ЗАДАЧА РИМАНА-ГИЛЬБЕРТА И ОДНОСТОРОННЯЯ ЗАДАЧА ГИЛЬБЕРТА В МНОГОСВЯЗНЫХ ОБЛАСТЯХ

Н. Е. Товмасян, В. С. Закарян

Известия Национальной Академии Наук Армении. Математика, том 35, 8, 2000

В статье изучаются задача Римана-Гильберта и односторонняя задача Гильберта для некоторых классов аналитических функций. Целью работы является сведение обеих задач к уравнениям Фредгольма. В случае задачи Римана-Гильберта соответствующее уравнение Фредгольма имеет единственное решение. Получены некоторые результаты для дефектных чисел этих задач.

§1. ВВЕДЕНИЕ

Пусть D — ограниченная (m+1)—связная область на плоскости с границей $\Gamma = \Gamma_0 \bigcup \Gamma_1 \bigcup ... \bigcup \Gamma_m$, $m \ge 1$, где Γ_0 , Γ_1 , ... Γ_m — замкнутые, непересекающиеся, достаточно гладкие кривые, причём Γ_0 охватывает все остальные контуры $\Gamma_1,...,\Gamma_m$. Не умаляя общности будем предполагать, что начало координат принадлежит области D. Рассмотрим следующие две задачи.

Задача Римана-Гильберта : найти в области D аналитическую функцию непрерывную в замкнутой области $\overline{D} = D \cup \Gamma$ и удовлетворяющую граничному условию :

$$\operatorname{Re}[a(z)\,\varphi(z)] = f(z), \quad z \in \Gamma,$$
 (1.1)

где f(z) – некоторая вещественнозначная аналитическая функция на Γ .

Односторовняя задача Гильберта : найти в области D аналитические функции $\varphi(z)$ и $\psi(z)$, непрерывные в замкнутой области \overline{D} и удовлетворяющие граничному условию

$$\varphi(\alpha(z)) = a(z) \, \psi(z) + g(z), \quad z \in \Gamma. \tag{1.2}$$

где a(z), g(z). $\alpha(z)$ – заданные на Γ функции. $\alpha(z)$ взаимно однозначно отображает Γ на себя, меняя направление обхода контура и удовлетворяет следующему

условию

$$a(z) \neq 0, \quad \frac{\partial \alpha(z)}{\partial s} \neq 0, \quad z \in \Gamma$$

 $(\frac{\partial}{\partial z})$ означает дифференцирование вдоль Γ).

Предполагается, что функции a(z), f(z), g(z), $\alpha(z)$ и их производные $\partial/\partial s$ удовлетворяют условию Гёльдера на Γ (условие H, [1], стр. 22). Класс функций, удовлетворяющих условию Гёльдера в замкнутой области \overline{D} и на Γ будем обозначать через $H(\overline{D})$ и $H(\Gamma)$, соответственно.

Если не оговорено особо, функции и постоянные будем считать комплекснознач-

Задачи (1.1) и (1.2) полностью исследованы в [1], [2], где они были сведены к сингулярному интегральному уравнению нормального типа.

Фредгольма второго рода и к некоторой системе алгебраических уравнений. В случае задачи (1.1) соответствующее интегральное уравнение Фредгольма имеет единственное решение. В конце работы полученные результаты применяются к решению задачи Пуанкаре для эллиптических уравнений.

§2. ВИДОИЗМЕНЁННАЯ ЗАДАЧА РИМАНА-ГИЛЬБЕРТА

Этот параграф имеет вспомогательный характер. Сначала рассмотрим следующую видоизменённую задачу Рямана—Гильберта : найти аналитическую в области D и непрерывную в \overline{D} функцию $\varphi(z)$, удовлетворяющую следующим условиям :

$$Re(\gamma_j \varphi(z)) = f(z), \quad z \in \Gamma_j, \quad j = 0, 1, \tag{2.1}$$

$$\operatorname{Re}(\gamma_j \varphi(z)) = f(z) + \alpha_j, \quad z \in \Gamma_j, \quad j = 2, ..., m, \tag{2.2}$$

где $\alpha_2,...,\alpha_m$ — искомые вещественные постоянные. $\gamma_0, \gamma_1,...,\gamma_m$ — некоторые заданные отличные эт нуля постоянные, $\gamma_0=1$, $\lim \gamma_1 \neq 0$, а f(z) — функция в правой части (1.1). Если m=1, то условия (2.2) отсутствуют. При $f\equiv 0$ задачу (2.1), (2.2) будем называть однородной.

Теорема 2.1. Задача (2.1), (2.2) имеет единственное решение.

Доказательство : Сначала докажем, что однородная задача (2.1), (2.2) имеет единственное решение. Пусть ($\varphi(z)$, α_2 , ..., α_m) — решение однородной задачи (2.1), (2.2). Положим $\varphi(z) = u(z) + i \nu(z)$, где u(z) и $\nu(z)$ суть действительная и

мнимая части функции $\varphi(z)$, удовлетворяющие условию Коши-Римана

$$\frac{\partial u}{\partial x} = \frac{\partial \nu}{\partial y} \qquad \frac{\partial u}{\partial y} = -\frac{\partial \nu}{\partial x}, \qquad z \in D. \tag{2.3}$$

Из граничных условий (2.1) и (2.2) при $f \equiv 0$ имсем

$$u(z)=0, \qquad z\in\Gamma_0, \tag{2.4}$$

$$a_j u(z) + b_j \nu(z) = a_j, \quad z \in \Gamma_j, \quad j = 1, ..., m,$$
 (2.5)

где a_j и b_j – действительные постоянные, $\alpha_1=0$, $b_1=0$ и $a_j^2+b_j\neq 0$, j=1,...,m. Пусть N – внешняя нормаль границы Γ_j в точке $z\in\Gamma_j$. Рассмотрим интегралы

$$I_j = \int_{\Gamma_j} u \frac{\partial u}{\partial N} ds, \qquad j = 0, ..., m,$$

где ds — элемент дуги контура Γ_j .

Из условия (2.3) следует, что $\frac{\partial u}{\partial N} = \frac{\partial v}{\partial s}$. Имеем

$$I_j = \int_{\Gamma_j} u \frac{\partial \nu}{\partial s} ds, \qquad j = 0, ..., m.$$
 (2.6)

Из (2.4), (2.5) следует, что или $u(z)={\rm const}$ на Γ_j , или $\nu(z)=c_j\,u(z)+d$, при $z\in\Gamma_j$, где c_j и d_j — некоторые постоянные. Поэтому из (2.6) имеем $I_j=0$. j=0,...,m. Используя формулу Грина ([4], стр. 309), получаем

$$\iint_{D} u \, \Delta u \, dx \, dy = \int_{\Gamma} u \, \frac{\partial u}{\partial N} \, ds - \iint_{D} \left[\left(\frac{\partial u}{\partial x} \right)^{2} + \left(\frac{\partial u}{\partial y} \right)^{2} \right] \, dx \, dy, \tag{2.7}$$

где $\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ — оператор Лапласа.

Так как $\Delta u \equiv 0$ и $I_j = 0$, j = 0, ... m, то из (2.7) получим

$$u(z) \equiv \text{const.}$$
 (2.8)

Из (2.8) и условий (2.3) – (2.5) следует, что $u(z) \equiv 0$, $\nu(z) \equiv 0$, $\alpha_j = 0$, j = 2,...,m. Следовательно, однородная задача (2.1), (2.2) имеет только нулевое решение. Теперь докажем, что неоднородная задача (2.1), (2.2) имеет решение для любых правых частей $f_0(z),...,f_m(z)$. Решение этой задачи ищем в виде

$$\varphi(z) = \sum_{j=0}^{m} \frac{1}{\gamma_j \pi i} \int_{\Gamma_j} \frac{\mu(t) dt}{t - z} + i \int_{\Gamma_j} \mu(t) ds, \qquad (2.9)$$

$$\alpha_j = \int_{\Gamma} \mu(t) ds, \qquad j = 2, ..., m,$$
 (2.10)

где $\mu(t)$ – искомая вещественнозначная функция, удовлетворяющая условию Гёльдера на Γ .

Подставляя $\varphi(z)$ и α_j из (2.9) и (2.10) в (2.1) и (2.2), для определения функции µ(z) получим следующее интегральное уравнение Фредгольма.

$$\mu(t_0) = \int_{\Gamma} K(t_0, t) \,\mu(t) \,ds + f(t_0), \qquad t_0 \in \Gamma. \tag{2.11}$$

где $K(t_0,t) = \frac{K^{-12}-t_0}{|t-t_0|^6}$ – вещественнозначное ядро, функция $K(t_0,t)$ удовлетворяет условию Гёльдера по t_0 и t на Γ , а $0 < \delta < 1$ – постоянная.

Теперь докажем, что однородное уравнение (2.11) (при $f \equiv 0$) имеет только нулевое решение. Действительно, пусть $\mu(t)$ - решение однородного уравнения (2.11). Тогда ($\varphi(z), \alpha_2, ..., \alpha_m$), определенная формулами (2.9) и (2.10), является решением однородной задачи (2.1), (2.2). Следовательно. $\varphi(z)\equiv 0$, $\alpha_j=0$. j = 2, ..., m, T.e.

$$\sum_{j=0}^{m} \frac{1}{\gamma_j \pi i} \int_{\Gamma_j} \frac{\mu(t) dt}{t-z} + i \int_{\Gamma_j} \mu(t) ds \equiv 0, \quad z \in D.$$
 (2.12)

$$\int_{\Gamma_j} \mu(t) \, ds = 0, \qquad j = 2, ..., m. \tag{2.13}$$

Пусть D_0^+ - ограниченная, односвязная область с границей Γ_+ а D_j^- неограниченная область с границей Γ_j , j=1,...,m. Так как $\varphi(z)\equiv 0$, то имсем

$$\int_{\Gamma_j} \frac{\varphi(t) \, dt}{t - z} = 0, \quad z \in D^-, \quad j = 1, \dots, m. \tag{2.14}$$

Подставляя $\varphi(z)$ из (2.9) в (2.14), получаем

$$\frac{1}{\pi i} \int_{T} \frac{\mu(t) dt}{t-z} = 0, \quad z \in D^{-}, \quad j = 1, ..., m.$$
 (2.15)

Из (2.12) и (2.15) вытекает

$$\frac{1}{\pi i} \int_{\Gamma_0} \frac{\mu(t) \, dt}{t - z} + i \int_{\Gamma_1} \mu(t) \, ds = 0, \quad z \in D^+. \tag{2.16}$$

Из (2.15) и (2.16) следует (см. [1], стр. 271), что

$$\mu(t) = 0, \quad t \in \Gamma_0, \quad \mu(t) = c, \quad t \in \Gamma_j, \quad j = 1, ..., m.$$
 (2.17)

$$\int_{\Gamma_1} \mu(t) \, ds = 0. \tag{2.18}$$

где с, - действительные постоянные.

Из соотношений (2.13), (2.17) и (2.18) получаем, что $\mu(t)=0$. Следовательно, однородное уравнение (2.11) имеет только нулевое решение. Поэтому неоднородное уравнение (2.11) имеет решение для любой правой части f(t). Теорема 2.1 доказана.

Теперь рассмотрим более общую граничную задачу

Re
$$[\gamma_j = \varphi(z)] = f(z), z \in \Gamma_j, j = 0, 1,$$
 (2.19)

Re
$$[\gamma_j z^n \varphi(z)] = f(z) + \alpha_j$$
, $z \in \Gamma$, $j = 2, ..., m$, (2.20)

где n – целое. Здесь все остальные величины те же, что и в задаче (2.1), (2.2), $\gamma_0=1$, $\lim \gamma_1\neq 0$.

Случай натурального л. Пусть ($\varphi(z)$, α_{02} , ..., α_{0m}) — решение задачи (2.1), (2.2). которое является также решением задачи (2.19), (2.20) тогда и только тогда. когда $\alpha_j = \alpha_{0j}$, j=2,...,m и

$$\varphi(z) z^n = \varphi_0(z), \quad z \in D. \tag{2.21}$$

Из (2.21) имеем

$$\varphi_0^{(k)}(0) = 0, \qquad k = 0, \dots$$
 (2.22)

Если выполнены условия (2.22), то из (2.21) получаем $\varphi(z) = \varphi_0(z) z^{-n}$. Таким образом, мы доказали следующее утверждение.

Теорема 2.2. Если $n \ge 1$, то задача (2.19), (2.20) имеет единственное решение тогда и только тогда, когда выполнены условия (2.22) и

$$\varphi(z) = \varphi_0(z) z^{-n}, \quad \alpha_j = \alpha_{0j}, \quad j = 2, ..., m.$$
 (2.23)

Случай $n \le -1$. В задаче (2.19), (2.20) сделаем замену переменной

$$\varphi(z) = \sum_{k=0}^{-n-1} (c_k + i d_k) z^k + z^{-n} \psi(z), \qquad (2.24)$$

где c_k и d_k — действительные постоянные, а $\psi(z)$ аналитична в области D и непрерывна в \overline{D} .

Сначала рассмотрим однородную задачу (2.19), (2.20). Подставляя $\varphi(z)$ из (2.24) в (2.19), (2.20) при $f\equiv 0$, получим

Re
$$[\gamma, \psi(z)] = F_j(z), z \in \Gamma_j, j = 0, 1,$$
 (2.25)

$$\operatorname{Re}\left[\gamma_{j} \psi(z)\right] = F_{j}(z) + \alpha_{j}, \quad z \in \Gamma_{j}, \quad j = 2, \dots m, \tag{2.26}$$

где $F_j(z) = -\mathrm{Re}\left[\gamma_j z^n \sum_{k=0}^{\infty} (c_k + i d_k) z^k\right]$

Таким образом, мы получили задачу (2.1), (2.2) относительно $(\psi(z),\alpha_2,...,\alpha_m)$. Пусть $(\varphi_k(z), \alpha_{k2}, ..., \alpha_{km})$ и $(\psi_k(z), \beta_{k2}, ..., \beta_{km})$ суть решения задачи (2.1), (2.2)при $f_1(z) = \text{Re}(\gamma_j z^{n+k})$ и $f_j(z) = -\text{Re}(\gamma_j z^{n+k} i), j = 0, 1, ..., m$, соответственно. Тогда общее решение задачи (2.25), (2.26) определяется следующим образом:

$$\psi(z) = \sum_{k=0}^{-n-1} (c_k \varphi_k(z) + d_k \psi_k(z)), \qquad (2.27)$$

$$\alpha_{j} = \sum_{k=0}^{-n-1} (c_{k}\alpha_{kj} + L_{j}\beta_{kj}), \quad j = 2, \dots m.$$
 (2.28)

Подставляя $\psi(z)$ из (2.27) в (2.24), получим

$$\varphi(z) = \sum_{k=0}^{-n-1} \left[c_k \left(z^k + z^{-n} \, \varphi_k(z) \right) + d_k \, \left(i \, z^k + z^{-n} \, \psi_k(z) \right) \right]. \tag{2.29}$$

Из (2.28) и (2.29) вытекает, что однородная задача (2.19), (2.20) при n < -1имеет (-2n) линейно независимых решений (над полем вещественных чисел). Если $(\varphi_0(z), \alpha_{02}, ..., \alpha_{0m})$ – решение задачи $(2.1), (2.2), \tau_0(\varphi_0(z)z^{-n}, \alpha_{02}, ..., \alpha_{0m})$ будет частным решением неоднородной задачи (2.19), (2.20). Таким образом. мы получили следующий результат.

Теорема 2.3. При n < -1 однородная задача (2.19), (2.20) имеет (-2n)линейно независимых решений, а неоднородная задача (2.19), (2.20) имеет решение для любого f(z), причём общее решение этой задачи определяется формулой

$$\varphi(z) = \varphi_0(z) z^{-n} + \sum_{k=0}^{-n-1} \left[c_k \left(z^k + z^{-n} \varphi_k(z) \right) + d_k \left(i z^k + z^{-n} \psi_k(z) \right) \right], \quad (2.30)$$

$$\alpha_j = \alpha_{0j} + \sum_{k=0}^{-n-1} (c_k \alpha_{kj} + d_k \beta_{kj}), \quad j = 2$$
 (2.31)

где c_k и d_k — произвольные вещественные постоянные.

Теперь рассмотрим следующую задачу:

$$\operatorname{Re}\left[z^{n}\,\varphi(z)\right] = f(z), \quad z \in \Gamma_{0}, \tag{2.32}$$

Re
$$[z^n \varphi(z)] = f(z) + \alpha_j, z \in \Gamma_j, j = 1, ..., m,$$
 (2.33)

где $\varphi(z)$ – искомая аналитическая функция в области D, непрерывная в $D, \alpha_1, ...,$ α_m суть искомые действительные постоянные. n – целое, а f(z) – как и в (2.1), (2.2).

Задача (2.32), (2.33) при n=0 полностью исследована в [1], стр. 246. Используя решение, приведённое в [1], мы исследуем задачу (2.32), (2.33) в общем случае. Здесь мы приведём только результаты.

Согласно [1], стр. 246 решение задачи (2.32), (2.33) при n=0 ищем в виде

$$\varphi(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{\mu(t) dt}{t - z},$$

$$\alpha_j = \int_{\Gamma_j} \mu(t) ds, \quad j = 1, ..., m,$$
(2.34)

где $\mu(t)$ — вскомая функция, определённая в D и удовлетворяющая условию Гёльдера на Γ . Подставляя $\varphi(z)$ в α_j из (2.34) в (2.32), (2.33) при n=0, получим интегральное уравнение Фредгольма вида (2.11). Как показано в [1], стр. 253, для любой непрерывной функции f(z) это уравнение имеет единственное решение. Следовательно, мы получим частное решение $(\varphi_0(z), \alpha_{01}, \dots, \alpha_{0m})$ задачи (2.32), (2.33) при n=0. Общее решение этой задачи определяется формулой (см. [1], стр. 246)

$$\varphi(z) = \varphi_0(z) + ic, \qquad \alpha_j = \alpha_{0j}, \quad j = 1, ..., m.$$
 (2.35)

где с - вещественная постоянная.

Пусть $n \ge 1$ и $(\varphi(z), \alpha_1, ..., \alpha_m)$ — решение задачи (2.32), (2.33). Следовательно, согласно формуле (2.35) получим

$$z^{n} \varphi(z) = \varphi_{0}(z) + ic, \qquad (2.36)$$

$$\alpha_j = \alpha_{0j}, \quad j = 1, \dots m. \tag{2.37}$$

Из (2.36) следует, что $c = -{
m Im}\, \varphi_0(0)$ и из соотношений

Re
$$\varphi_0(0) = 0$$
, $\varphi_0^{(k)}(0) = 0$, $k = 1, ..., n-1$ (2.38)

вытекает, что

$$\varphi(z) = z^{-n} (\varphi_0(z) - \varphi_0(0)). \qquad (2.39)$$

Следовательно, в этом случае условия (2.38) необходимы и достаточны для разрешимости задачи (2.32), (2.33), при этом ($\varphi(z), \alpha_1, ..., \alpha_m$) определяется формулами (2.37) и (2.39).

Случай $n \le 1$. Используя представление (2.24), аналогично доказывается, что в этом случае однородная задача (2.32), (2.33) имеет ровно (-2n+1) линейно независимых решений, а соответствующая неоднородная задача разрешима для любой правой части f(z).

§3. ИССЛЕДОВАНИЕ ГРАНИЧНОЙ ЗАДАЧИ (1.1)

В [3] (стр. 245) задача (1.1) сведена к той же задаче более частного вида

$$\operatorname{Re}[\gamma_j z^n \varphi(z)] = f_0(z), \quad z \in \Gamma_j, \quad j = 0, \quad m. \tag{3.1}$$

где $n = \frac{1}{2\pi} \Delta_{\Gamma}(\arg a(z))$, $\gamma_0 = 1$, $\gamma_1 \dots \gamma_m$ — отличные от нуля и зависящие только от a(z) и области D, $\Delta_{\Gamma}(\arg a(z))$ – приращение функции $\arg a(z)$, когда точка z один раз описывает кривую Γ в направлении, оставляющем область Dслева. Целое число n называется индексом функции a(z) относительно границы Г. Поэтому енже мы будем исследовать задачу (3.1).

Пусть сначала в граничной задаче (3.1) одно из чисел $\gamma_1,...,\gamma_m$ не является вещественным. Не умаляя общности предположим, что этим числом является ул. Итак, пусть $\gamma_0 = 1$, $Im\gamma_1 \neq 0$. Обозначим через k_0 число линейно независимых решений однородной задачи (3.1), а через k'_0 , число условий вида

$$\int_{\Gamma} f(t) \, \psi_k(t) \, ds = 0, \quad k_0 = 1, \dots, k'_0,$$

которые необходимы и достаточны для разрешимости неоднородной задачи (3.1), где $\psi_1,...,$ — некоторые линейно независимые вещественнозначные функции. Эти функции не зависят от f(t).

В монографии [3], стр. 254 - 257, 261 доказаны следующие формулы:

$$k_0 \le -n$$
, $k_0 - k'_0 = -2n + 1 - m$. при $-m - 1 \le n \le -1$,

$$k_0 = 0$$
. $k'_0 = 2n + m - 1$ upu $n \ge 0$. (3.2)

$$k_0 = -2n + 1 - m, k'_0 = 0$$
 при $n \le -m$. (3.3)

Если $\varphi(z)$ является решением задачи (3.1), то ($\varphi(z)$, 0, ..., 0) есть решением задачи (2.19), (2.20). С другой стороны, компонента $\varphi(z)$ решения ($\varphi(z), \alpha_2, ..., \alpha_m$) задачи (2.19), (2.20) является решением задачи (3.1) тогда и только тогда, когда

$$\alpha_j = 0, \quad j = 2, ..., m.$$
 (3.4)

Следовательно, все решения задачи (3.1) суть решения ($\varphi(z), \alpha_2, ..., \alpha_m$) задачи (2.19), (2.20), которые удовлетворяют условию (3.4).

Пусть $n \ge 0$ и $(\varphi_0(z), \alpha_{02}, ..., \alpha_{0m})$ есть решение задачи (2.1), (2.2). Из Теорем 2.1 и 2.2 следует, что задача (2.19), (2.20) имеет решение тогда и только тогда, когда выполнены условия (2.22), при этом решение задачи определяется формулой (2.23). Условия (2.22) можно записать в виде

$$\operatorname{Re}\varphi_0^{(k)}(0) = 0$$
, $\operatorname{Im}\varphi_0^{(k)}(0) = 0$, $k = 0, ..., -n-1$ (3.5)

(при n=0 условия (3.5) отсутствуют). Из (2.23) и (3.4) имеем

$$\alpha_{0k} = 0, \quad k = 2, ..., m.$$
 (3.6)

Таким образом, мы получили следующий результат.

Теорема 3.1. Если $\gamma_0=1$, ${\rm Im}\gamma_1\neq 0$, $n\geq 1$, то для разрешимости задачи (3.1) необходимо и достаточно выполнение условий (3.5), (3.6), при этом решение этой задачи единственно и определяется формулой $\varphi(z)=\varphi_0(z)\,z^{-n}$.

Из (3.2) вытекает, что условия (3.5), (3.6) линейно независимы.

Пусть теперь $n \le -1$. Тогда общее решение задачи (2.19), (2.20) определяется формулами (2.30), (2.31). Подставляя a_i (j = 2, ..., m) из (2.31) в (3.4), для определения действительных постоянных a_i и d_k получаем систему алгебраических уравнений

$$\sum_{k=0}^{-n-1} (c_k \alpha_{kj} + d_k \beta_{kj}) = -\alpha_{0j}, \quad j = 2, \dots m.$$
 (3.7)

Таким образом, задача (3.1) имеет решение тогда и только тогда, когда имеет решение система (3.7). Общее решение задачи (3.7) определяется формулой (2.30), где c_k и d_k (k=0,...,-n+1) удовлетворяют (3.7).

Выше мы показали, что условия (3.4), (3.5) линейно независимы. Отсюда следует, что функционалы α_{0k} (которые зависят от f) линейно независимы. Из формулы (3.3) следует, что при $n \le -m$ неоднородная система (3.7) всегда имеет решение, а соответствующая однородная система имеет ровно (-2n+1-m) линейно независимых решений. Следовательно, при $n \le -m$ ранг основной матрицы системы (3.7) равен m-1. Кроме того, если $-1 \le n \le -m-1$, то из (2.31) и (3.7) получим $k_0 = -2n-r$, $k_0' = -m-1-r$.

Пусть теперь в задаче (3.1) все γ_j – вещественные. Тогда, не ограничивая общности, можем считать, что $\gamma_j=1,\ j=0,...,m$. В этом случае эта задача исследуется, основываясь на видоизмененной задаче (2.32), (2.33).

§4. ЗАДАЧА (1.2)

4.1. Пусть D и $\Gamma = \Gamma_0 \bigcup \Gamma_1 \bigcup ... \bigcup \Gamma_m$ как и во Введении. Положим

$$n_j = \frac{1}{2\pi} \Delta_{\Gamma_j}(\arg a(z))$$
 $(j = 0, 1, ..., m), \quad n = n_0 + n_1 + ... + n_m,$ (4.1)

где $\Delta_{\Gamma_1}(\arg a(z))$ — приращение функции $\arg a(z)$ (см. (1.2)), когда z обходит кривую Γ_{j} , оставляя область D слева.

В задаче (1.2) сделаем замену переменных

$$\psi(z) = (z - z_1)^{n_1 + 1} ... (z - z_m)^{n_m + 1} \omega(z), \qquad (4.2)$$

где z_k – некоторая фиксированная точка внутренности контура Γ_k (k=1,...,m), а $\omega(z)$ — аналитическая функция в D. Подставляя $\psi(z)$ из (4.2) в (1.2), получии

$$\varphi(\alpha(z)) = z^p b(z) \omega(z) + g(z), \tag{4.3}$$

где

$$b(z) = a(z) (z - z_1)^{n_1+1} ... (z - z_m)^{n_m+1} z^{1-m-n}$$
(4.4)

$$p = n + m - 1. (4.5)$$

Из (4.4) следует, что

$$\frac{1}{2\pi}\Delta_{\Gamma_0}(\arg b(z)) = 1. \quad \frac{1}{2\pi}\Delta_{\Gamma_J}(\arg b(z)) = -1. \quad j = 1....m. \quad (4.6)$$

4.2. Пусть z=eta(t) отображение, обратное к t=lpha(z). Для исследования задачи (4.3) докажем следующую лемму.

Лемма 4.1. Пусть $\varphi(z)$ и $\omega(z)$ аналитичны в D и удовлетворяют условию Гёльдера в \overline{D} . Тогда существует единственная функция f(t), удовлетворяющая условию Гёльдера на Г такая, что

$$\varphi(z) = \frac{1}{\pi i} \int_{\Gamma} \frac{f(\beta(t)) dt}{t - z}, \quad \omega(z) = -\frac{1}{\pi i} \int_{\Gamma} \frac{f(t) dt}{b(t)(t - z)}. \tag{4.7}$$

Доказательство : Фучкции $\varphi(z)$ и $\omega(z)$ единственным образом представляются в виде

$$\varphi(z) = \varphi_0(z) + \varphi_1(z) + \dots + \varphi_m(z), \tag{4.8}$$

$$\omega(z) = \omega_0(z) + \omega_1(z) + ... + \omega_m(z). \tag{4.9}$$

где $\varphi_0(z)$ и $\omega_0(z)$ аналитичны в D_0^+ , а $\varphi_j(z)$ и $\omega_j(z)$ (j=1,...,m) аналитичны в D^- , $\varphi_j(\infty) = \omega_j(\infty) = 0$. Области D_0^- и D^- определены в $\S 2$.

Как показано в [7] (см. также [2], стр. 240), функцин $\varphi_j(z)$ и $\omega_j(z)$ можно представить в виде

$$\varphi_{j}(z) = \frac{1}{\pi i} \int_{\Gamma_{j}} \frac{f_{j}(\beta(t)) dt}{t - z}, \quad \omega_{j}(z) = -\frac{1}{\pi i} \int_{\Gamma_{j}} \frac{f_{j}(t) dt}{b(t)(t - z)}, \quad j = 0, ..., m, \quad (4.10)$$

где функция $f_j(z)$ определяется через $\varphi_j(z)$ и $\omega_j(z)$ единственным образом. Из (4.8) — (4.10) следует справедливость Леммы 4.1.

4.3. Вернемся к задаче (4.3). Подставляя $\varphi(z)$ и $\omega(z)$ из (4.7) в (4.3), получим

$$A(t_0) f(t_0) + \frac{B(t_0)}{\pi i} \int_{\Gamma} \frac{f(t) dt}{t - t_0} + \int_{\Gamma} K(t_0, t) f(t) dt = g(t_0), \quad t_0 \in \Gamma, \quad (4.11)$$

где

$$A(t_0) = 1 + t_0, \quad B(t_0) = 1 - t_0,$$
 (4.12)

$$K(t_0,t) = \frac{K(t_0,t)}{|t-t_0|^{\delta}},$$
 (4.13)

где функция $K^*(t_0,t)$ удовлетворяет условию Гёльдера по t_0 и t на Γ , а $0<\delta<1$ – постоянная. Сингулярный интеграл в (4.11) понимается в смысле главного значения по Коши ([1], стр. 50).

Пусть k_0 число линейно независимых решений однородной задачи (4.3), а k_0' число условий вида

$$\int_{\Gamma} g(t) \, \omega_k(t) \, dt = 0, \quad k = 1, ..., k'_0.$$

которые необходимы и достаточны для разрешимости неоднородной задачи (4.3), где $k=1,...,k_0$ – некоторые линейно независимые, непрерывные функции на Γ . Числа k_0 и k_0' называются дефектными числами задачи (4.3). В этом параграфе линейная зависимость или независимость понимается над полем комплексных чисел.

Из Леммы 4.1 следует, что число линейно независимых решений однородной задачи (4.3) и однородного уравнения (4.2) равны. Поэтому индекс задачи (4.3) равен индексу уравнения (4.11). Как следует из (4.12), индекс уравнения (4.11) равен (-p) (см. [1], стр. 222). Следовательно

$$k_0 - k_0' = -p. (4.14)$$

Пусть p=0. Тогда $A(t_0)=2$, $B(t_0)=0$ и уравнение (4.11) является уравнением Фредгольма.

4.4. Пусть р - натуральное число. Согласно Лемме 4.1 иналитические функции $\varphi(z)$ и z^{μ} $\omega(z)$ можем представить в виде

$$\varphi(z) = \frac{1}{\pi i} \int_{\Gamma} \frac{f(\beta(t)) dt}{t - z}$$
(4.15)

$$z^{p} \omega(z) = -\frac{1}{\pi i} \int_{\Gamma} \frac{f(t) dt}{b(t) (t - z)}.$$
 (4.16)

Дифференцируя обе части (4.16) по z до порядка p-1 и подставляя z=0, получим

$$\frac{1}{\pi i} \int_{\Gamma} \frac{f(t) dt}{t^k b(t)} = 0, \quad k = 1, ..., p. \tag{4.17}$$

Из (4.16) и (4.17) имеем

$$\omega(z) = -\frac{1}{\pi i} \int_{\Gamma} \frac{t^{-p} f(t) dt}{b(t) (t - z)} = 0, \quad k = 1, ..., p.$$
 (4.18)

Следовательно, аналитические функции $\varphi(z)$ и $\omega(z)$ можно представить в виде (4.15), (4.18). В этом новом представлении функция f(t) не определяется однозначно через $\varphi(z)$ и $\omega(z)$. Однако, для натурального p с помощью этого представления задачу (4.3) также можно свести к интегральному уравнению Фредгольма. Действительно, подставляя $\varphi(z)$ и $\omega(z)$ из (4.15) и (4.13) в (4.3), получим

$$f(t_0) = \int K(t_0, t) f(t) dt + \frac{1}{2}$$
 (4.19)

где $K(t_0,t)$ — функция вида (4.13).

Пусть 10 - число линейно независимых решений однородного уравнения (4.19) (при g=0), а l_0 — число условий разрешимости неоднородного уравнения (4.19). Ясно, что

$$l_0 = l'_0, \quad k'_0 = l'_0.$$
 (4.20)

Из (4.14) и (4.20) имеем

$$k'_0 = l_0, \quad k_0 = l_0 - p \quad \text{при} \quad p \ge 0.$$
 (4.21)

4.5. Пусть теперь р - целое отрицательное число. Представим

$$\omega(z) = c_0 + c_1 z + \dots + c_{-p-1} z^{-1} + z^{-1} + z^{-1} \Phi(z), \tag{4.22}$$

где $c_0, ..., c_{-p-1}$ – произвольные комплексные постоянные, а $\omega(z)$ аналитична в области D.

Согласно Лемме 4.1 аналитические функции (2) и Ф(z) можно представить в виде

$$\varphi(z) = \frac{1}{\pi i} \int_{\Gamma} \frac{f(\beta(t)) dt}{t - z}, \quad \Phi(z) = -\frac{1}{\pi i} \int_{\Gamma} \frac{f(t) dt}{b(t) (t - z)}. \quad (4.23)$$

Подставляя $\omega(z)$ из (4.22) в (4.3) и используя представление (4.23), получаем

$$f(t_0) = \int_{\Gamma} K(t_0, t) f(t) dt + F(t_0), \quad t_0 \in \Gamma, \quad (4.24)$$

где

$$2 F(t_0) = t_0^p b(t_0) (c_0 + c_1 t_0 + ... + c_{-p-1} t^{-p-1}) + g(t_0),$$

а $K(t_0,t)$ - функция вида (4.13).

Вектор $(f(t), c_0, ..., c_{-p-1})$ является решением уравнения (4.24). Если $g \equiv 0$, то уравнение (4.24) называется однородным.

Пусть l_0 — число линейно независимых решений однородного уравнения (4.24), а l_0 — число линейно независимых условий разрешимости (на функцию q(t)) неоднородного уравнения (4.24). Из представления (4.22), (4.23) и Леммы 4.1 следует, что

$$k_0 = l_0, \quad k'_0 = l'_0.$$
 (4.25)

Из (4.14) и (4.25) имеем

$$k_0 = l_0, \qquad k'_0 = l_0 + p \quad \text{при} \quad p \le -1.$$
 (4.26)

Уравнение Фредгольма вида (4.24) с неизвестными постоянными было рассмотрено в [1], стр. 290.

Теперь уточним значение числа l_0 линейно независимых решений однородных уравнений Фредгольма (4.19) и (4.24) (при $g \equiv 0$). В §6 мы докажем справедливость следующих формул :

$$k_0 = 0, \quad k_0 = n + m - 1 \quad \text{при} \quad n \ge 1,$$
 (4.27)

$$k_0 = -n - m + 1$$
, $k_0 = 0$ при $n \le 1 - 2m$, (4.28)

$$0 \le k_0 \le -n+1$$
 при $1-m \le n \le 0$, (4.29)

$$0 \le k_0 \le m$$
, $\text{при } 2 - 2m \le n \le -m$. (4.30)

Из (4.5), (4.21), (4.26) — (4.30) имеем

$$l_0 = |p|$$
 при $|p| \ge m$. (4.31)

$$\max(0, p) \le l_0 \le m$$
 при $|p| < m$. (4.32)

Если область D – односвязная, то из (2.22), (4.28), (4.31) получаем $l_0=|p|=|n-1|$ при $n=0,\pm 1,\pm 2,...,\,k_0=0,\,k_0'=n-1$ при $n\geq 1$ и $k_0=-n+1,\,k_0'=0$ при $n\leq 0$.

§5. ЗАЛАЧА ПУАНКАРЕ ДЛЯ ЭЛЛИПТИЧЕСКИХ **УРАВНЕНИЙ В МНОГОСВЯЗНЫХ ОБЛАСТЯХ**

Пусть D - как и во Введении. Рассмотрим следующую задачу Пуанкаре : найти в области D решение уравнения Лапласа

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0. \tag{5.1}$$

удовлетворяющее граничному условию

$$a_1(z)\frac{\partial u}{\partial x} + a_2(z)\frac{\partial u}{\partial y} = g(z), \quad z = z + iy \in \Gamma,$$
 (5.2)

где $a_1(z)$, $a_2(z)$ и g(z) — заданные вещественнозначные функции, удовлетворяющие условию Гёльдера на Γ и $a_1^2(z)+a_2(z)=0$, $z\in\Gamma$. Предположим, что решение задачи (5.1), (5.2) - вещественнозначное и первые его производные удовлетворяют условию Гёльдера в D. Задача (5.1), (5.2) в односвязных областях была сведена в [1] (стр. 298) к сингулярному уравнению нормального типа, а в [6] для многосвязных областей. В настоящей работе эту задачу мы сведём к задаче (1.1) в многосвязных областях.

Как известно (см. [1], стр. 256) функция, гармоническая в области D представима в виде

$$u(z) = \text{Re}\,\psi(z) + \sum_{k=1}^{m} A_k \ln|z - z_k| + c.$$
 (5.3)

где $z_1,...,z_m$ — фиксированные точки, охваченные замкнутыми контурами $\Gamma_1,...,\Gamma_m$ соответственно, $c, A_1, ..., A_m$ – произвольные вещественные постоянные, а $\psi(z)$ – произвольная аналитическая в D функция, удовлетворяющия условию $\psi(0)=0$ и единственным способом определяемая по u(z).

Отметим, что если первые производные гармонической функции и(z) удовлетворяют условию Гёльдера в области D, то этому же условию удовлетворяет также функция $\psi'(z)$. Подставляя u(z) из (5.3) в граничное условие (5.21, получим (1.1), где $a(z) = a_1(z) + i a_2(z)$ и

$$\varphi(z) = \psi'(z) + \sum_{k=1}^{m} \frac{A_k}{z}$$
 (5.4)

Следовательно

$$-\frac{1}{2\pi i} \int_{\Gamma_j} \varphi(z) dz = A_k, \quad k = 1, ..., m$$
 (5.5)

с интегрированием в положительном направлении (которое оставляет область Dслева).

Так как постоянные 4 — вещественные, то из (5.5) имсем

$$A_k = -\operatorname{Re}\left[\frac{1}{2\pi i} \int_{\Gamma_j} \varphi(z) \, dz\right], \quad k = 1, ..., m, \tag{5.6}$$

Re
$$\int_{\Gamma_j} \varphi(z) dz = 0, \quad k = 1, ..., m.$$
 (5.7)

Пусть выполнены условия (5.6) и (5.7). Тогда из (5.4) имеем

$$\psi(z) = \int_0^z \left[\varphi(t) - \frac{1}{2\pi i} \sum_{k=1}^m \frac{1}{t - z_k} \int_{\Gamma_k} \varphi(\tau) d\tau \right] dt.$$
 (5.8)

Пусть f(z) удовлетворяет необходимым и достаточным условиям разрешимости задачя (1.1). Тогда общее решение этой задачи определяется формулой

$$\varphi(z) = \varphi_0(z) + \sum_{j=1}^{k_0} c_j \varphi_j(z), \qquad (5.9)$$

где $\varphi_0(z)$ — частное решение неоднородной задачи (1.1), $\varphi_j(z)$ ($j=1,...,k_0$) — линейно независимые решения (над полем вещественных чисел) однородной задачи (1.1), а c_j ($j=1,...,k_0$) — произвольные вещественные постоянные. Подставляя $\varphi(z)$ из (5.9) в (5.7), для определения постоянных c_j ($j=1,...,k_0$) получаем систему линейных уравнений. Таким образом, решение задачи (5.1). (5.2) сводится к задаче (1.1) в многосвязной области.

5.2. Теперь рассмотрим следующую задачу Пуанкаре : найти в области D решение правильно эллиптического уравнения

$$A\frac{\partial^2 u}{\partial x^2} + B\frac{\partial^2 u}{\partial x \partial y} + C\frac{\partial^2 u}{\partial y^2} = 0, \qquad (5.10)$$

удовлетворяющее граничному условик)

$$b_1(z) \frac{\partial u}{\partial x} + b_2(z) \frac{\partial u}{\partial y} = f(z), \quad z \in \Gamma, \tag{5.11}$$

где A. B. C – постоянные, а $b_1(z)$, $b_2(z)$ и f(z) – заданные функции, удовлетворяющие условию Гёльдера на Γ .

Уравнение (5.10) называется правильно эллиптическим, если C=0 и корни λ_1 и λ_2 характеристического уравнения A+B $\lambda+C$ $\lambda^2=0$ удовлетворяют условию ${\rm Im}\,\lambda_1>0$, ${\rm Im}\,\lambda_2<0$. Предполагается также, что

$$b_1(z) + \lambda_1 b_2(z) \neq 0$$
, $b_1(z) + \lambda_2 b_2(z) \neq 0$, $z \in \Gamma$. (5.12)

В частности, если $b_1(z)$, $b_2(z)$ — вещественнозначные и $|b_2(z)| \neq 0$ при $z \in \Gamma$, то условия (5.12) всегда выполняются.

Рассуждая как и при выводе формулы (5.3) получим, что общее решение уравнения (5.10) имеет вид

$$u(z) = \varphi(x + \lambda_1 y) + \psi(x + \lambda_2 y) +$$

$$+\sum_{k=1}^{m}A_{k}\ln\left[(x-x_{1}+\lambda_{1}(y-y_{1}))(x-x_{2}+\lambda_{2}(y-y_{2}))\right]+c, \tag{5.13}$$

где c, A_1, A_m — произвольные постоянные, $\varphi(x + \lambda_1 y)$ и $\psi(x + \lambda_2 y)$ — аналитические функции при $(x,y) \in D$ относительно аргументов $x + \lambda_1 y$ и $x + \lambda_2 y$, соо ветственно, и удовлетворяют следующим дополнительным условням $\varphi(0)=0$, $\psi(0)=0$. Более того, функции $\varphi(x+\lambda_1\,y)$, $\psi(x+\lambda_2\,y)$ и постоянные $c,\,A_1,\,...,A_m$ определяются через u(z) единственным способом. В (5.13) точки $z_j=x_j-iy_j$, j=1,...,n берутся из представления (5.3). Подставляя u(z) из (5.13) в (5.11). получим

$$\Phi(x + \lambda_2 y) = a(z)\omega(x + \lambda_1 y) + g(z), \quad z \in \Gamma$$
 (5.14)

где

$$\Phi(x + \lambda_2 y) = \psi'(x + \lambda_2 y) - \sum_{k=0}^{m} \frac{1}{x - x_k + \lambda_2 (y - y_k)}.$$
 (5.15)

$$\omega(x + \lambda_1 y) = \varphi'(x + \lambda_1 y) - \sum_{x = -k + \lambda_1} \frac{\lambda_k}{1 + \lambda_1}.$$
 (5.16)

$$a(z) = \frac{-(b_1(z) + \lambda_1 b_2(z))}{b_1(z) + \lambda_2 b_2(z)}, \qquad g(z) = \frac{f(z)}{b_1(z) + \lambda_2 b_2(z)}. \tag{5.17}$$

Из (5.15) и (5.16) при любом k=1,...,m имеем

$$A_{1} = \frac{1}{2\pi i} \int_{\Gamma} \omega(x + \lambda_{1} y) d(x + \lambda_{1} y).$$
 (5.18)

$$\int_{\Gamma} \omega(x + \lambda_1 y) d(x + \lambda_1 y) + \int_{\Gamma} \Phi(x + \lambda_2 y) d(x - \lambda_2 y) = 0.$$
 (5.19)

Пусть имеют место соотношения (5.18) и (5.19). Тогда из (5.15) и (5.16) получаем

$$\varphi(x + \lambda_1 y) = \int_0^{x + \lambda_1 y} \left(\omega(\zeta) + \sum_{k=1}^m \frac{A_k}{\zeta - x_k - \lambda_1 y_k} \right) d\zeta,$$

$$\psi(x + \lambda_2 y) = \int_0^{x + \lambda_2 y} \left(\psi(\zeta) + \sum_{k=1}^m \frac{A_k}{\zeta - x_k - \lambda_2 y_k} \right) d\zeta.$$
(5.20)

Следовательно, задача (5.10), (5.11) сводится к задаче Гильперта (5.14, с дополнительными условиями (5.19). Задачу (5.14) (без дополнительных условий (5.19)) можно решить аналогично задаче (1.2). Как мы видели выше дополнительные условия (5.19) существенно не влияют на метод решения

§6. ДЕФЕКТНЫЕ ЧИСЛА ЗАДАЧИ (1.2)

В этом и следующем параграфах, если особо не оговорено, будем считать. что все функции аналитические в области D и принадлежат классу $H(\overline{D})$ т.е. удовлетворяют условию Гёльдера в замкнутой области \overline{D} .

Пусть k_0 и k'_0 — дефектные числа однородной задачи (1.2). Разность k_0 — k'_0 называется индексом этой задачи. В этом параграфе мы докажем соотношения (4.27) — (4.30). Вместе с задачей (1.2) рассмотрим также соответствующую союзную однородную задачу: найти в области D аналитические функции $\Phi_1(z)$ и $\Phi_2(z)$, удовлетворяющие граничному условию

$$\Phi_1(\alpha(z)) = \frac{\Phi_2(z)}{a(z)\alpha'(z)}, \quad z \in \Gamma. \tag{6.1}$$

где
$$\alpha'(z) = \frac{d\alpha(z)}{ds} \left(\frac{dz}{ds}\right)^{-1}$$

Теорема 6.1. Задача (1.2) имеет решение тогда и только тогда, когда функция f(t) удовлетворяет условию

$$\int_{\Gamma} \frac{\Phi_2(t) f(t)}{a(t)} dt = 0.$$
 (6.2)

где $(\Phi_1(z), \Phi_2(z))$ — решение союзной задачи (6.1).

В [3] доказана теорема о необходимом и достаточном условии разрешимости задачи (1.1) (Теорема 4.2, стр. 241). Теорема 6.1 доказывается аналогично, поэтому её доказательство опускаем.

Пусть l_0 — число линейно независимых (над полем комплексных чисел) решений однородной задачи (6.1). Из формул (4.5), (4.14) и Теоремы 6.1 следует, что

$$k'_0 = l_0, \qquad k_0 - l_0 = -n - m + 1,$$
 (6.3)

где n – индекс функции a(z) на Γ . а (m+1) – связность области D. Так как $l_0 \geq 0$. то из второй формулы (6.3), в частности, следует

$$k_0 \ge -n - m + 1.$$
 (6.4)

Лемма 6.1. Если $(\varphi(z),\psi(z))$ — нетрививльное решение однородной задачи (1.2) (при $g\equiv 0$) и $\psi(t_0)=0$ при некотором $t_0\in \Gamma$, то для некоторого натурального ρ решение задачи имеет представление

$$\varphi(z) = \varphi_{\rho}(z) (z - \alpha(t_0))^{\rho}, \quad \psi(z) = \psi_{\rho}(z) (z - t_0)^{\rho}, \quad (6.5)$$

где функции $\varphi_{\rho}(z)$ и $\psi_{\rho}(z)$ — аналитические в области D с $\varphi_{\rho}(\alpha(t_0)) \neq 0$, $\psi_{\rho}(t_0) \neq 0$.

Доказательство : Пусть $(\varphi(z), \psi(z))$ — решение однородной задачи (1.2) и $\psi(t_0)=0$. Из граничного условия (1.2) (при $g\equiv 0$) следует, что $\varphi(\alpha(t_0))=0$. В монографии [2], стр. 30 доказано, что такое решение представляется в виде

$$\varphi(z) = \varphi_1(z) (z - \alpha(t_0)), \qquad \psi(z) = \psi_1(z) (z - t_0), \qquad (6.6)$$

где $\varphi_1(z)$ и $\psi_1(z)$ аналитичны в области D.

Подставляя $\varphi(z)$ и $\psi(z)$ из (6.6) в (1.2) при $g \equiv 0$, получим

$$\varphi_1(\alpha(z)) = \alpha_1(z) \, \psi_1(z), \qquad z \in \Gamma. \tag{6.7}$$

где $a_1(z)=a(z)\frac{z-t_0}{\alpha(z)-\alpha(t_0)}$. Следовательно, $(\varphi_1(z),\psi_1(z))$ является решением граничной задачи (6.7). Если $\psi_1(t_0)=0$, то, аналогично, получим

$$\varphi_1(z) = \varphi_2(z) (z - \alpha(t_0))$$
 $u \qquad \psi_1(z) = \psi_2(z) (z - t_0),$

где $\varphi_2(z)$ и $\psi_2(z)$ обладают теми же свойствами, что и $\varphi_1(z)$ и $\psi_1(z)$. Продолжая аналогично получим, что или имеет место (6.5), или же для любого натурального r имеет место представление

$$\varphi(z) = \varphi_r(z) (z - t_0)^r, \qquad \psi(z) = \psi_r(z) (z - t_0)^r.$$
 (6.3)

где $\varphi_r(z)$ и $\psi_r(z)$ аналитичны в области D.

Пусть для некоторого натурального числа r имеет место представление (6.31. Подставляя $\varphi(z)$ и $\psi(z)$ из (6.8) в граничное условие (1.2) при $g\equiv 0$, получаем $\varphi_r(\alpha(z))=a_r(z)\,\psi_r(z),\,z\in\Gamma$, где

$$a_r(z) = a(z) \left[\frac{z - t_0}{\alpha(z) - \alpha(t_0)} \right]$$

Рассмотрим следующую задачу Гильберта : найти аналитические в области D функции $\varphi_0(z)$ и $\psi_0(z)$, удовлетворяющие граничному условию

$$\varphi_0(\alpha(z)) = \beta^r(z) \, \psi_0(z), \quad z \in \Gamma, \tag{6.9}$$

где $\beta(z) = \frac{\alpha(z) - \alpha(t_0)}{z}$.

Так как точка $t_0 \in \Gamma$, а $\zeta = \alpha(z)$ взаимнооднозначно отображает Γ на себя, меняя направление обхода, то индекс функции S'(z) на Γ равен (-r).

Обозначим через l_r число линейно независимых решении однородной задачи (6.9). Используя неравенство (6.4) для задачи (6.9), получим $l_r \geq r$ —

m+1. Если $(\varphi_0(z),\psi_0(z))$ является решением однородной задачи (6.9), то $(\varphi_0(z),\varphi_0(z),\psi_0(z))$ является решением однородной задачи (1.2). Следовательно, $k_0 \geq r-m+1$. Таким образом, при $r=k_0+m$ представление (6.8) не имеет места. Это означает, что возможно только представление (6.5). Лемма 6.1 доказана.

Из Леммы 6.1 следует, что любое нетривнальное решение $(\varphi(z), \psi(z))$ однородной задачи (1.2) имеет конечное число нулей в области \overline{D} и оно представляется в виде

$$\varphi(z) = (z - \alpha(t_1))...(z - \alpha(t_{r_0}))(z - \zeta_1)...(z - \alpha(\zeta_{r_1}))\varphi_0(z), \qquad (6.10)$$

$$\psi(z) = (z - t_1)...(z - t_{r_0})(z - \tau_1)...(z - \tau_{r_2})\psi_0(z), \qquad (6.11)$$

где t_{r_0} и $\zeta_1,...,\zeta_{r_1}$ $\tau_1,...,\tau_{r_2}$ – некоторые фиксированные точки на Γ и в области D, соответственно, а $\varphi_0(z)$ и $\psi_0(z)$ – аналитические в области D функции, причём

$$\varphi_0(z) \neq 0, \quad \psi_0(z) = 0, \quad z \in \overline{D}.$$
 (6.12)

Отметим. что в (6.10) и (6.11) фиксированные точки зависят от $(\varphi(z), \psi(z))$. Подставляя $\varphi(z)$ и $\psi(z)$ из (6.10) и (6.11) в граничное условие (1.2) при $g\equiv 0$, получаем

$$\varphi_0(\alpha(z)) = a_0(z) \, \psi_0(z), \quad z \in \mathbb{I}$$
 (6.13)

ГДс

$$a_0(z) = \frac{z - t_1}{\alpha(z) - \alpha(t_1)} \cdot \frac{z - t_{r_0}}{\alpha(z) - \alpha(t_{r_0})} \cdot \frac{(z - \tau_1)...(z - t_{r_2}) \alpha(z)}{(\alpha(z) - \zeta_1)...(\alpha(z) - \zeta_{r_1})}$$
(6.14)

Отметим, что функция $a_0(z)$ непрерывна на Γ , $a_0(z)=0$ при $z\in\Gamma$ и индекс функции $a_0(z)$ на Γ равен $r_0+r_1+r_2+n$.

Так как $\varphi_0(z)$ и $\psi_0(z)$ являются аналитическими в области D и удовлетворяют условиям (6.12), то согласно принципу аргумента ([5], стр. 34), индексы функций $\varphi_0(z)$ и $\psi_0(z)$ на Γ равны нулю. Приравнивая индексы на Γ левой и правой частей соотношения (6.13), получаем $r_0+r_1+r_2+n=0$. Это равенство невозможно при $n\geq 1$. Следовательно, при $n\geq 1$ однородная задача (1.2) не имеет тривиального решения. Это означает, что при $n\geq 1$ имеем $k_0=0$. Аналогично, из (6.1) имеем $l_0=0$ для $n\leq 1-2m$. Отсюда следуют формулы (4.27) и (4.28) (см. формулу (6.3)).

Пусть $1-m \le n \le 0$. Представим $\psi(z)$ в виде

$$\psi(z) = c_0 + c_1 z + ... + c_{-n} z \qquad (6.15)$$

где $c_0,...,c_{-n}$ — произвольные постоянные, а $\omega(z)$ аналитична в D. Подставляя $\psi(z)$ из (6.15) в граничное условие (1.2), при $g\equiv 0$ получаем

$$\varphi(\alpha(z)) = b(z)\omega(z) + \sum_{k=0}^{-n} c_k \alpha(z) z^k, \quad z \in \Gamma, \qquad (6.16)$$

где $b(z) = a(z) z^{-n+1}$.

Искомым решением в (6.16) является $(\varphi(z), \omega(z), c_0, ..., c_{-n})$, где $\varphi(z)$ я $\omega(z)$ аналитичны в области D. Индекс функции b(z) на Γ равен 1. Следовательно, задача (6.16) при $c_k=0, k=0,...,-n$ имеет только нулевое решение. Рассмотрим следующую однородную задачу, союзную к задаче (6.16):

$$\Phi_1(\alpha(z)) = \frac{\Phi_2(z)}{a(z)z^{n-1}\alpha'(z)}, \quad z \in \Gamma.$$
 (6.17)

Используя (4.28) находим, что задача (6.17) имеет ровно из линейно независимых решений ($\Phi_{11}(z)$, $\Phi_{21}(z)$),..., ($\Phi_{1m}(z)$, $\Phi_{2m}(z)$). Согласно Теоремс 6.1. задача (6.16) относительно ($\omega(z)$) имеет решение тогда и только тогда, когда

$$\sum_{k=0}^{\infty} c_k \int_{\Gamma} \Phi_{2k}(z) z^{n-1+k} dz = 0, \quad k = 1, \dots, n.$$
 (6.18)

Пусть r_0 — ранг основной матрицы системы (6.18). Тогда эта система имеет ровно — n+1 — r_0 линейно независимых решений. Подставляя общее решение системы (6.18) в (6.15) и (6.16), и решая задачу (6.16) относительно $\varphi(z)$ и $\varphi(z)$, получим, что однородная задача (1.2) имеет ровно — n-1 — r_0 линейно независимых решений. Следовательно, $0 < k_0 < -n+1$.

Пусть теперь $2-2m \le n \le -m$. Представим $\psi(z)$ в виде

$$\psi(z) = \frac{\Psi(z)}{z^{m-1+n}},\tag{6.19}$$

где $\Phi(z)$ аналитична в области D и удовлетворяет условиям

$$\phi^{(j)}(0) = 0, \quad j = 0, 1, ..., 2m - 2 + n.$$
 (6.20)

Подставляя $\psi(z)$ из (6.19) в (1.2) при $g\equiv 0$, получим

$$\varphi(\alpha(z)) = \frac{\alpha(z)}{z^{2m-1+n}} \Phi(z). \tag{6.21}$$

Согласно формуле (4.28), задача (6.21) имеет ровно m линейно независимых решений ($\varphi_1(z)$, $\Phi_1(z)$),..., ($\varphi_m(z)$, $\Phi_m(z)$). Общее решение задачи (6.21) определяется формулой

$$\varphi(z) = c_1 \, \varphi_1(z) + ... c_m \, \varphi_m(z), \tag{6.22}$$

$$\Phi(z) = c_1 \, \Phi_1(z) + \dots \, \Phi_m(z), \tag{6.23}$$

где со,...,ст - постоянные.

Подставляя $\Phi(z)$ из (6.23) в (6.20), для определения постоянных получаем систему алгебранческих уравнений

$$c_1 \Phi_1^{(j)}(z) + ..., + c_m \Phi_m^{(j)}(z), \quad j = 0, 1, \dots 2m - 2 + n.$$
 (6.24)

Пусть r_0 — ранг основной матрицы системы (6.24). Подставляя общее решение системы (6.24) в (6.22) и (6.23), получим, что однородная задача (1.2) имеет ровно $m-r_0$ линейно независимых решений. Следовательно, в этом случае, имеем $0 < k_0 < m$. Таким образом, мы доказали справедливость формул (4.27) — (4.30).

§7. НЕКОТОРЫЕ ОБОБЩЕНИЯ

Пусть D – та же, что и во Введении, и пусть $0 \in D$. Рассмотрим следующую задачу: найти в области D аналитические функции $\varphi(z)$ и $\psi(z)$ из класса $H(\overline{D})$, удовлетворяющие граничному условию

$$\overline{\varphi(z)} = a(z) \psi(z) + g(z), \quad z \in \Gamma, \tag{7.1}$$

где a(z) и g(z) — как и в задаче (1.2), а $\overline{\varphi(z)}$ — комплексное сопряжение к $\varphi(z)$. Задачу (1.1) всегда можно свести к задаче (7.1). Действительно. граничное условне (1.1) можно записать в виде

$$a(z)\varphi(z)+\overline{a(z)\varphi(z)}=2f(z), \quad z\in\Gamma. \tag{7.2}$$

Рассмотрим задачу

$$a(z)\,\psi_0(z) + \overline{a(z)\,\varphi_0(z)} = 2\,f(z), \quad z \in \Gamma \tag{7.3}$$

для неизвестных аналитических в области D функций $\varphi_0(z)$ и $\psi_0(z)$. Ясно, что задвчу (7.3) можно записать в виде (7.1).

Если $(\varphi_0(z), \psi_0(z))$ – решение задачи (7.3), то легко проверить. что функция

$$\varphi(z) = \frac{1}{2}(\varphi_0(z) + \psi_0(z))$$
 (7.4)

является решением задачи (7.2). С другой стороны, если $\varphi(z)$ – решение задачи (7.2), то, очевидно, что $\varphi_0(z) = \varphi(z)$ и $\psi(z) = \varphi(z)$ является решением задачи (7.3). Следовательно, общее решение задачи (1.1) определяется формулой (7.4),

где $(\varphi_0(z), \psi_0(z))$ – общее решение задачи (7.3). Таким образом, задачу (1.1) всегда можно свести к задаче (7.1). Обратное не всегда верно. Следовательно, задачу (7.1) можно назвать обобщением задачи (1.1).

Нашей основной целью является сведение задачи (7.1) к интегральному уравнению Фредгольма, которое имеет единственное решение в некоторой системе алгебранческих уравнений. Сначала рассмотрим задачу (7.1) в каноническом виде:

$$\overline{\varphi_1(z)} = z'' \gamma_j \psi_1(z) + g_0(z), \quad z \in \Gamma_j, \quad j = 0, 1, ..., m, \tag{7.5}$$

где $\gamma_0 = 1$, — — некоторые отличные от нуля постоянные. n — индекс функции a(z) на Γ и $g_0(z) \in H(\Gamma)$, а — и $\psi_1(z)$ — искомые аналитические в области D функции. Для того, чтобы показать, что задача (7.1) всегда сводится к задаче (7.5), мы рассмотрим следующую видоизменённую задачу:

$$\varphi_0(z) = \psi_0(z) + f_0(z), \quad z \in \Gamma_0, \tag{7.6}$$

$$\overline{\varphi_0(z)} = \psi_0(z) + f_0(z) + \dots \quad z \in \Gamma_j, \quad j = 1, \dots, m, \tag{7.7}$$

где $f_0(z)\in H(\Gamma)$ – заданная функция, $\alpha_1,...,\alpha_m$ суть комплексные постоянные. Здесь решением является вектор $(\varphi_0(z),\psi_0(z),\alpha_1,...,\alpha_m)$ где $\varphi_0(z)$ и на налитические в D функции.

При $f_0 \equiv 0$ задача (7.6), (7.7) называется однородной

Лемма 7.1. Неоднородная задача (7.6), (7.7) всегда имеет решение. Общее решение соответствующей однородной задачи имеет вид $\varphi=\bar{c},$ $\psi=c,\;\alpha_j=0,\;j=1,...,m,$ где c- произвольная постоянная.

Доказательство: Выделяя действительные и мнимые части (7.6) и (7.7).
получаем

$$\operatorname{Re}\Phi_1(z)=f_1(z), \quad \operatorname{Re}\Phi_2(z)=f_2(z), \quad z\in\Gamma_1,$$

 $\operatorname{Re}\Phi_{1}(z) = f_{1}(z) + \operatorname{Re}\alpha_{j}, \quad \operatorname{Re}\Phi_{2}(z) = f_{2}(z) + \operatorname{Im}\alpha_{j}, \quad z \in \Gamma_{j}, \quad j = 1, ..., m,$

где $f_1(z)=\mathrm{Re}\, f_0(z),\ f_2(z)=\mathrm{Im}\, f_0(z),\ \Phi_1(z)=\varphi_0(z)-\psi_0(z),\ \Phi_2(z)=-\imath\,(\varphi_0(z)+\psi_0(z)).$

Следовательно, задача (7.6), (7.7) сводится к видоизменённой задаче (2.32), (2.33), а утверждение следует из (2.35). Лемма 7.1 доказана.

Не ограничивая общности, граничное условие (7.1) можно записать в виде

$$\overline{\varphi(z)} = a_0(z) z^n \psi(z) + g_0(z),$$
 (7.8)

где $a_0(z) \neq 0$ при $z \in \Gamma$, индекс функции $a_0(z)$ на каждом контуре Γ_j разен нулю, а n- индекс функции a(z) на Γ .

Пусть $(\varphi_0(z), \varphi_0(z), \alpha_1, ..., \alpha_m)$ - частное решение элдичи (7.6), (7.7) для

$$f_0(z) = \ln a_0(z).$$
 (7.9)

Здесь под $\ln \alpha_0(z)$ понимается непрерывная ветвь на Γ . Так как $\alpha_0(z) \neq 0$ при $z \in \Gamma$ и индекс функции $\alpha_0(z)$ на каждом контуре Γ_j равен нулю, то такая непрерывная ветвь существует. Из (7.6), (7.7) и (7.9) имеем

$$\exp\left(\overline{\varphi_0(z)}\right) = a_0(z)\,\gamma_j\,\exp\left(\psi_0(z)\right),\quad z\in\Gamma,\quad j=0,...,m,\tag{7.10}$$

где $\gamma_0 = 1$, $\gamma_j = 0$

Имея в виду (7.10), граничное условие (7.8) можно записать в виде (7.5):

$$\overline{\varphi_1(z)} = \gamma_j z^n \psi_1(z) + g_1(z), \quad z \in \Gamma,$$

гле $\varphi_1(z) = \varphi(z) \exp(-\varphi_0(z)),$

$$\psi_1(z) = \psi(z) \exp(-\psi_0(z)), \quad g_1(z) = g_0(z) \exp\left(-\overline{\varphi_0(z)}\right).$$

Таким образом, задачу (7.1) свели к аналогичной задаче более частного вида (7.5).

Лемма 7.2. Пусть $\varphi_0(z)$ аналитична в открытом круге |z-z| < R, а $\psi_0(z)$ аналитична вне этого круга. Пусть $\psi_0(\infty) = 0$ и $\varphi_0(z) = 0$ и непрерывно продолжаются до окружности $|z-z_0| = R$. Тогда

$$\int_{|z-z_0|=R} \overline{\varphi_0(z)} \, \psi'(z) \, dz = 0, \qquad \int_{|z-z_0|=R} \overline{\psi_0(z)} \, \varphi'(z) \, dz = 0. \tag{7.11}$$

Доказательство : Разлагая в ряд Тейлора функцию $\varphi_0(z)$ в круге $|z-z_0| < R$ и в ряд Порава функцию $\psi_0(z)$ вне этого круга и подставляя в левые части (7.11), доказываем равенство (7.11). Лемма 7.2 доказана.

Рассмотрим следующую видоизменённую задачу: найти в области D аналитические функции $\varphi(z)$ и постоянные $\alpha_1,...,\alpha_m$, удовлетворяющие граничным условиям

$$\overline{\varphi(z)} = \psi(z) + g(z), \quad z \in \Gamma_0, \tag{7.12}$$

$$\overline{\varphi(z)} = \gamma_1 \, \psi(z) + g(z), \quad z \in \Gamma_1, \tag{7.13}$$

$$\overline{\varphi(z)} = \gamma, \psi(z) + g(z) + \alpha_j, \quad z \in \Gamma_j, \quad j = 2, \tag{7.14}$$

где g(z) — заданная функция из класса $H(\Gamma)$, а $\gamma_1,...,\gamma_m$ — заданные, отличные от нуля постоянные, $\gamma_1 \neq 1$.

Задачу (7.12) — (7.14) при $g \equiv 0$ будем называть однородной.

Теорема 7.1. Задача (7.12) — (7.14) имеет единственное решение.

Доказательство : Не ограничным общности, мы доказа: ден в выстры фременя этой задачи для случая, когда контуры Γ_0 , Γ_1 , Γ_m являются окружностими. Пусть ($\varphi(z)$, $\psi(z)$, α_2 , ..., α_m) является решением однородной задачи (7.12) — (7.14). Докажем, что $\varphi(z) \equiv 0$, $\psi(z) \equiv 0$, $\alpha_j = 0$ (j = 2, ..., m). Для этого рассмотрим функцию

$$u(z) = \psi(z) + c_0 \overline{\varphi(z)},$$
 (7.15)

где $c_0 > 0$ мы выберем неже. Ясно, что в области D имеет место (5.1). По формуле Грина (см. [4], стр. 309) имеем

$$\int_{\Gamma} \frac{\partial u(z)}{\partial N} \overline{u(z)} \, dz - \iint_{D} \left(\left| \frac{\partial u(z)}{\partial z} \right|^{2} + \left| \frac{\partial u(z)}{\partial y} \right|^{2} \right) dx \, dy = 0. \tag{7.16}$$

где N — внешняя нормаль к границе Γ в точке $z\in\Gamma$ da — мгр. длины на Γ . Из (7.15) следует

$$\frac{\partial u}{\partial N} = \psi'(z) \frac{\partial z}{\partial N} + c_0 \overline{\varphi'(z)} \frac{\partial \overline{z}}{\partial N} = -i \frac{\partial z}{\partial s} \psi'(z) + c_0 \overline{\psi}(\overline{z}) = (7.17)$$

где z=z+iy, z=x-iy. Из граничных условий i7.12=7.14 вои $g\equiv 0$ имеем

$$\varphi(z) = \gamma, \psi(z) + \alpha_j, \quad z \in \Gamma_j, \quad j = 0, \dots, m.$$
 (7.18)

$$\overline{\varphi'(z)} \frac{\partial \overline{z}}{\partial z} = \gamma_j \, \psi'(z) \frac{\partial z}{\partial z}, \quad z \in \Gamma, \quad z$$

где $\alpha_0 = \alpha_1 = 0$, $\gamma_0 = 1$. Из (7.17) — (7.19) получаем $\pi/z = -2$

$$\frac{\partial u(z)}{\partial N} = i \left(c_0 \gamma_0 - 1\right) \frac{\partial z}{\partial s} \psi'(z), \quad z \in \Gamma, \quad j = 0, ..., m.$$

Следовательно

$$\int_{\Gamma} \frac{\partial u(z)}{\partial N} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \overline{\gamma}_j + 1) \int_{\Gamma_j} \overline{\psi(z)} \psi'(z) dz$$
 [7.20]

Представны функцию $\psi(z)$ в виде

$$\psi(z) = \psi_0(z) + ... + \psi_m(z), \qquad (7.21)$$

где $\psi_0(z)$ аналитична в области D_0 , а $\psi_1(z)$, ..., аналитичны в D_1 , ..., D_n^+ (см. §2), соответственно. и $\psi_j(\infty)=0$. Подставляя $\mathbb{R}[z]$ из [7–21] в [7–20] и используя Лемму 7.2 и формулу Гряна ([2], стр. 261), получим

$$\int_{\Gamma} \frac{\partial u(z)}{\partial N} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \overline{\gamma}_j + 1) \int_{\Gamma} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \overline{\gamma}_j + 1) \int_{\Gamma} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \overline{\gamma}_j + 1) \int_{\Gamma} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \overline{\gamma}_j + 1) \int_{\Gamma} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \overline{\gamma}_j + 1) \int_{\Gamma} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \overline{\gamma}_j + 1) \int_{\Gamma} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \overline{\gamma}_j + 1) \int_{\Gamma} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \overline{\gamma}_j + 1) \int_{\Gamma} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \overline{\gamma}_j + 1) \int_{\Gamma} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \overline{\gamma}_j + 1) \int_{\Gamma} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \overline{\gamma}_j + 1) \int_{\Gamma} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \overline{\gamma}_j + 1) \int_{\Gamma} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \overline{\gamma}_j + 1) \int_{\Gamma} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \overline{\gamma}_j + 1) \int_{\Gamma} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \overline{\gamma}_j + 1) \int_{\Gamma} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \overline{\gamma}_j + 1) \int_{\Gamma} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \overline{\gamma}_j + 1) \int_{\Gamma} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \overline{\gamma}_j + 1) \int_{\Gamma} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \overline{\gamma}_j + 1) \int_{\Gamma} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \overline{\gamma}_j + 1) \int_{\Gamma} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \overline{\gamma}_j + 1) \int_{\Gamma} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \overline{\gamma}_j + 1) \int_{\Gamma} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \overline{\gamma}_j + 1) \int_{\Gamma} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \overline{\gamma}_j + 1) \int_{\Gamma} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \overline{\gamma}_j + 1) \int_{\Gamma} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \gamma_j + 1) \int_{\Gamma} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \gamma_j + 1) \int_{\Gamma} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \gamma_j + 1) \int_{\Gamma} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \gamma_j + 1) \int_{\Gamma} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \gamma_j + 1) \int_{\Gamma} \overline{u(z)} \, ds = i \sum_{j=0}^{m} (c_0 \gamma_j - 1)(c_0 \gamma_j + 1) \int_{\Gamma} \overline{u(z)} \, ds = i \sum_{j=0}^{$$

$$\int_{\Gamma_{j}} \overline{\psi_{0}(z)} \, \psi_{0}(z) \, dz = 2 \, i \int_{D_{j}^{+}} |\psi_{0}(z)|^{2} \, dx \, dy,$$

$$\int_{\Gamma_{j}} \overline{\psi_{j}(z)} \, \psi_{j}(z) \, dz = 2 \, i \int_{D_{j}^{+}} |\psi_{j}(z)|^{2} \, dx \, dy.$$
(7.23)

Выберем положительную постоянную со, удовлетворяющую условию

$$c_0 |\gamma_j| > 1, \quad j = 0, ..., m.$$
 (7.24)

Из (7.22) — (7.24) следует, что

$$\operatorname{Re} \int_{\Gamma} \frac{\partial u(z)}{\partial N} \overline{u(z)} \, ds \le 0. \tag{7.25}$$

Выделив в (7.16) действительные и мнимые части и используя неравенство (7.25), получаем

$$\iint_{D} \left[\left(\frac{\partial u}{\partial x} \right)^{2} + \left(\frac{\partial u}{\partial y} \right)^{2} \right] dx dy \leq 0. \tag{7.26}$$

Неравенство (7.26) возможно только при и = const. Использух (7.15) получаем

$$\varphi(z) = c_1, \qquad \psi(z) = c_2, \qquad (7.27)$$

где c_1 и c_2 — постоянные. Из (7.12) — (7.14) и (7.27) следует, что в однородном случае имеем $\varphi(z)\equiv 0$, $\psi(z)\equiv 0$, $\alpha_1=0$. j=2,...,m. Таким образом. единственность решения доказана.

Теперь докажем существование решения задачи (7.12) — (7.14). Будем искать решение задачи (7.12) — (7.14) в виде

$$\varphi(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{\overline{f(t)} dt}{t - z} + \int_{\Gamma} \overline{f(t)} ds, \qquad (7.28)$$

$$\psi(z) = -\frac{1}{2\pi i} \sum_{i=0}^{m} \int_{\Gamma_{j}} \frac{f(t) dt}{\gamma_{j} (t-z)},$$
 (7.29)

$$\alpha_j = \int_{\Gamma_j} f(t) \, ds. \tag{7.30}$$

где f(t) — вскомая функция из класса $H(\Gamma)$.

Аналогично (4.7) можно доказать, что если $\varphi(z)\equiv 0, \psi(z)\equiv 0, z_1=0, j=2,...,m,$ то $f(t)\equiv 0.$

Подставляя $\varphi(z)$, $\psi(z)$ и α_j , j=2,...,m из (7.28) – (7.30) в (7.12) — (7.14), получаем интегральное уравнение Фредгольма вида (2.11). Из единственности решения задачи (7.12) — (7.14) и (7.28) – (7.30) следует. что соответствующее уравнение Фредгольма имеет единственное решение. Теорема 7.1 доказана.

Можно показать, что задача (7.5) сводится к задачам (7.6) - (7.7) и (7.12) - (7.14), т.е. к интегральным уравнениям Фредгольма, которые имеют единственные решения.

ABSTRACT. The paper studies Riemann-Hilbert and one-sided Hilbert problems for some classes of analytic functions. The aim of the paper is to reduce both problems to Fredholm equations. In the case of Riemann-Hilbert problem the corresponding Fredholm equation has unique solution. Some results for the deficiency numbers are obtained.

ЛИТЕРАТУРА

- 1. Н. И. Мускелишвили. Сингулярные Интегральные Уравнения, Наука. Москва, 1962.
- Н. П. Векуа, Системы Сингулярных Интегральных Уравнений и Некоторые Граничные Задачи, Гостехиздат, Москва, 1950.
- 3. Н. П. Векуа, Обобщённые Аналитические Функции, Москва, 1959.
- А. Н. Тихонов, А. А. Самарский. Уравнения Матиматической Физики. Москва, Наука, 1966.
- 5. М. А. Лаврентьев, Б. В. Шабат, Методы Теории Функций Комплексного Переменного, Москва, Наука. 1973.
- 6. Б. В. Хведелидзе, "О краевой задаче Пуанкарс теории логарифмического потенциала для многосвязной области", Доклады АН Груз. ССР. том II. Nº 7, 10, crp. 571 — 578, 1991.
- Д. А. Квеселава, "Некоторые граничные задачи теории функций. Труды Тбил. Инст. Матем., том 16, стр. 39 - 90, 1948.

22 декабря 1999

Армянский госудирственный инженерный университет