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Abstract. The paper defines new classes of solutions of the heat equation in half- 
spaces and presents a series of integral representations for them. On the basis of these 
formulas boundedness of corresponding integral operators is proved.

INTRODUCTION
Consider the heat equation

du 
dt (i)

where u = ti(x.t), x € IR”, n > 1. and t > 0. The classical Cauchy problem for (1) 
asks for a solution satisfying the initial data u(x,0) = f(x), where f is a bounded 
and continuous function.
A well-known solution is given by the formula : 

u r“/2e-։*-»!’/47(ÿWv. (2)

where c„ = (4tt)_,i/2. Solutions of the heat equation are commonly called caloric 
functions, and we will use that term throughout this paper.
Formula (2) suggests further generalizations. In fact, if we have

\f(x)\ < C։ exp{C2|x|<։}. a <2.

then the integral (2) will still be convergent and the resulting function u will satisfy 
the heat equation (1). In other words, formula (2) generates solutions to the heat 

_ • 
equation in a wider class of initial value functions. A standard reference on second 
order parabolic equations is the book by A. Friedman [6].
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In the present paper we find some integral formulas providing solutions to the equation 
(1). Our starting point is the case of harmonic functions [4]. In [4] we constructed 
the classes A£ based on an integral representation formula. Using the same idea 
of the classes A£ and well-known parallels between harmonic and caloric functions, 
we provide similar representations for the case of equation (1). Then we use these 
integral representations to prove boundedness of certain integral operators in weighted 
Lebesgue functional spaces.
Note that spaces of solutions of more general equations (elliptic and parabolic) were 
introduced in [2]. For some particular defining functions and certain values of p the 
spaces Hp considered in [2] intersect with our Ag spaces of solutions of the heat 
equation. However, our methods and results appear totally different.
A preliminary version of this work was reported at Joint Mathematical Meeting of 
AMS in Baltimore (see Abstracts of Papers Presented to AMS, Issue 79, 1992, p. 93).

§1. CLASSES OF CALORIC FUNCTIONS AND THE REPRESENTING 
KERNEL
We consider the equation (1) in the upper half-space (x,t) € IR"+1, t > 0. It is well- 
known that any caloric function is an infinitely differentiable function in any variable 
(see, e.g. [G]). 1

In analog}' with the case of harmonic functions we define Hardy spaces of caloric 
functions as follows : a caloric function u(x,t) in the half-space IR^+1 belongs to the 
Hardy space CHP. 0 < p < oo (C stands for caloric), if

sup / |u(x, t)\pdx < oo. (3)
oo JlR"

It is not difficult to see that CHP functions possess boundary values and have integral 
representations given by the formula (2), where the boundary value of the given CHP 
function stands for f. Moreover, the boundary function is in Lp and its Lp norm 
(p > 1) is estimated by the CHP norm of the given function (see [2], [8] for details). 
The converse is also true. Indeed, let f € Lp, 1 < p < oc. and

u(x, t) = [ K(x - y,t)f(y)dy, (4)
■/JR"

where K(x,t) — c.nt ,l/2 exp{ —|x|2/4t} is the heat kernel. The choice of c„ implies 
f K dx = 1, hence by Holder’s inequality,

l«(M)|p< [ K(x-y,t)\f(y)\»dy,
./IR"
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and our assertion is proved.
We observe, that if u € CHpl 1 < p < oc, then u is bounded in any half-space 
t > c > 0 in IR"+I. Indeed, as it is mentioned above, u has the representation (4) 
and hence, again using Holder’s inequality we will find

M*.*)lp < [ K(x-yyt)\f(y)\pdy =
Jtr*

= Ct՜"/2 [ |/(»)|’exp(֊|« - y|2/4t} dy <
JlRn

or
<5)

Hence, u is bounded in any half-space t > c for any c > 0.
Now let us consider different spaces of caloric functions. A caloric function u(z,t) in 
IR"+1 (n > 1) belongs to the class CAP, 0 < p < oo, — 1 < a < oo (C again comes 
from caloric), if

IMIJ.a = [ [ dx dt < 00.
Jo JIRn

Recall, that Ap functions have in general no boundary values (see [1] and [5)). The 
same is true for corresponding classes of caloric functions defined above, meaning 
that we cannot expect any integral formulas similar to (2).
One of the goals of this paper is to construct kernel functions, that produce formulas, 
which play a similar role. For representation formulas in Ap spaces of harmonic 
functions see [3], [4], [7].
There is no inclusion relationship between classes CHP and CAP. Indeed, let f be 
the characteristic function of the interval [0.1] on the real line and

In that case

Z
oo rl /-oc rl

u(xyt) dx = dy K(x-y,t)dx=l dy = 1,
■OO Jq J — OO J 0

and f € CH1. At the same time,
/•OO rOO rOC
/ / u(x, t)ta dx dt = / ta dt = oo.

JO J — oo J 0

Construction of an example for any p is similar. The proof of the converse is more 
complicated and the example will be provided by Theorem 2 later The same theorem 
will also show that the classes CAP are not trivial.
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After these preliminary observations we turn to introduction of the main objects of 
the paper. For any integer m > 0 and (x,t) € IR"՜1՜1 we denote

K,„(x,t) - ml K(x. t). (6)

where A'(t, t) is the classical heat kernel, as before.
We will need effective estimates of this kernel in order to use it for integral 
representation formulas. As a first step, we calculate :

= ^2 exPW'i՜/ ’•'}
— |x|2/4f

K0(T,t) = Cil-y—— (|x|2 ֊ t), 
L t & 

tfi(M) = <■՝■- 3tM’ + 2i’>-

Using induction, we get the following result.

Lemma 1. For any integer th > 0 and U-t) € IR"+1 the kernels Km satisfy the 
estimates

|K„(x,«)l < c֊^ X M՛ (7)
J=O

To prove the integral representation formula, we need the following assertion.

Lennna 2. For any u € CA^, a > — 1 and any integer m > 0, 

O’n
Ot™ u(x, N + t) -> 0

uniformly for x as N -> oo.

Proof : If m = 0 we just use (5) and the observation that functions from CA\ belong 
to CH՝ in any sub-half-space. So u(x, t) ֊4 0 uniformly for .c as t —> oc.

Assume now that m > 0. Applying integral formula (2) for the half-space 
t > c > 0 (here c is any positive constant), we get

u(x,t)= u(y,c)K(x — y,t — c) dy.
J JR’՝

This integral converges absolutely, because of our assumption about the function «•
Because u and K are smooth, we can differentiate under the integral sign and get

d՝" f dm
aF“(1’l} = u(y-c) W‘K(X - y * ՛ e}dy-

Now. using estimates (7) from Lemma 1 we will get the desired result.
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՝(2. INTEGRAL REPRESENTATIONS AND BOUNDED 
PROJECTIONS
In this section we formulate and prove our main results. As we have mentioned above, 
rhe classes CA% cannot have integral representations similar to those for the Hardy 
type spaces.

Theorem 1. Let u be caloric in the upper half-space and let u € CA£, 1 < p < oo, 
-1 < o <oo. For any integer in satisfying

m>ot for p = 1; in > (1 4-û)/p-1 for 1 < p < oo, (8)

the following integral representation formulas hold

- y.t + T)r'n dy dr, (9)

where

ml ut"՝+i
Proof : First of all we show that integrals (9) are well defined. If p = 1 and u € CA„, 
by Lemma 1,

l«(!/. r)||Km(x - y,t 4- r)|rm dy dr <C

exp[-|a:-J/|2/4(t + r)] rm dy dr.
j=o

Now, considering separately the possible cases |x - j/| < 1. |x - j/| > 1. t 4֊ r < 1 and 
t + t > 1, we find that

|/C„.(x֊y,t + r)|r-"<C(f + T)r;^„i+1.

where C depends on x only. It is easy to see. that if m > a, then the right side of 
the last inequality is estimated by Cra. where C now depends on both x and t. If 
1 < p < oo, then using Holder’s inequality and estimates like above, we see that 
integral (9) is finite if m > (1 4- <*)/p — 1.
We turn to the proof of the formula (9). Using, as in the proof of Lemma 2, the 
semigroup property of heat kernel we can write for any t > 0

u(tJ) = / u(y.t/2)K(x - y.t/2) dy.
Jnv՝

(10)
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and the integral converges absolutely. For any fixed /V > 0 integration by parts gives

[ u(y.t/2)K(x - l/,t/2) dy = 
JIR” %

' r"՝—-֊K(x-y,t/2 + r) dr dy + u(x,. 
0 dt’n+l

U(9,e/2)xm! Jjr-.
O'"

+ + (11)

Now we can use Lemma 2 to find the limit as N —> oo. Thanks to the observations
at the beginning of the proof, change of order of integration is justified because of 
absolute integrability of all integrals.

nl- JfR' JO 

+ 1 roc r

"՝di^՝K{x ~ y't/2 + T) dT dv =

ml

m!

Jo Jtr
K(x - y, t/2 + t) dr dy =

u(y, t/2)K(x - y, t/2 + r) dy

u(y,7֊)/<(rr ֊ y.t + t) dy (12)
OO

m! Jo ^—^K(x-y,t + r)dy =

m! nt

m

This last chain of equalities proves our Theorem.
The integral representation formula proved in Theorem 1 allows to define certain 
projection operators in appropriate functional spaces. We define that spaces as 
follows : For l<p<oo, -1<q<oo denote by L? = L£(IR//41) the class of 
all measurable functions, such that

= / 10CM)IP<° (lt < o°-

It is obvious that CA? G L%. Also, it follows from the proof of the Theorem 1. that 
the integral in (9) remains well defined, if we replace u € CA%, for p > 1 by any 
function. Further, it is clear that

9(y,t)Km(x - y,t + t)t'h dy dr 
uv+*

(13)

is a caloric function, provided J € LJ, and the integer m > 0 satisfies certain 
conditions. Our next result describes the class of functions, to which the integral 
(13) belongs.
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Theorem 2. Assume g € L£(IR"+1), 1 < p < oc, -1 < o < oc, and let the operator 
Tm be defined by the formula (13). If m > (1 + o)/p - 1. then the function Tmg is 
caloric, Tmg G CA% and there exists a constant C > 0 depending only on p and a. 
such that

||7’ni.?llp,a < "f/llp.n (14)

Proof : First we treat the case p = 1. Let g € and denote u = Tmg. where m > a.
Using Fubini’s theorem (see remarks at the beginning of the proof of Theorem 1), we 9
get

|0(y,r)| |K,n(x-j/,t+T)|Tm dy dr =

|$(lt, T)|Tm dy dr / |A'„,(z ֊ y, t 4֊ r)|t° dx dt.
«+» Jir;+։

To estimate the inner integral we use Lemma 1 :

x - y, t 4֊ r)|t° dx dt <

e.\p{ -l-r - y|2/4(t 4- r)} 
(/ 4- r)n/2+2+2m |x ֊ !/|2(n,+1-j)(t 4- ryt° dxdt =

The inner integral on the right-hand side of (15) can be estimated using change of 
variable :

= (t 4- r)’l/a+’n+։-> [ exp{-|z|2/4}|z|2(m+1->) dz = C(t 4- r)n/2+m+1-<
JlR*

So, (15) extends to

= Cr“m+o
o —a
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Finally, combining all these estimates yields

dy dr = (7115111.0,

which proves Theorem in case p = 1. The proof of the case 1 < p < oc is standard 
and based on the classical Schur lemma, which can be found in many books (see e.g. 
[5]. p. 34. Lemma 2.2).

Lemina 3 (Schur). Let p be a positive measure on some a-algebra of a set X, 
lx : A x A' ।—> [0. oo) be a measurable function. Assume that there exists a 
measurable function g : X »—> [0, oo) and constants a and b. such that for 1 < p < oo,
9 = r/(l>- 1),

[ ^(^,l/)Lg(!/)]vdp(j/) < (ag(x))4. 
Jx
I К(x, у}[Я(у)}^х) < {Ъ3(у)У,

Then the equation
Tf(x) = I K(x,y)f(y)dM

defines a continuous operator on L''(dp) with ||T|| < ab.

To conclude the proof of the Theorem, we need only to check the conditions of the 
Lemma, where X — IR^4՜1. dp is the Lebesgue measure in JR^՜1՜1, K = |Km|. As a 
test function g we can take with sufficiently small 6 > 0 and use estimates from 
the first part of the proof of the Theorem. The proof is now complete.

Concluding Remarks. 1) Theorem 2 shows that CAP spaces arc not empty. Indeed, 
any function of the form (13) with any 5 € is a function from (7A£.
2) Theorem 2 provides an example of a function, which belongs to the class CAP 
but does not belong to Hardy-type class CHP. Indeed, let us take a function (call 
it g) supported on the square 0<x<l,0<t<lin the upper half-plane and 
zero everywhere else, and let it grow near the boundary t = 0 faster than t՜1. The 
function defined by formula (13) with rn big enough, will obviously belong to CAP 
(thanks to Theorem 2), but it will not belong to CHP. We leave the details to the 
reader.

Резюме. В статье определяются новые классы решений уравнения тепло­
проводности в полупространствах и для них приводятся ряд интегральных 
представлений. На основе этих формул доказана ограниченность соответству­
ющих интегральных операторов.
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