О МНОГОМЕРНЫХ ПРОСТЫХ ФРЕЙМОВЫХ ВАЛЮАЦИЯХ

Г. С. Сукиасян

Известия Национальной Академии Наук Армении. Математика, т. 31, № 4, 1996

В работе исследуются валюации (консчно-аддитивные функционалы), определенные на множестве выпуклых многогранников в многомерном евклидовом пространстве \mathbb{R}^n . Эти валюации зависят от примарных функций, заданных в пространстве "фреймов". Показано, что все простые валюации могут быть представлены в виде фреймовых валюаций. На основе классической теоремы Гаусса—Остроградского получены необходимые и достаточные условия порождения фреймовыми валюациями локально-конечных знакопеременных мер в \mathbb{R}^n .

ВВЕДЕНИЕ

В настоящей статье исследуются валюации (конечно-аддитивные функционалы), определенные на множестве выпуклых компактных многогранников в многомерном евклидовом пространстве \mathbb{R}^n . Главным вопросом является следующий: npu каких условиях эти валюации порождают локально-конечную знакопеременную меру в \mathbb{R}^n , абсолютно непрерывную относительно n-мерной меры Лебега? Пругими словами, когда существует локально-конечная знакопеременная мера в \mathbb{R}^n , значения которой на выпуклых многогранниках совпадают со значениями валюации?

Изучаемые валюации зависят от функций, которые мы называем примарными. Примарные функции определены в пространстве "фреймов" (см. определение в $\S 1$) и поэтому мы называем наши валюации "фреймовыми". Фреймовые валюации на евклидовой плоскости \mathbb{R}^2 были исследованы в [6], и настоящую работу можно считать обобщением результатов из [6]. Однако заметим, что в [6] вместо

термина "фрейм" использован термин "флаг". Нам кажется, что термин "флаг" более подходит для валюаций в интегрально-геометрических пространствах (см. [1] — [4]). Во многих отношениях изучение флаговых и фреймовых валюаций вза-имосвязано.

Валюация называется простой, если она равна пулю на многогранниках, не имеющих внутренних точек. Ниже мы рассматриваем только простые валюации. В §1 дано определение фреймовой валюации и доказано, что все простые валюации могут быть представлены в виде фреймовых валюаций с "центрированной" примарной функцией. В §2 рассмотрен важный частный случай, т.н. валюация Остроградского, для которой условия порождения меры вытекают из классической теоремы Гаусса-Остроградского. В §3 получено достаточное условие порождения меры для общих фреймовых валюаций. В §4 показано, что для валюаций в IR³, зависящих от "центрированных" примарных функций, последнее условие является также и необходимым.

§1. ФРЕЙМОВЫЕ ВАЛЮАЦИИ

Обозначим через \mathcal{H} класс всех выпуклых компактных многогранников в \mathbb{R}^n . Ниже мы рассматриваем многогранники только из \mathcal{H} . Через L_n обозначим n-мерную меру Лебега. Многогранник $H \in \mathcal{H}$ называем гиперплоским, если $L_n(H) = 0$, но $L_{n-1}(\partial H) \neq 0$, где ∂H — граница (гиперповерхность) многогранника H. Условимся считать, что гиперплоские многогранники имеют две (n-1)-мерные конгруентные грани, внешние нормали которых противоположно направлены. Многогранник H называем вырожеденным, если $L_{n-1}(\partial H) = 0$.

Отображение $\mu: \mathcal{H} \longmapsto (-\infty, \infty)$ называется валюацией, если оно аддитивно в следующем смысле: для любых $H_1, H_2 \in \mathcal{H}$ таких, что $H_1 \cup H_2 \in \mathcal{H}$, имеет место

$$\mu(H_1 \cup H_2) + \mu(H_1 \cap H_2) = \mu(H_1) + \mu(H_2).$$

Ясно, что если валюация равна нулкі на гиперплоских мпогогранниках, то она равна нулю и на вырожденных мпогогранниках, т.е. она простая.

Флагом называется упорядоченная n-ка $f = (f_0, f_1, ..., f_{n-1})$, где f_k — это k-мерная плоскость в \mathbb{R}^n , причем $f_0 \subset f_1 \subset \cdots \subset f_{n-1}$. Иногда пишем $f_0 = P \in \mathbb{R}^n$, термин "плоскость" мы используем вместо ныне популярного термина "аффинная плоскость", т.е. мы не предполагаем, что наши плоскости обязательно содержат начало координат O. Пусть дап флаг $f = (f_0, f_1, ..., f_{n-1})$, ортогональную проекцию начала O на гиперплоскость f_{n-1} обозначим через O_{n-1} . Далее, ортогональную проекцию точки O_{n-1} на f_{n-2} обозначим через O_{n-2} и т.д. Выпуклая оболочка точек $O_0, O_1, ..., O_n$ ($O_0 = f_0, O_n = O$) называется симплексом Шлефли флага f [5] и обозначается через S(f). Очевидно, S(f) зависит от выбора точки O и может быть гиперплоским или даже вырожденным.

Рассмотрим ортогональный фреды (репер)

$$\overline{f} = (P, \omega_1, ..., \omega_n), \quad P \in \mathbb{R}^n, \quad \omega_i \in \Omega_{n-1}, \quad \cos(\widehat{\omega_i \omega_j}) = 0, \quad i \neq j, \quad i, j = 1, ..., n,$$

где Ω_{n-1} обозначает (n-1)-мерную сферу направлений с центром в начале координат O. Мы называем P вершилой, а ω_i , i=1,...,n направлениями фрейма \overline{f} . Каждому фрейму \overline{f} соответствует флаг $f=(P,f_1,...,f_{n-1})$, где f_k-k -мерная плоскость в \mathbb{R}^n , проходящая через вершину P нерпендикулярно направлениям $\omega_{k+1},...,\omega_n$. Отметим, что каждому флагу соответствуют 2^n фреймов. Фрейм \overline{f} полностью определяется парой (f,d), где $d=(d_1,...,d_n)$ есть n-ка чисел, принимающих значения -1 или +1, причем $d_k=+1$, если k-тая координата точки O относительно репера \overline{f} положительна. Симплексом Шлефли $S(\overline{f})$ фрейма называем симплекс Шлефли соответствующего флага.

Говорим, что флаг $f=(f_0,f_1,...,f_{n-1})$ произведен многогранником H, если каждая k-мерная плоскость $f_k,\ k=0,1,...,n-1$ содержит k-мерную грань D_k

многогранника H. Через $\mathcal{F}(H)$ обозначим множество флагов, произведенных многогранником H. Заметим, что из $f \in \mathcal{F}(H)$ следует, что f_0 есть вершина многогранника H. Через $\overline{\mathcal{F}}(H)$ обозначим (конечное) множество внешних фреймов. По определению, $\overline{f} = (f,d) = (P,\omega_1,...,\omega_n) \in \overline{\mathcal{F}}(H)$ тогда и только тогда, когда $f = (P,f_1,...,f_{n-1}) \in \mathcal{F}(H)$ и ω_k , k=1,...,n совпадают с направлением относительной внешней пормали.

Объясним последний термин. Сперва определим ω_n , как направление обычной внешней нормали к гиперграци $D_{n-1}\subset f_{n-1}$. Затем рассмотрим (единственную) (n-2)-мерную грань D_{n-2} многогранцика H, лежащую в f_{n-2} . В качестве ω_{n-1} возьмем направление той внешней нормали к D_{n-2} , которая лежит в f_{n-1} . Используя индукцию по размерности, определим остальные направления ω_k , k=n-2, ..., l. Например, для n-мерного прямоугольного параллелепипеда H_o , содержащего вачало координат O, множество $\overline{\mathcal{F}}(H_o)$ состоит из тех фреймов $\overline{f}=(f,d)$, что $f\in\mathcal{F}(H_o)$ и $d_k=-1$ для всех k=1,...,n. Если многогранник H вырожденный, то полагаем $\overline{\mathcal{F}}(H)=\emptyset$.

Пусть $F(\overline{f})$ – функция в пространстве фреймов со значениями из $(-\infty,\infty)$. Рассмотрим в $\mathcal H$ следующий функционал :

$$\Psi_{F}(H) = \sum_{\overline{f} \in \overline{\mathcal{F}}(H)} F(\overline{f}), \quad H \in \mathcal{H}. \tag{1.1}$$

Легко проверить, что Ψ_F является валювцисй, которую мы называем фреймовой валювцией с примарной функцией F.

Пусть $\overline{f}=(f,d)$ и $\overline{f}'=(f,d')$ суть два фрейма с одинаковым флагом f и такими направлениями, что у n-ок d и d' совпадают все компоненты, кроме одной. Если для всех таких пар имеет место $F(\overline{f})=-F(\overline{f}')$, то функцию F называем антисивметричной.

Пемма 1.1. Если примарная функция $F(\overline{f})$ антисимметрична, то фреймовая валюация (1.1) является простой.

Доказательство следует из пашей договоренности относительно гиперплоских многогранников.

Функцию от фреймов $F(\overline{f})$ называем центрированной (относительно точки O), если F равна нулю на всех фреймах, у которых объем симплекса Шлефли равен нулю.

Теорема 1.1. Всякая простая валюация $\mu(H)$ представима в виде фреймовой валюации с некоторой антисимметричной центрированной примарной функцией $F(\overline{f})$:

$$\mu(H) = \Psi_F(H) = \sum_{\overline{f} \in \overline{F}(H)} F(\overline{f}). \tag{1.2.}$$

Доказательство : Пусть $I_H(P)$ — индикаторная функция многогранника H :

$$I_H(P) = \begin{cases} 1 & \text{при } P \in H, \\ 0 & \text{при } P \notin H, \end{cases} P \in {\rm I\!R}^n.$$

Г. Хадвигер [5] показал, что индикаторная функция любого многогранника представима (почти всюду) в виде конечной линейной комбинации индикаторных функций симплексов Шлефли. Покажем, что одним из таких представлений является

$$I_H(P) = \sum_{T \in \overline{\mathcal{T}}(H)} (-1)^{N(d)} I_{S(f)}(P), \tag{1.3}$$

где N(d) – число положительных элементов в $d=(d_1,...,d_n)$. Докажем (1.3) по индукции относительно размерности пространства \mathbb{R}^n . На прямой (n=1) произвольный многогранник $H\in\mathcal{H}$ есть отрезок $[a,b],\ a< b$; множество $\overline{\mathcal{F}}(H)$ состоит из двух фреймов $(a, \mathrm{sign}(a))$ и $(b, -\mathrm{sign}(b))$, где

$$sign(a) = \begin{cases} -1 & \text{при } a < 0, \\ +1 & \text{в противном случае.} \end{cases}$$

Для первого фрейма имеем S(a)=[0,a] и $(-1)^{N(a \log n(a))}=-\mathrm{sign}(a)$, для второго же S(b)=[0,b] и $(-1)^{N(d)}=\mathrm{sign}(b)$. Представление (1.3) следует из легко проверяемого тождества

$$I_{[a,b]}(P) = \operatorname{sign}(b)I_{[0,b]} - \operatorname{sign}(a)I_{[0,a]}.$$

Предположим теперь, что (1.3) справедливо для пространств \mathbb{R}^k , k < n. На гиперплоскости $e \subset \mathbb{R}^n$ рассмотрим выпуклый (n-1)-мерный многогранник D. Через T(D) обозначим n-мерную пирамиду с вершиной O и основанием D. Для почти всех точек $P \in \mathbb{R}^n$ имеет место

$$I_H(P) = \sum_{D_i \in \mathcal{D}(H)} c_i I_{T(D_i)}(P),$$
 (1.4)

где $\mathcal{D}(H)$ – множество гиперграней D_i многогранника H. Коэффициент $c_i = -1$, если гиперплоскость e_i , содержащая D_i , отделяет точку O от внутренности многогранника H, и $c_i = 1$ в противном случае. Для применения индукционного предположения представим грань D_i как многогранник в (n-1)-мерном пространстве e_i , причем роль начала координат играет ортогональная проекция O_{n-1} точки O на e_i . Для почти всех точек $P \in e_i$ имеем по индукционному предположению

$$I_{D_i}(P) = \sum_{\overline{f}^{(n-1)} \in \overline{\mathcal{F}}(D_i)} (-1)^{N(d^{(n-1)})} I_{S(f^{(n-1)})}(P). \tag{1.5}$$

В (1.5) флаг $f^{(n-1)}$, соответствующий фрейму $\overline{f}^{(n-1)}$, имсет n-1 компонент, которые лежат в e_i . Легко проверить (см. [5]), что для любой конечной совокупности чисел b_k и любых многогранников D_k , лежащих в гиперплоскости e, из равенства

$$\sum_{k} b_{k} I_{D_{k}}(P) = 0, \quad P \in e$$

вытекает

$$\sum_{k} b_{k} I_{T(D_{k})}(P) = 0, \quad P \in \mathbb{R}^{n}.$$

Следовательно, из (1.5) получаем

$$I_{T(D_i)}(P) = \sum_{\overline{f}^{(n-1)} \in \overline{\mathcal{F}}(D_i)} (-1)^{N(d^{(n-1)})} I_{T(S(f^{(n-1)}))}(P)$$
 (1.6)

почти для всех $P \in {
m I\!R}^n$. Если $f^{(n-1)} = (f_0, f_1, ..., f_{n-2}) \in {\cal F}(D_i)$, то

$$f = (f_0, f_1, ..., f_{n-2}, e_i) \in \mathcal{F}(H), \quad D_i \subset e_i, \quad D_i \in \mathcal{D}(H).$$
 (1.7)

По определению симплекса Шлефли имсем $T(S(f^{(n-1)})) = S(f)$. Из (1.4) – (1.7) получим

$$I_{H}(P) = \sum_{\overline{f} \in \overline{\mathcal{F}}(H)} (-1)^{N(d^{(n-1)})} c(\overline{f}) I_{S(f)}(P), \tag{1.8}$$

где $c(\overline{f})=-1$, если у флага (1.7) гиперилоскость c_i разделяет начало O и внутренность многогранника H, и $c(\overline{f})=+1$ в противном случае. Следовательно, $c(\overline{f})=-d_n$. Из определения числа N(d) следует, что

$$(-1)^{N(d^{(n-1)})}c(\overline{f}) = (-1)^{N(d^{(n)})}.$$

Формула (1.3) доказана. Индикаторные функции в тождестве (1.3) можно заменить значениями произвольной простой валюации μ . Следовательно,

$$\mu(H) = \sum_{\overline{f} \in \overline{\mathcal{F}}(H)} (-1)^{N(d)} \mu(S(f)).$$

Таким образом, мы получили $\mu(H) = \Psi_F(H)$ с примарной функцией

$$F(f,d) = (-1)^{N(d)} \mu(S(f)). \tag{1.9}$$

Так как валюация μ простая, из $L_n(S(f))=0$ вытекает $\mu(S(f))=0$. Следовательно, фреймовая функция (1.9) центрированная. Теорема 1.1 доказана.

Замечание 1. Если в (1.9) в качестве μ взять плоскую меру Лебега L_2 , то получим, что площадь многоугольника есть фреймовая валюация с центрированной примарной функцией

$$F(P,\omega_1,\omega_2) = \frac{1}{2}r^2\sin(\omega_1 - \varphi)\sin(\omega_2 - \varphi), \qquad (1.10)$$

где (r, φ) – полярные координаты точки $P = \int_0^{\infty} (cm. [6])$. Несмотря на то, что примарная функция (1.10) может изменять свой знак, она порождает посредством (1.1) неотрицательную меру L_2 . Заметим также, что примарная функция (1.9) зависит от выбора начала координат, следовательно представление (1.2) не единственно.

§2. ВАЛЮАЦИЯ ОСТРОГРАДСКОГО

Пусть \iint_H обозначает n-мерный интеграл по многограннику $H \in \mathcal{H}$, а $\iint_{\partial H}$ означает (n-1)-мерный поверхностный интеграл по гиперповерхности ∂H . Рассмотрим функцию $\rho(X,\omega)$ определенную на $\mathbb{R}^n \times \Omega_{n-1}$. Предполагаем, что $\rho(X,\omega)$ непрерывна по $X \in \mathbb{R}^n$ при всех $\omega \in \Omega_{n-1}$. Отметим, что $\rho(X,\omega)$ можно рассматривать как функцию на фреймах, не зависящую от некоторых аргументов. Рассмотрим функционал

$$\Phi_{\rho}(H) = \int_{\partial H} \rho(X, \omega) \ L_{n-1}(dX), \quad H \in \mathcal{H}, \tag{2.1}$$

где ω — направление внешней нормали к гиперповерхности ∂H в точке $X \in \partial H$. Для вырожденных многогранников D положим $\Phi_{\rho}(D)=0$. Из аддитивных свойств интеграла заключаем, что функционал Φ_{ρ} является валюацией. Мы называем (2.1) валюацией Остроградского с плотностью ρ .

Иемма 2.1. Валювиия Остроградского с плотностью ρ является простой тогда и только тогда, когда ρ витисимметрични : для всех $X\in {\rm I\!R}^n$ и $\omega\in\Omega_{n-1}$ имеет место

$$\rho(X,\omega) = -\rho(X,-\omega),\tag{2.2}$$

где $-\omega$ – направление, диаметрально противоположное ω .

Доказательство следует из нашей договоренности относительно гиперплоских многогранников.

Пемма 2.2. Пусть в \mathbb{R}^n зафиксирована декартова система координат, и пусть $F_i(X)=F_i(x_1,...,x_n)$, i=1,...,n - некоторые функции в \mathbb{R}^n , имеющие непрерывные производные по всем аргументам. Для всякой валюации Остроградского Φ_p и любом выборе функций F_i имеет место равенство

$$\Phi_{\rho}(H) = \iint_{\mathcal{U}} \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} F_{i}(X) L_{n}(dX) +$$

$$+\int_{BH}\left[\rho(Y,\omega)-\sum_{i=1}^{n}F_{i}(Y)\cos(\widehat{\omega}\widehat{\omega_{i}})\right]L_{n-1}(dY),\quad H\in\mathcal{H},$$
 (2.3)

где ω_i – направления координатных осей $Ox_i,\ i=1,...,n$; ω – направление внешней нормали к гиперповерхности ∂H в точке $Y\in\partial H$; $\widehat{\omega\omega_i}$ – угол между ω и ω_i .

Дожазательство : Классическая формула Гаусса-Остроградского в *п*-мерном пространстве имеет вид

$$\iint\limits_{H} \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} F_{i}(X) L_{n}(dX) = \int\limits_{\partial H} \sum_{i=1}^{n} F_{i}(Y) \cos(\widehat{\omega}\widehat{\omega}_{i}) L_{n-1}(dY), \qquad (2.4)$$

где $F_i(X)$ – произвольные функции в ${\bf R}^n$, имеющие непрерывные производные по всем аргументам. Равенство (2.3) непосредственно следует из (2.1) и (2.4).

Через \mathcal{M}_n обозначим класс локально конечных знакопеременных мер на \mathbb{R}^n , абсолютно непрерывных относительно меры Лебега. Пусть $F_i(X)$, i=1,...,n – некоторые функции в \mathbb{R}^n , имеющие непрерывные производные по всем аргументам. Рассмотрим валюацию Остроградского Φ_ρ с плотностью

$$\rho(X,\omega) = \sum_{i=1}^{n} F_i(X) \cos(\widehat{\omega}_{\omega_i}). \tag{2.5}$$

Для плотности (2.5) выполнено условие (2.2), следовательно валювшия Φ_{ρ} является простой. После подстановки выражения (2.5) в (2.3) поверхностный интеграл в (2.3) обратится в ноль. В силу Леммы 2.2 заключаем, что Φ_{ρ} порождает меру из \mathcal{M}_n , плотность a(X) которой (относительно меры Лебега L_n) равна

$$a(X) = \sum_{i=1}^{n} \frac{\partial}{\partial x_i} \rho(X, \omega_i). \tag{2.6}$$

Следовательно, представление (2.5) есть достаточное условие продолжимости валюании Остроградского до знакопеременной меры из \mathcal{M}_n . Ниже мы покажем, что это условие является также и необходимым. Будем писать $\rho(X,\omega) \in \mathbb{C}^{(1)}$, если для всякого направления ω функция $\rho(X,\omega)$ имеет непрерывные производные по $x_i, i = 1, ..., n$. Теорема 2.1. Валюация Остроградского Φ_{ρ} с плотностью $\rho \in \mathbb{C}^{(1)}$ порождает знакопеременную меру $m \in \mathcal{M}_n$ тогда и только тогда, когда существуют функции $F_i(X)$ такие, что ρ имеет вид (2.5). Если (2.5) имеет место, то выражение (2.6) не зависит от выбори декартовой системы координат и представляет собой плотность меры m относительно меры Лебега L_n .

Доказательство : Пусть существует такая мера $m \in \mathcal{M}_n$, что $\Phi_{\rho}(H) = m(H)$ для всех $H \in \mathcal{H}$. Для доказательства того, что ρ имеет вид (2.5), аппроксимируем многогранпик H конечными суммами $D_k = \bigcup K_j^{(k)}$ непересекающихся n-мерных параллелепипедов $K_j^{(k)}$, гиперграни которых ортогональны какой-либо координатной оси (и параллельны остальным осям). Так как выражение

$$J(X,\omega) = \rho(X,\omega) - \sum_{i=1}^{n} \rho(X,\omega_i) \cos(\widehat{\omega \omega_i})$$

равно нулю на гиперплоскостях, ортогональных какой-либо координатной оси, имеем

$$\int_{\partial K_j^{(k)}} \left[\rho(Y, \omega) - \sum_{i=1}^n \rho(Y, \omega_i) \cos(\widehat{\omega \omega_i}) \right] L_{n-1}(dY) = 0.$$
 (2.7)

Из (2.3) и (2.7) получаем

$$m(D_k) = \iint_{D_k} \sum_{i=1}^n \frac{\partial}{\partial x_i} \rho(X, \omega_i) L_n(dX).$$

Имеем $m(H) = \lim_{k \to \infty} m(D_k)$, следовательно

$$m(H) = \Phi_{\rho}(H) = \iint_{H} \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \rho(X, \omega_{i}) L_{n}(dX).$$

С помощью Леммы 2.2 получаем, что равсиство (2.7) справедливо для всех многогранников $H \in \mathcal{H}$.

Теперь предположим противное : пусть для некоторой пары (X_0, ω_0) равенство (2.5) не справедливо. Для определенности пусть $J(X_0, \omega_0) > 0$. Так как $\rho \in \mathbb{C}^{(1)}$, то существует такая окрестность U точки $X_0 \in \mathbb{R}^n$, что $J(X, \omega_0) > 0$

при всех $X \in U$. Рассмотрим n-мерный симплекс S_0 , у которого все вершины лежат в U, n гиперграней ортогональны какой-либо координатной оси, а (n+1)-ая гипергрань D расположена так, что се внешняя пормаль имеет направление ω_0 . Согласно (2.7) имеет место $\int\limits_{\partial S_0} J \ dL_{n-1} = 0$. Учитывая, что $J(X,\omega) = 0$ в точках $X \in \partial S_0 \setminus D$, получим

$$\int\limits_{D} J(X,\omega_0) \ dL_{n-1} = 0.$$

Но с другой стороны, при $X\in D$ имеем $J(X,\omega_0)>0$ и $L_{n-1}(D)>0$. Полученное противоречие доказывает Теорему 2.1.

В следующем параграфе мы получим некоторые условия, при выполнении которых простав валюация представима в виде (2.1).

§3. ПРИВЕДЕНИЕ К СЛУЧАЮ ВАЛЮАЦИИ ОСТРОГРАДСКОГО Назовем k-усеченным флагом последовательность $f^{(k)}=(f_k,...,f_{n-1})$, где f_j-j -мерная плоскость в \mathbb{R}^n , причем $f_k\subset f_{k+1}\subset\cdots\subset f_{n-1},\, k< n$. Пусть включение $f^{(k)}\subset f$ означает, что $f^{(k)}=(f_k,...,f_{n-1})$ есть подпоследовательность флага $f=(f_0,f_1,...,f_{n-1})$. Рассмотрим также k-усеченные фреймы:

$$\overline{f}^{(k)} = (P, \omega_{k+1}, ..., \omega_n), \quad P \in \mathbb{R}^n, \quad \omega_i \in \Omega_{n-1}, \quad \cos(\widehat{\omega_i \omega_j}) = 0, \ i \neq j.$$

Каждому усеченному фрейму $\overline{f}^{(k)}=(P,\omega_{k+1},...,\omega_n)$ соответствует усеченный флаг $f^{(k)}=(f_k,...,f_{n-1})$, где f_j – j-мериые плоскости, проходящие через P перпендикулярно направлениям $\omega_{j+1},...,\omega_n,\,j=k,...,n-1$. Заметим, что усеченные фреймы с разными вершинами могут отображаться в один и тот же усеченный флаг.

Зафиксируем многогранник $H \in \mathcal{H}$. Говорим, что усеченный флаг $f^{(k)}$ произведен многогранииком H, если существует произведенный многогранником H флаг $f \in \mathcal{F}(H)$, для которого $f^{(k)} \subset f$. Говорим, что усеченный фрейм $\overline{f}^{(k)}$ произведен многогранииком H, если соответствующий ему усеченный флаг $f^{(k)}$ произведен многогранииком H.

Обозначим через $\mathcal{F}_k(H)$, k=1,...,n-1 конечное множество последовательностей $\tau=(\omega_{k+1},...,\omega_n)\in\Omega_{n-1}^{n-k}$ длины n-k, таких что существует усеченный фрейм $\overline{f}^{(k)}=(P,\omega_{k+1},...,\omega_n)$, произведенный многогранником H. Заметим, что для каждого $\tau=(\omega_{k+1},...,\omega_n)\in\mathcal{F}_k(H)$ существует несколько произведенных многогранником H усеченных фреймов $\overline{f}^{(k)}=(P_i,\tau)$ с разными вершинами P_i . Однако из условия $\tau\in\mathcal{F}_k(H)$ следует, что все эти вершины P_i лежат в одной k-мерной плоскости $f_k(\tau)$, которая ортогональна направлениям $\omega_{k+1},...,\omega_n$. Через $D_k(\tau)$ обозначим (единственную) k-мерную грань многогранника H, лежащую в $f_k(\tau)$. Например, если $\tau=(\omega_2,...,\omega_n)\in\mathcal{F}_1(H)$, то в $\overline{\mathcal{F}}(H)$ существует ровно два произведенных многогранником H фрейма вида $\overline{f}=(P,\omega_1,\tau)$, а именно $\overline{f}=(P,\omega_1,\tau)$ и $\overline{f}'=(P',\omega'_1,\tau)$. При этом обязательно $\omega'_1=-\omega_1$, а точки P,P' являются концами (одномерного) ребра $D_1(\tau)$.

Пусть $F(\overline{f})=F(P,\omega_1,...,\omega_n)$ — антисимметричная функция в пространстве фреймов. Фреймовую валюацию с примарной функцией F можно представить в виде

$$\Psi_{F}(H) = \sum_{(\omega_{2},...,\omega_{n})\in\mathcal{F}_{1}(H)} [F(P_{1},\omega_{1},\omega_{2},...,\omega_{n}) + F(P_{2},-\omega_{1},\omega_{2},...,\omega_{n})], \quad H\in\mathcal{H},$$
(3.1)

где P_1, P_2 — концы ребра $D_1(\omega_2, ..., \omega_n)$. Предположим, что существует производная по направлению ω_1 :

$$F_1(P,\omega_2,...,\omega_n) = \frac{\partial}{\partial_{\omega_1} P} F(P,\omega_1,\omega_2,...,\omega_n) = \frac{\partial}{\partial_{-\omega_1} P} F(P,-\omega_1,\omega_2,...,\omega_n). \quad (3.2)$$

Ввиду антисимметричности фреймовой функции F, значения производной F_1 не зависят от ω_1 при фиксированных $\omega_2,...,\omega_n$. По формуле Ньютона-Лейбница из (3.1) получаем

$$\Psi_F(H) = \sum_{\tau = (\omega_2, ..., \omega_n) \in \mathcal{F}_1(H)} \int_{D_1(\tau)} F_1(P, \omega_2, ..., \omega_n) L_1(dP). \tag{3.3}$$

По определению валювции Остроградского имсем

$$\Psi_F(H) = \sum_{\tau' \in \mathcal{F}_2(H)} \Phi_{F_1}(D_2(\tau')), \tag{3.4}$$

где Φ_{F_1} — двумерная валюация Остроградского с примарной функцией (3.2), определенная на 2-плоскости e, содержащей 2-грань $D_2(\tau')$:

$$\Phi_{F_1}(D_2) = \int_{\partial D_2} F_1(P, \omega_2(P), \omega_3, ..., \omega_n) L_1(dP). \tag{3.5}$$

Здесь ω_2 — направление относительной внешней нормали к границе плоского многоугольника $\partial D_2(\tau')$ в точке $P\in\partial D_2$, а $\tau'=(\omega_3,...,\omega_n)$.

Теперь предположим, что двумерная валюация Остроградского (3.5) порождает меру $m \in \mathcal{M}_2$ на каждой 2-плоскости e. Из Теоремы 2.1 следует, что для любого $\tau = (\omega_3,...,\omega_n)$ плотность $F_1(P,\omega_2,\tau) = F_1(P,\omega_2,...,\omega_n)$, как функция двух переменных $P \in e$ и $\omega_2 \in \Omega_1$, уловлетворяет условию (2.5), а именно

$$F_1(P,\omega_2,\tau) = F_1(P,\xi,\tau)\cos\varphi + F_1(P,\eta,\tau)\sin\varphi, \qquad (3.6)$$

где (ξ, η) — некоторая система декартовых координат на плоскости e, φ — угол между ω_2 и ξ -осью. Отметим, что (см. [6]) представление (3.6) не зависит от выбора системы координат (ξ, η) .

В нижеприведенной Теореме 3.1 мы используем термин "Тест k". Дадим необходимые разъяснения.

Тест 1: Пусть задана антисимметричная фреймовая функция F, построим функцию F_1 согласно (3.2). Если на каждой 2-плоскости F_1 удовлетворяет условию (3.6), то скажем, что $Tecm\ 1$ имеет положительный исход.

Предположим, что уже построена функция $F_{k-1}(P,\omega_k,...,\omega_n)$, определенная на (k-1)-усеченных фреймах. Построим функцию $F_k(P,\omega_{k+1},...,\omega_n)$, определенную на k-усеченных фреймах, согласно следующему алгоритму. Через $e(P,\tau_k)$,

 $au_k = (\omega_{k+1},...,\omega_n)$ обозначим k-мерную плоскость, проходящую через P ортогонально направлениям $\omega_{k+1},...,\omega_n$. Пусть $\{\xi_i\}_1^k$ — направления осей некоторой декартовой системы координат на k-плоскости e. Положим

$$F_k(P, \tau_k) = \sum_{i=1}^k \frac{\partial}{\partial \xi_i P} F_{k-1}(P, \xi_i, \tau_k).$$
 (3.7)

Если для всех $\tau_k = (\omega_{k+1},...,\omega_n)$ справедливо представление

$$F_{k-1}(P,\omega,\tau_k) = \sum_{i=1}^{k} F_{k-1}(P,\xi_i,\tau_k) \cos(\widehat{\omega\xi_i}), \tag{3.8}$$

то выражение (3.7) не зависит от выбора системы координат на k-плоскости $e(P, \tau_k)$. В свою очередь, и F_k может удовлетворять условию (3.8), т.е.

$$F_k(P,\omega,\tau_{k+1}) = \sum_{i=1}^{k+1} F_k(P,\xi_i,\tau_{k+1}) \cos(\widehat{\omega\xi_i}), \quad \tau_{k+1} = (\omega_{k+2},...,\omega_n).$$
 (3.8')

Тест k: Пусть задана фреймовая функция F_{k-1} , построим функцию F_k согласно (3.7). Если на каждой (k+1)-плоскости F_k удовлетворяет условию (3.8'), то скажем, что $Tecm\ k$ имеет положительный исход.

Отметим, что классическая теорема Гаусса-Остроградского и ее следствия (в частности (3.8)) требуют наложения услоний гладкости. В нашем случае достаточно предположить, что примарная функция $F(P, \omega_1, ..., \omega_n)$ при всех $\omega_1, ..., \omega_n$ имеет непрерывные производные по P порядка n-1. Применяя n-1 раз Теорему 2.1, получим основной результат статьи.

Теорема 3.1. Пусть Ψ_F — простая валюация в \mathbb{R}^n с примарной функцией $F \in \mathbb{C}^{(n-1)}$. Если все Тесты 1,...,n-1 последовательно имеют положительные исходы, то Ψ_F можно продолжить до знакопеременной меры $m \in \mathcal{M}_n$.

Замечание 2. Теорема 3.1 дает достаточное условие для порождения меры, тогда как Теорема 2.1 — необходимое и достаточное. Необходимость условия (3.8) доказана ниже для случая простых фреймовых валюаций в \mathbb{R}^3 с центрированными примарными функциями.

§4. ЦЕНТРИРОВАННЫЕ ФРЕЙМОВЫЕ ФУНКЦИИ

Теорема 4.1. Простая фреймовая валющия в \mathbb{R}^3 с гладкой центрированной примарной функцией F может быть продолжена до меры $m \in \mathcal{M}_3$ тогда и только тогда, когда функция F_1 , определенная по (3.2), имеет вид (3.6), а функция F_2 , определенная посредством (3.7) с k=2, имеет вид (3.8'), т.е. оба Теста 1 и 2 имеют положительные исходы.

Доказательство: Достаточность следует из Теоремы 3.1, докажем необходимость. Из Теоремы 2.1 видно, что лостаточно доказать необходимость условия (3.6). Пусть Ψ_F — простая фреймовая валюация с гладкой центрированной примарной функцией F, и пусть существует такая мера $m \in \mathcal{M}_3$, что $\Psi_F(H) = m(H)$ для всех $H \in \mathcal{H}$. Рассмотрим двумерную валюацию Остроградского Φ_{F_1} (см. (3.5)) на произвольной плоскости e, пусть p(e) — расстояние от начала координат O до плоскости e. Каждому многоугольнику $D \subset e$ поставим в соответствие пирамилу T(D) с вершиной O и основанием D. Отметим, что $L_3(T(D)) = 1/3p(e)L_2(D)$. Из центрированности примарной функции F следует, что $m(T(D)) = \Psi_F(T(D)) = \Phi_{F_1}(D)$. Булем уменьшать многоугольник D, стягивая его к точке. Так как $m \in \mathcal{M}_3$, то имеет место

$$m(T(D)) = cL_3(T(D)) + o(L_3(T(D)) = \frac{1}{3}cp(e)L_2(D) + o(L_2(D)).$$

Следовательно, $\Phi_{F_1}(D) = c'L_2(D) + o(L_2(D))$, где c,c' – некоторые постоянные. Таким образом, двумерная валюания Остроградского Φ_{F_1} порождает в e знако-переменныю меру из \mathcal{M}_2 . В силу Теоремы 2.1, получим, что F_1 имеет вид (2.5), а следовательно и (3.6). Теорема 4.1 доказана.

ABSTRACT. The paper considers valuations defined on convex polyhedrons in Euclidian spaces \mathbb{R}^n . The valuations depend on primary functions defined in the space of "frames". All so-called simple valuations can be represented as frame valuations. Using classical Gauss-Ostrogradski theorem, necessary and sufficient conditions are found, when a simple frame valuation actually generates a locally finite signed measure in \mathbb{R}^n .

ЛИТЕРАТУРА

- 1. Р. В. Амбарцумян, "О конечно-аддитивных функционалах в \mathbb{R}^{3n} , Изв. НАН Армении, Математика, том. 28, \mathbb{N}^2 2, стр. 51 59, 1993.
- 2. R. V. Ambartzumian, "Measure generation by Euler functionals", Adv. Appl. Prob. (SGSA), vol. 27, pp. 606 626, 1995.
- 3. Р. В. Амбарпумян, В. К. Оганян, "Консчно-аддитивные функционалы в пространстве плоскостей", Изв. ПАН Армении, Математика, том. 29, № 4, стр. 1 57, 1994.
- 4. Р. Г. Арамян, "Порождение мер в пространстве плоскостей и сферические эйлеровы функционалы", Изв. НАН Армении, Математика, том. 29, № 4, стр. 58 74, 1994.
- 5. Г. Хадвигер, Лекции об объеме, площади поверхности и изопериметрии, М., Наука, 1967.
- 6. Г. С. Сукиасян, "Конечно-аддитивные функционалы на плоскости", Изв. НАН Армении, Математика, том. 29, № 4, стр. 75 89, 1994.

2 декабря 1995

Институт математики НАН Армении

E-mail: rhambart@aua.am