А. С. СЕИЛАНОВ, В. В. КОНЕВ, Г. А. ПОПОВ

ВЛИЯНИЕ РАДИОМОДИФИКАТОРОВ НА ПЕРЕКИСНОЕ ОКИСЛЕНИЕ ЛИПИДОВ И СТРУКТУРНО-ФУНКЦИОНАЛЬНОЕ СОСТОЯНИЕ МИТОХОНДРИЙ

Рассматривается вопрос взаимоотношения интенсивности перекисного окисления липидов со структурой и функцией биомембран.

Установлено, что как SH-содержащие радиопротекторы, так а радиосенсибилизатор вызывают активирование индуцированного перекисного окисления липидов, сиижают оптическую плотность суспензии, а также подавляют потребление кислорода и фосфора.

Многочисленные данные свидетельствуют о том, что радиобиологическое действие может быть обусловлено процессами перекисного окисления липидов (ПОЛ) биомембран [1]. В частности, установлено, что приоблучении суспензии митохондрий происходит образование и накопление в ходе дальнейшей инкубации продуктов ПОЛ, зависящее от дозы облучения [5].

С другой стороны, независимо от облучения имеются данные о существенном влиянии процессов ПОЛ на структурно-функциональное состояние биомембран как в составе клеток [6], так и в составе органелл [8, 9]. Подобного рода данные дают основание для использования явления ПОЛ, индуцируемого прооксидантами химической природы, в качестве моделей начальных этапов развития радиационной патологии биомембран. Однако степень достоверности такого моделирования остается во многом не выясненной. В частности, не изучено действие классических радиомодификаторов на процессы ПОЛ и структурно-функциональные характеристики биомембран.

Цель настоящей работы— исследование влияния известных радиопротекторов и радиосенсибилизатора на процессы Fe²⁺-индуцированного ПОЛ мембран митохондрий и на их структурно-функциональное состояние. В качестве основных функциональных показателей митохондрий были использованы процессы дыхания и окислительного фосфорилирования, а о структурных нарушениях митохондриальных мембран судили по изменениям мутности суспензии митохондрий.

Материал и методы

В качестве объекта исследований использовали митохондрии печени мышей линии СВА₅₇, выделенные методом дифференциального центрифугирования [3]. Концентрацию митохондриального белка определяли по Loury [10]. Инкубировали митохондрии при температуре 37°С в атмосфере воздуха при постоянном мягком перемешивании. Интенсивность ПОЛ контролировали по образованию малонового диальдегида (МДА), который определяли по тесту с 2-тиобарбитуровой кислотой [4]. Потребление кислорода митохондриями определяли полярографически на полярографе «Микроаструб» (Дания) в термостатируемой ячейке

объемом 75 мкл. Об интенсивности окислительного фосфорилирования судили по убыли из среды неорганического фосфора, определяемого истодом Fiske, Subarrow [7]. Степень набухания митохондрий определяли по изменению мутности суспензии митохондрий, измеряемой спектрофотометрически на спектрофотометре «Specord» (ГДР).

Из радиомодификаторов исследовали SH-содержащие радиопротекторы— цистеин, цистамин и дитиотрейтол, а также N-этилмалеимид, относящийся к группе сульфгидрильных радиосенсибилизаторов.

Результаты и обсуждение

На рис. 1 представлена кинетика накопления продуктов Fe² +. ин дуцированного ПОЛ в процессе 2- часовой инкубации суспензии мито-кондрий в присутствии различных радиомодификаторов. Через 30 мин инкубации в суспензии образуется МДА до 1,0 нмоль/мг белка (кривая 2), а к 2 часам инкубации содержание его достигает 1,5 нмоль/мг белка. В отсутствие ионов Fe²⁺ уровень МДА не превышает 0,25 нмоль/мг белка (кривая 1).

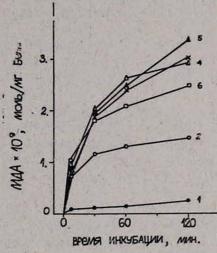


Рис. 1. Накопление малонового диальдегида при инкубации митохондрий в присутствии радиомодификаторов. 1-контроль без Fe 2+, 2-контроль в присутствин Fe 2+, 3-цистени, 4-цистамин, 5-дитиотрейтол, 6-N-этилмаленмид. Среднеквадратичная ошибка средних величин не превышает 9%. Среда инкубации: 175 mM NaCl, 20 mM Tphc-HCl, 10 mM MgCl₂, 5 MM K₂HPO₄, pH 7,3. Cy6crpar окисления: 5 мМ сукцинат, 2 мМ АДФ. Концентрация митохондриального белка 1 мг/мл. FeCl₂—5×10 -6 М. Концентрация радномодификаторов 1×10 -4 М.

Присутствие в системе цистеина, цистамина, дитиотрейтола и Nэтилмалеимида (кривые 3, 4, 5, 6) вызывает увеличение содержания МДА на фоне Fe²⁺ в 1,6—2,0 раза.

Параллельное исследование функциональных показателей митохондрий показало, что активирование процессов ПОЛ мембран как исходной суспензии, так и в присутствии модификаторов сопровождается
значительными изменениями в процессах энергообеспечения митохондрий (рис. 2). Так, в присутствии радиопротекторов (кривые 3, 4, 5)
потребление кислорода (А) и фосфора (Б) снижается не только по отношению к своему контролю в присутствии ионов Fe²⁺ (кривые 2), но
становится даже ниже исходного контроля без ионов Fe²⁺ (кривые 1).
Причём к 2 часам инкубации это снижение выражено для фосфора в
большей степени—в 4—7 раз, чем для кислорода—в 2—2,5 раза. Наибольшее ингибирующее действие на оба показателя (в 3,5—5,5 раза)
в течение всего периода инкубации оказывает N-этилмаленмид.

Описанные изменения функционального состояния митохондрий, вызванные Fe²⁺-индуцированным ПОЛ, сопровождаются нарушениями структурного состояния митохондриальных мембран, набуханием митохондрий и их лизисом, что выражается в снижении мутности суспензии митохондрий (рис. 3). Однако в отличие от результатов экспериментов с функциональными показателями минимальное действие на снижение мутности оказывает сенсибилизатор N-этилмалеимид (кривая 6), тогда как протекторы вызывают более выраженные повреждения (кривые 3, 4, 5).

Таким образом, в конкретных условиях опыта как SH-содержащие радиопротекторы, так и радиосенсибилизатор, действующий предположительно по принципу ингибитора эндогенных SH-групп, вызывали активирование ПОЛ на фоне действия Fe²⁺, усиливали повреждение структуры митохондрий и нарушали их функционирование. Отличие действия радиосенсибилизатора N-этилмалеимида по сравнению с радиопротекторами состоит лишь в существенном усилении эффектов по тестам потребления кислорода и фосфора и в несколько меньшем эффекте по тесту светорассеивания.

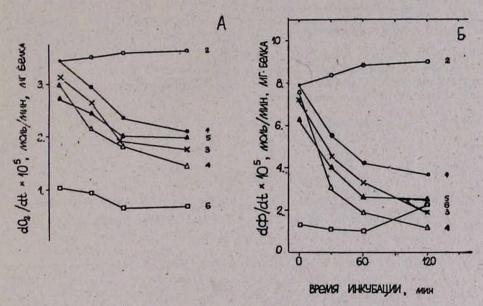
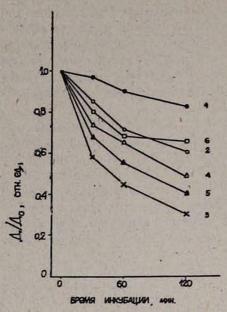



Рис. 2. Потребление кислорода (A) и неорганического фосфора (Б) при инкубации митохондрий в присутствии радиомодификаторов. Условия инкубации и обозначения те же, что и для рис. 1.

Известно, что SH-соединения могут выполнять двоякую роль в регулировании ПОЛ [2]. С одной стороны, они в состоянии восстанавливать экзогенное или эндогенное железо из 3--валентного неактивного состояния в активное 2-валентное, повышая таким образом действующую концентрацию ионов Fe²⁺, с другой стороны, эти соединения способны реагировать с промежуточными продуктами ПОЛ—гидроперекисями, выводя их из процесса развития ПОЛ, и ингибировать таким образом ПОЛ в целом. По-видимому, результаты, получен-

ные в условиях наших экспериментов, свидетельствуют о том, что экзогенные SH-соединения действуют в основном по принципу восстанов-

ления железа, а N-этилмалеимид по принципу подавления эндогенной SH-защиты, в том числе и на уровне SH-содержащих ферментов. При этом не исключено, что N-этилмалеимид может прямо подавлять ферментные системы окислительного фосфорилирования независимо от процессов ПОЛ.

Возможно, что при действии ионизирующего излучения защитная роль SH-соединений состоит в инактивации свободнорадикальных и других активных состояний, возникающих непосредственно в ходе взаимодействия излучения с биоматериалом и средой, в том числе с активными формами кислорода [11]. Все это следует принимать во внима-

Рис. 3. Изменение оптической плотности ние при интерпретации результатов суспензии митохондрий при инкубации, радиационного ПОЛ в присутствии $\lambda = 520$ им. Условия инкубации и обозна- радиомодификаторов. чения те же, что и для рис. 1.

НИИ медицинской радиологии АМН СССР

Пеступила 12/VII 1983 г.

Ա. Ս. ՍԵՏԼԱՆՈՎ, Վ. Վ. ԿՈՆԵՎ, Գ. Ա. ՊՈՊՈՎ

ՌԱԴԻՈՄՈԴԻՖԻԿԱՏՈՐՆԵՐԻ ԱԶԴԵՑՈՒԹՅՈՒՆԸ ՄԻՏՈՔՈՆԴՐԻՈՒՄՆԵՐԻ ԼԻՊԻԴԱՅԻՆ ԳԵՐՕՔՍԻԴԱՑՄԱՆ ԵՎ ԿԱՌՈՒՑՎԱԾԱՖՈՒՆԿՑԻՈՆԱԼ ՎԻՃԱԿԻ ՎՐԱ

Լյարդի միտոքոնդրիումների հետ կատարված փորձերում հաստատված Լ, որ ինչպես SH-պարունակող ռադիոպրոտեկտորներ՝ ցիստեինը, ցիստանինը և դիթիոտրեյտոլը, այնպես էլ ռադիոզդայունատոր N-էթիլմալեիմիդը առաջ են բերում Fe²⁺ - ինդուկցվող լիպիդային գերօքսիդացման ակտիվացում, իջեցնում են սուսպենդիայի օպտիկական խստությունը, ինչպես նաև ճնշում են թթվածնի և ֆոսֆորի յուրացումը։

A. S. SEYLANOV, V. V. KONEV, G. A. POPOV INFLUENCE OF RADIOMODIFICATORS ON LIPIDS PEROXIDE OXIDATION, STRUCTURAL AND FUNCTIONAL STATE OF MITOCHONDRIA

It has been established on native mitochondria that SH-groups containing radioprotectors—cysteine, cystamine and dithiotreitole as well as radiosensibilizator N-ethylmaleimide activate Fe²⁺-induced endogenous lipids peroxide oxidation, decrease optical density of suspensions and suppress oxygen consumption and oxidative phosphorylation.

ЛИТЕРАТУРА

- 1. Бурлакова Е. Б., Дзантиев В. Г., Сергеев Г. Б., Эмануэль Н. М. В кн.: Биохимические и физико-химические основы биологического действия радиации. М., 1957, стр. 10.
- 2. Владимиров Ю. А., Арчаков А. И. Перекисное окисление липидов в биологических мембранах. М., 1972.
- 3. Мэдди Э. Биохимическое исследование мембран. М., 1979.
- 4. Попов Г. А., Конев В. В. Биофизика, 1979, 24, 1, стр. 168.
- Попов Г. А., Конев В. В. Радиобиология, 1978, 18, 4, стр. 507.
- 6. Сейланов А. С., Попов Г. А., Конев В. В. Биофизика, 1982, 26, 5, стр. 906.
- 7. Fiske C. N., Subarrow Y. J. Biol. Chem., 1925, 66, 37.
- Hunter F. E., Gebicki J. M., Hoffsten P. E., Weinstein J. & Scott A. J. Biol. Chem. 1963, 238, 2, 828.
- 9. McKnight R. C., Hunter F. E., Oehlert Jr. & W. H. J. Biol. Chem., 1965, 240, 8, 3439.
- 10. Loury O., Rosenbrough N. et al. J. Biol. Chem., 1951. 193, 265.
- 11. McNeil C. J., Banford J. C., Brown D. N., Smith W. E. FEBS Lett., 1981, 133, 1, 175.

УДК 576.851:214

л. г. горина, с. а. гончарова, и. в. жевержеева, н. д. вартазарян

ПОКАЗАТЕЛИ ПЕРСИСТЕНЦИИ Л-ФОРМ СТРЕПТОКОККА ГРУППЫ «В» У ЭКСПЕРИМЕНТАЛЬНО ЗАРАЖЕННЫХ ЖИВОТНЫХ

Изучение инфекционного процесса, вызванного Л-формой стрептококка группы В, свидетельствует о формировании в организме животных очага персистенции, где, по всей вероятности, происходит репродукция микроорганизмов и перераспределение их по мере поступления в циркуляторное русло.

Ранее считалось, что стрептококк группы В является типичным комменсалом среди нормальной флоры верхних дыхательных путей и мочеполового тракта у человека. В течение последних 15 лет установлена причастность этого возбудителя к сепсису у новорожденных [9]. Смертность среди новорожденных, инфицированных отрептококком группы В, колеблется в пределах от 14 до 100% и зависит от клинических проявлений [10]. Кроме того, показана возможность участия стрептококка группы В в патогенезе ревматоидного артрита человека [5, 11]. Активация бессимптомной формы инфекции, по всей вероятности, связана с персистенцией стрептококков. Так, в исследованиях Zukradnichy [12] отмечено, что у матерей и отцов в течение двух лет после рождения ребенка наблюдается персистенция данных микроорга-