2.2. Let A = (A, f, g) be an idempotent algebra with two ternary operations.

If g is commutative and the pair (f, g) satisfies the generalized entropic property, then

(f, g) is entropic.

Proof. To prove (c), observe that by the generalized entropic property:

f(g(x11, x21, x31), g(x12, x22, x32), g(x13, x23, x33)) ≈

≈ g(t(x11, x12, x13), s(x21, x22, x23), r(x31, x32, x33)).

Using the pseudo-distributivities and the commutativity of g, we obtain:

g(t(x, y, z), α, β) ≈ f(g(x, α, β), g(y, α, β), g(z, α, β)) ≈

≈ f(g(α, β, x), g(α, β, y), g(α, β, z)) ≈ g(α, β, r(x, y, z)) ≈ g(r(x, y, z), α, β),

and also

g(t(x, y, z), α, β) ≈ f(g(x, α, β), g(y, α, β), g(z, α, β)) ≈

≈ f(g(β, x, α), g(β, y, α), g(β, z, α)) ≈ g(β, s(x, y, z), α).

But g(t(x, y, z), α, β) ≈ b(α, β, t(x, y, z). So, we have

g(t(x, y, z), α, β) ≈ g(α, t(x, y, z), β) ≈ g(r(x, y, z), α, β) ≈ g(β, s(x, y, z), α).

By idempotency and the above identities we have

t(x, y, z) ≈ g(t(x, y, z), t(x, y, z), t(x, y, z)) ≈ g(r(x, y, z), t(x, y, z), t(x, y, z)) ≈
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g(t(x, y, z), s(x, y, z), r(x, y, z)) ≈ f(g(x, x, x, ), g(y, y, y), g(z, z, z)) ≈ f(x, y, z)

In the same manner s(x, y, z) ≈ f(x, y, z) and r(x, y, z) ≈ f(x, y, z). Thus, by the

generalized entropic property and the last three identities we have

f(g(x11, x21, x31), g(x12, x22, x32), g(x13, x23, x33)) ≈

≈ g(t(x11, x12, x13), s(x21, x22, x23), r(x31, x32, x33)) ≈

≈ g(f(x11, x12, x13), f(x21, x22, x23), f(x31, x32, x33)). �

The generalized entropic property for an algebra A = (A, f, g) with a ternary and

one binary operation (respectively f, g) means that the following identities are true

f(f(x11, x21, x31), f(x12, x22, x32), f(x13, x23, x33)) ≈

f(t1(x11, x12, x13), s1(x21, x22, x23), r1(x31, x32, x33)),

g(g(x11, x21), g(x12, x22)) ≈ g(t2(x11, x12), s2(x21, x22)),

f(g(x11, x21), g(x12, x22), g(x13, x23)) ≈ g(t3(x11, x12, x13), s3(x21, x22, x23)),

g(f(x11, x21, x31), f(x12, x22, x32)) ≈ f(t4(x11, x12), s4(x21, x22), r4(x31, x32)).

The immediate consequences of the generalized entropic property in the idempotent

algebra A = (a, f, g) with a ternary and a binary operation (respectively f, g) are the

following identities that can be treated as pseudo-distributivity laws:

g(t(x, y, z), α) ≈ f(g(x, α), g(y, α), g(z, α)),

g(β, s(x, y, z)) ≈ f(g(β, x), g(β, y), g(β, z)).

At last, the entropic law for an algebra A = (A, f, g) with a ternary and a binary

operation (respectively f, g) means the validity of the following identities

(d) f(f(x11, x21, x31), f(x12, x22, x32), f(x13, x23, x33)) ≈

≈ f(f(x11, x12, x13), f(x21, x22, x23), f(x31, x32, x33))

(e) g(g(x11, x21), g(x12, x22)) ≈ g(g(x11, x12), g(x21, x22))

(f) f(g(x11, x21), g(x12, x22), g(x13, x23)) ≈ g(f(x11, x12, x13), f(x21, x22, x23)).

Theorem 2.3. Let A = (A, f, g) be an idempotent algebra with a ternary operation

f and a binary operation g. If g is commutative and the pair (f, g) satisfies the

generalized entropic property, then (f, g) is entropic.
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Proof. To prove (f) observe that by the generalized entropic property

f(g(x11, x21), g(x12, x22), g(x13, x23)) ≈ g(t(x11, x12, x13), s(x21, x22, x23)).

Using the pseudo-distributivities and the commutativity of g we obtain

g(t(x, y, z), α) ≈ f(g(x, α), g(y, α), g(z, α)) ≈

≈ f(g(α, x), g(α, y), g(α, z)) ≈ g(α, s(x, y, z)).

On the other hand, by idempotency and above identities we have

t(x, y, z) ≈ g(t(x, y, z), t(x, y, z)) ≈ g(t(x, y, z), s(x, y, z)) ≈

≈ f(g(x, x), g(y, y), g(z, z)) ≈ f(x, y, z).

In the same manner we get s(x, y, z) ≈ f(x, y, z). Thus, by the generalized entropic

property and the last two identities we have

f(g(x11, x21), g(x12, x22), g(x13, x23)) ≈ g(t(x11, x12, x13), s(x21, x22, x23)) ≈

≈ g(f(x11, x12, x13), f(x21, x22, x23)). �

Corollary 2.1. Every idempotent and commutative algebra A = (A, f, g) with a

ternary and a binary operations satisfying the generalized entropic property is entropic.

Proof. We have to show that identities (d), (e) and (f) hold in the algebra A =

(A, f, g). The identity (d) is proved in Theorem 2.1, the identity (e) is proved analogically,

and the identity (f) is proved in Theorem 2.3. �
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