УДК 577.352.391:612.014

СТРУКТУРНЫЕ ИЗМЕНЕНИЯ ФОСФОЛИПИДНЫХ МОДЕЛЕЙ БИОМЕМБРАН ПРИ ОЖОГОВОМ И РАДИАЦИОННОМ СТРЕССАХ

А.Г.Саркисян

/Республиканский гематологический центр МЗ РА/ 375014 Ереван, ул. Г. Нерсисяна, 7

Ключевые слова: биомембрана, жидкий кристалл, ожог, радиация

Проблема стресса в настоящее время — одна из актуальных, поэтому исследования, посвященные изучению стресса на мембранноклеточном уровне, имеют важное значение для понимания реакции клетки на это состояние.

Одним из методов изучения стресс-реакций на клеточном и молекулярном уровнях является исследование структурной организации фосфолипидных моделей биомембран, играющих важную роль в обеспечении конформационных перестроек мембран в норме и патологии. Изучение модельных систем, сформированных из фосфолипидов, выделенных из различных тканей и клеток при патологических процессах, дает возможность определить наличие общих и специфичных изменений в мембранах при патологических состояниях, даже отличающихся по своему патогенезу, и позволяет выработать общие методы профилактики и терапии различных заболеваний, а также при стрессах. Так как многообразные функции клеточных мембран в значительной мере детерминированы их липидным компонентом, важное значение имеет изучение видоизменения структурных перестроек, мезоморфизм фосфолипидных компонентов клеточных мембран при патологических состояниях, в частности при ожоговом и лучевом поражениях.

Материал и методы

При изучении сдвигов аморфно-кристаллических свойств тканевых фосфолипидов для выяснения возможных структурно-функциональных изменений в работе использован метод дифракции рентгеновских лучей под большими и малыми углами. Этот метод позволяет получить информацию о размерах, форме, компактности расположения коллоидных образований, электронная плотность которых отличается от средней электронной плотности объекта.

Исходя из того, что поляризационно-оптические эффекты отражают структурно-релаксационные процессы, протекающие в анизотропных растворах, геометрия надмолекулярных лиотропно-жидкокристаллических образований фосфолипидных фракций исследована методом поляризационной микроскопии.

Исследования проведены на 420 беспородных белых крысах массой 160—180 г. Подопытные животные в соответствии с поставленными задачами были распределены по группам. Ожоговый стресс вызывали общепринятым методом [3,5], лучевой стресс — с помощью однократного облучения на аппарате «РУМ-2» дозой 750 и 400 рентген. Изучению подвергались фосфолипиды из эритроцитов крови (ФЭ), мозга (ФМ) и печени (ФП). Наблюдения проводились на 1-, 3-, 7- и 14-е сутки.

Съемки образцов проводились рентгенографическим методом на рентгеновских установках УРС-60 и УРС-2 с камерами типа КРОН, РГНС и РКОП, модифицированными для исследования одновременно под большими и малыми углами. Использовались трубки БСВ-11 и БСВ-24 с антикатодами Сu. Применялись пленки типа РТ-1 и П-1. Для приготовления образца использовались кварцевые тонкостенные капилляры.

При поляризационно-микроскопическом методе был использован поляризационный микроскоп МИН-4 с призмой Бертрана с увеличением х300. Определение размеров структурных единиц проводилось стандартным способом при помощи окуляр-микрометра. Концентрация образцов, используемых в эксперименте, составляла 10, 20, 47, 50, 60 и 70% веса. Исследования проводились при комнатной температуре.

Результаты и обсуждение

Для изучения структурных изменений мембран при ожоговом стрессе использованы модельные мембраны, которые образуют жидкокристаллические агрегаты — водные липидные дисперсии (или водные суспензии), структурное состояние которых не зависит от количества добавленной воды, и нарушения происходят при изменении условий внешней среды и химического строения липидов. В этих структурах углеводородные хвосты фосфолипидов направлены внугрь агрегата, а гидрофильные головки выставлены наружу и проникают в водную среду, образуя лиотропные жидкие кристалы (ЛЖК). Исследованы молекулярные и надмолекулярные структуры модельных мембран, сформированных из ФМ, ФП и ФЭ крыс до и после ожоговой травмы для выяснения возникновения возможных структурных изменений.

В системе ФМ-вода образовывалась текстура системы параллельных микрокапилляров миелиновой формы — инверсные стенки, где оптические оси молекул, параллельные стенкам, образовывали гомогенные области, что интерпретировалось как искривление смектических слоев. В отличие от системы ФМ-вода в системе ФП-вода образовывалась развитая полигональная текстура, где конфокальные домены сливались в

плотную упаковку. В системе ФЭ-вода имеются области как развитой полигональной структуры, так и микрокапилляры миелиновой формы. Во всех трех системах в норме образовывались жидкокристаллические мезофазы с разными надмолекулярными структурами, характерными для смектических ЖК, где в лиотропной фазе в конфокальных доменах идет чередование параллельных слоев молекул липидов.

Для выяснения ориентации молекул в ламеллах и их молекулярной упаковке образцы исследовались методом дифракции рентгеновских лучей. На рентгенограммах системы ФМ-вода при концентрации ФМ больше 60% возникали диффузное гало слабой интенсивности с межплоскостным расстоянием 4,6 Å и рефлекс 46,3 Å. В центральной части вблизи от первичного пучка рентгеновских лучей наблюдалась серия рефлексов, характеризующих ламеллярное строение фосфолипидов. При постепенном повышении концентрации ФМ диффузное гало исчезало, и при концентрации 75% возникал второй рефлекс под большими углами 3,7 Å. Система от «гель» фазы переходит в «коагельную». При исследовании ориентированных образцов установлено, что углеводородные хвосты перпендикулярны к поверхности раздела системы липид-вода. В системах ФП-вода и ФЭ-вода также обнаружены вышеуказанные мезофазы.

После ожоговой травмы в этих системах выявляются некоторые изменения. В частности, во всех системах рефлекс под малыми углами исчезает. Это говорит об изменении мезофазы или же о том, что межплоскостное расстояние увеличивается настолько, что рефлекс выходит

за рамки возможности регистрации.

В системе ФМ-вода выявляются диффузное гало и тонкие слабые рефлексы в области 23,3 Å. Интенсивность рефлекса 4,2 Å уменьшается, а рефлекс 3,7 Å полностью исчезает. Это свидетельствует об уменьшении кристалличности системы. В системе ФП-вода вместе с рефлексом 4,2 Å появляется диффузное гало 11,7 Å, свидетельствующее об изменении молекулярной структуры системы. В системе ФЭ-вода под большими углами, кроме рефлекса 4,2 Å, появляются рефлексы 7,3 Å и 22 Å, что указывает на увеличение кристалличности системы.

Таким образом, в модельных системах мембран из фосфолипидов, выделенных из разных тканей организма, при ожоговой травме обнаруживается ряд структурных изменений, в частности, изменение степени кристалличности и плотности упаковки молекул. Параллельно проведенные определения содержания конъюгированных диенов в печени, мозге и крови крыс после ожогового стресса указывают на значительное увеличение уровня продуктов перекисного окисления липидов. Известно также, что липидные перекиси обладают мембранотоксическим действием и изменяют вязкость фосфолипидного бислоя мембран [2], чем и обусловлены структурные нарушения, установленные рентгенографическим методом.

Резюмируя полученные данные рентгенографических и морфологических исследований фосфолипидных моделей биомембран, можно заключить, что при ожоговом стрессе вследствие повышения окисления фосфолипидных компонентов уменьшается микровязкость и увеличивается кристалличность фосфолипидного бислоя.

Исследования изменений структурных характеристик биомембран при радиационном стрессе проводили методами дифракции рентгеновских лучей и поляризационной микроскопии. Обычно идентификация структурных образований производится с помощью поляризационной микроскопии [7], а затем подвергается более детальному изучению другими методами.

Оптическим методом нами изучены характеристики надмолекулярных организаций, а рентгенографическим методом - молекулярные перестройки в мембранных структурах. В норме на рентгенограммах липилной фракции ФП в результате гидратации молекул парами воздуха возникают рефлексы, характерные для поликристалла с идентичными расстояниями 3,9 Å, 4,6 Å, 29,6 Å. Рефлексу 4,6 Å соответствует диффузное гало, которое возникает от «жидкого состояния» углеводородных цепей [8]. Идентичное расстояние 3,9 А свидетельствует о поликристальном строении системы, где кристаллики относительно друг друга ориентированы хаотично, и физические свойства по всем направлениям изотропны. Липиды в системе образовывали слои мономолекулярной толшины, о чем свидетельствует рефлекс 29,6 А. В липидных фракциях ФП после облучения возникает увеличение толщины слоя, исчезает диффузное гало, а рефлекс 3,9 Å становится тоньше и меньшей интенсивности. При этом вытягиваются углеводородные цепочки, изменяя проницаемость мембраны (32,9 Å).

Исследования ФЭ показали, что в норме выявляются лауэграммы монокристаллов. Это объясняется образованием обратной жидкокристаллической мезофазы гидратированием парами воздуха, где водосодержащие домены головок липидов ориентированы в узлах пространственной решетки, образуя монокристалл. После лучевого поражения происходят значительные изменения строения как в надмолекулярных, так и молекулярных структурах. Организация доменов перестроена в полигональную, а кристаллики монокристалла размельчаются, не превращаясь в поликристалл. Эти изменения связаны с изменением качественного и количественного состава фосфолипидов, а также с развитием ионного дисбаланса [4,6].

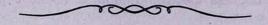
Полученные данные дают основание полагать, что при исследуемых видах стресса изменения вышеуказанных параметров однозначны, одна-ко следует указать, что они более выражены в ранние сроки ожогового стресса.

Поступила 25.06.98

ՖՈՍՖՈԼԻՊԻԳԱՅԻՆ ԹԱՂԱՆԹՆԵՐԻ ՄՈԴԵԼՆԵՐԻ ԿԱՌՈՒՑՎԱԾՔԱՅԻՆ ՓՈՓՈԽՈՒԹՅՈՒՆՆԵՐԸ ԱՅՐՎԱԾՔԱՅԻՆ ԵՎ ՌԱԴՒԱՅԻՈՆ ՍՏՐԵՍԻ ԺԱՄԱՆԱԿ

Ա.Գ.Սարգսյան

Ուսումնասիրվել են փորձարարական կենդանիների տարբեր օրգաններից այրվածքային և ճառագայքային վնասվածքներից առաջ և հետո անջատված ֆոսֆոլիպիդային թաղանքների կառուցվածքային փոփոխությունների առանձնահատկությունները։ Ռենտգենագրական և բևեռային մանրադիտակային մեթոդներով հաստատված է, որ հետազոտվող ստրեսային վիճակներում արյան էրիքրոցիաներից, լյարդից և ուղեղից անջատված ֆոսֆոլիպիդային ֆրակցիաներում տեղի են ունենում մոլեկուլային և վերմոլեկուլային կազմավորումների հեղուկաբյուրեղային փոփոխություններ։


STRUCTURAL CHANGES OF PHOSPHOLIPID MODELS OF MEMBRANES AT RADIATION AND BURN STRESSES

A.G.Sargssian

The peculiarities of structural changes of phosopholipid membranes of different organs in experimental animals are studied before and after burn and radiation damages. By the methods of X-ray difraction and polarization microscopy it is established that at the observed stresses from blood erythrocites, liver and brain in the phospholipidic fractions take place liquid-crystallization changes of molecular and above-molecular structures.

ЛИТЕРАТУРА

- Саркисян А.Г., Гарибян Л.М., Саркисян С.А. и др. Биол. ж. Армении, 1995, 3-4 (48).
- 2. Владимиров Ю.А., Арчаков А.И. Перекисное окисление липидов в биологических мембранах. М., 1972.
- 3. Гублер Е.В. и соавт. В сб.: Моделирование заболеваний. М., 1973, с.59.
- 4. *Козлов Ю.П.* Свободные радикалы и их ПОЛ в нормальных и патологических процессах. М., 1973.
- 5. Кочетыгов К.И. Ожоговая болезнь. М., 1973.
- Фоменко Б.С., Акоев Н.Г. Радиобиол., 1982, 9, с. 213.
- 7. Fridel J., Kleman M. Nat. Butr. Stand. Spec. Publ., 1970, 17, p. 607.
- 8. Luzzati V. In: Biological membranes Ed.: D. Chapman L., Acad. Press, 1968, p.71.

