էքսպես. և կլինիկ. բժշկ. ճանդես

XVII, 1, 1977

Журн. экспер. и клинич. медицины

УДК 618.3—008.6

м. с. гижларян, м. в. варданян, с. а. хечумов

ВЛИЯНИЕ ДИХЛОРБУТАДИЕНА НА ЭМБРИОГЕНЕЗ И РЕПРОДУКТИВНУЮ ФУНКЦИЮ САМОК КРЫС

Дихлорбутадиен (ДХБД) при концентрации на уровне порога однократного действия (51 мг/м³) нарушает процесс развития эмбриона у беременных белых крыс.

При предварительной 2—3-месячной затравке крыс-самок ДХБД в концентрации 14 мг/м³ репродуктивная функция страдала несущественно, хотя общая эмбриональная смертность у затравленных групп незначительно повышалась по мере возрастания срока затравки.

К настоящему времени накопилось значительное количество данных, свидетельствующих о том, что хлорорганические соединения и, в частности, хлоропрен (ХП) способны оказывать, наряду с общетоксическим, также эмбриотоксическое, гонадотоксическое и тератогенное действие [2—5, 7].

Ввиду перспективности применения дихлорбутадиена (ДХБД) на производстве новых сополимерных СК и его сходства с ХП по физико-химическим свойствам и биологической активности представляет интерес выяснить возможность его эмбриотропного и гонадотропного действия.

Материал и методика

Опыты проводились на беспородных белых крысах. Беременность устанавливалась по обнаружению сперматозоидов во влагалищных мазках. Подопытные самки в разные сроки беременности затравлялись парами ДХБД в концентрации на уровне порога однократного действия по интегральным показателям (51±1,2 мг/м³). Крысы были разбиты на 8 групп по 8 в каждой. Первая группа затравлялась в 1—4-й день беременности, вторая— на 4—8-й, третья— 1—10-й, четвертая— 10—13-й, пятая— 15—19-й, шестая— 10—19-й, седьмая— 1—19-й и восьмая служила контролем. Самки вскрывались на 19-й день беременности.

Для выяснения гонадотропного действия ДХБД крыс-самок затравляли в течение двух и трех месяцев (концентрация ДХБД была на порядок выше порога хронического действия и составляла 14 мг/м³), затем спаривали с интактными самцами и следили за эмбриональным развитием потомства.

Результаты опытов и обсуждение

Результаты опытов, приведенные в табл. 1, показывают, что доимплантационная гибель выше в группах, у которых затравка охватывает

Таблица 1 Влияние ДХБД в концентрации 51 мг/м³ на выживаемость эмбрионов при воздействии в разные сроки беременности

Дни воздей- ствия	Доимпланта- ционная ги- бель в %	Постимпланта- ционная ги- бель в ⁰ / ₀	Выживаемости эмбрионов в % 67,5+5,45 P>0,05	
1—4-й	20,3+4.66 P>0,08	15,2+4,65 P>0,05		
4—8-ñ	12,5±3,7	25,8±5.20	65,0±5,35	
	P>0,05	P≈0,05	P>0,05	
1—10-й	23,0±4,5	35,8±5,80	49,5±5,36	
	P>0,05	P<0,05	P<0,05	
10—13-й	10—13-й 9,6 <u>+</u> 3,24 Р>0,05		67,5±5,15 P>0.05	
15—19-й	9,3±3,15	15,4±4,07	76,7±4,52	
	P>0,05	P>0,05	P>0,05	
10-19-й 16,2±4,68		38,5±6,70	51,5+6,55	
P>0,05		P<0,05	P<0,05	
1—19-й	26,4±4.72	37,5±6,02	45,9±5,35	
	P<0,05	P<0,05	P<0,05	
Контроль	12,5 <u>+</u> 3,7	12,8±4,0	76,4±4,75	

первые дни беременности (1—4-й, 1—10-й и 1—19-й). Постимплантационная гибель увеличена во всех группах, в которых затравка охватила чувствительные периоды развития эмбриона, а также всю беременность и ее первую или вторую половину.

Показатели, характеризующие состояние эмбрионов и плацент, указывают на то, что плаценты затравленных беременных крыс увеличены в весе и уменьшены в диаметре (табл. 2). Длина и вес эмбрионов также уменьшены, однако уменьшение веса статистически достоверно в группах, в которых затравка охватывает первую или вторую половину или весь период беременности; исключение составляет группа, затравленная в течение первых четырех дней беременности, в которой вес плодов также статистически достоверно снижен.

В опытах по исследованию гонадотропного действия дихлорбутадиена параллельно с тенденцией к некоторому повышению общей эмбриональной смертности (по мере увеличения продолжительности затравки самок до беременности) наблюдалось статистически достоверное увеличение веса эмбрионов, а также веса и размера плацент (табл. 3).

Изложенное выше свидетельствует о наличии у ДХБД эмбриотропного свойства в указанных условиях опыта. Причем, по данным табл. 1: и 2, наиболее чувствительным периодом к действию ДХБД можно считать 1—4-й день, поскольку это наименьший срок по продолжительности воздействия, при котором наблюдается, с одной стороны, увеличение доимплантационной смертности (недостоверность разности говорит скорее о малом количестве взятых в опыт животных), с другой, неудовлетворительное внутриутробное развитие оставшихся в живых эмбрионов, которые при рождении по весу и размерам достоверно отличались

Таблица 2 Влияние ДХБД (51 мг/м³) в разные сроки беременности на вес и размеры эмбрионов и плацент

Дни воз-	Эмб	рион	Плацента		
действия	вес (в г)	длина (в см)	вес (в г)	днаметр (в см)	
1—4-й	1,85±0,025	2,88±0,024	0,45±0,012	1,25±0,009	
	P<0,05	P<0,05	P<0,05	P<0,05	
4—8-й	2,09±0,029	3,(0±0,033	0,56±0,009	1,3 ±0,009	
	P>0,05	P<0,05	P<0,05	P<0,05	
1—10-й	1,99±0,036	2,87±0,029	0,49±0,011	1,27±0,014	
	P<0,05	P<0.05	P<0,05	P<0,05	
10—13-ii	2,14±0,005	3,04±0,033	0,51+0,018	1,32±0,018	
	P>0,05	P<0,05	P<0,05	P<0,05	
15—19-й	2,18±0,02	3,02±0,015	0,47±0,013	1,28±0,014	
	P>0,05	P<0,05	P<0,05	P<0,05	
10—19-й	1,92±0,048	2,97±0,041	0,57±0,026	1,23±0,026	
	P<0,05	P<0,05	P<0,05	P<0,05	
1—19-й	1,80±0,631	2,97±0,033	0,47±0,014	1,30±0,014	
	P<0,05	P<0,05	P<0.05	P<0,05	
Контроль	2,13 <u>+</u> 0,027	3,14 <u>+</u> 0,023	0,36±0,012	1,43±0,012	

Таблица 3 Внутриутробное развитие плодов, матери которых до беременности затравлялись ДХБД (14 мг/м³) в течение 2 и 3 месяцев

Группы живот- ных	Выживае- мость эмбрионов (в ⁰ / ₀)	Общая эмбриональ- ная смерт- ность	Эмбрион		Плацента	
			длина (в см)	вес (в г)	диаметр (в см)	вес (в г)
Контроль	79,5±4,56	20,5+4,5	3,08±0,031	2,14±0,031	1,4 ±0,014	0,46±0,015
I Turne	76,0±5,82 P>0,05	24,0±5,8 P>0,05	3,06±0,037 P>0,05	2,28±0,044 P<0,05	1,49±0,014 P<0,05	0,64±0,013 P<0,05
II	72,2±4,55 P>0,05	27,8±4,55 P>0,05	3,08±0.032 P>0,05	2,30±0,027 P<0,05	1,53±0,013 P<0,05	0,63±0,015 P<0,05

Примечание. І группа затравлялась 2 месяца, II — 3 месяца.

от крысят контрольной группы, в противоположность тем, матери которых также затравлялись в течение четырех дней, но в другие периоды беременности (4—8-й, 10—13-й, 15—19-й). Кроме того, из табл. 1 и 2 видно, что эмбриотропный эффект ДХБД усиливается при увеличении грока затравки. Это подтверждается показателями общей эмбриональной смертности и состояния плодов крыс, затравленных в течение первой или второй половины, а также всего периода беременности.

Немногочисленность литературных данных затрудняет представление о механизме действия дихлорбутадиена на репродуктивную функцию, однако имеющиеся сведения позволяют связать наблюдаемые явления с некоторыми биохимическими сдвигами в организме, имевшими меся причотравлении хлорорганическимичесоединениями и, вероятно, также димлорбутадиеномии приправаниями и

"По данным Ван Дайк и др. [9], в микроеомах гепатоцитов существует ферментная система, способная дехлорировать хлорорганическое соединение, превращая состаток и молекулы в свободный радикал. На свободнорадикальный механизм действия хлорорганических веществ указывают также Виртшафтер и Кронин [10].

Образующийся свободный радикал инициирует реакцию переокисления ненасыщенных жирных кислот, входящих в состав фосфолипидов биологических мембран, окисляя в том числе и легкоокисляемые соединения, к числу которых относится, витамин А играющий решающую роль в вопросе обеспечения нормальной функции воспроизводства потомства. В процесс, вероятно, вовлекается и витамин Е, роль которогокак антиокислителя, в частности как предохранителя витамина А от окисления, хорощо известна [6, 8]. В результате усиленного расхода витамина Е его запасы, естественно, истощаются, что доказала в своей работе М. Л. Арутюнян в эксперименте с хлоропреном [1]. Дефицит витамина Е, с одной стороны, приводит к нарушению развития эмбрионов, вплоть до резорбции, с другой, обуславливает истощение запасов витамина А, что, в свою очередь, может стать причиной выкидыша, бесплодия, рождения слабого потомства, мертворождения и других нарушений развития эмбрионов, часть которых мы наблюдали в наших опытах [6, 8].

Что касается гонадотропного действия ДХБД, то в применяемых концентрациях (14 мг/м³) он оказал слабый гонадотропный эффект, выражающийся в повышении общей эмбриональной смертности по мере увеличения продолжительности затравок крыс до наступления беременности. Статистически достоверное увеличение веса плодов в этих опытах, нам кажется, можно объяснить не благоприятным действием ДХБД, а скорее тем, что количество плодов на одну матку уменьшилось в результате повышенной общей эмбриональной смертности в предварительно затравленных группах крыс.

Таким образом, в указанных условиях опыта ДХБД обладает слабым гонадотропным и выраженным эмбриотропным действием.

Всесоюзный научно-исследовательский и проектный институт полимерных продуктов

Поступила 20/V 1976 г.

Մ. Ս. ԳԻԺԼԱՐՑԱՆ, Մ. Վ. ՎԱՐԴԱՆՑԱՆ, Ս. Ա. ԽԵՉՈՒՄՈՎ

ԴԻՔԼՈՐԲՈՒԹԱԴԻԵՆԻ ԱԶԴԵՑՈՒԹՅՈՒՆԸ ՍՊԻՏԱԿ ԱՌՆԵՏՆԵՐԻ ՍԱՂՄԻ ԶԱՐԳԱՑՄԱՆ ԵՎ ՎԵՐԱՐՏԱԴՐՄԱՆ ՖՈՒՆԿՑԻԱՅԻ ՎՐԱ

Ամփոփում

Ուսումնասիրվել է դիքլորբութադիենի ազդեցությունը (51 մգ/մ³) հղիության ընթացքի և սաղմի զարդացման վրա, հղիության տարբեր ժամանակահատվածներում հղի առնետներին Թունավորելու պայմաններում։ Բացի դրանից ուսումնասիրվել է դիքլորբուԹադիենի գոնադոտրոպ ազդեցությունը ․ քրոնիկական շեմքից 10 անգամ բարձր խտության պայմաններում (14 մգ/մ³)։

Հայտնաբերվել է մինչիմպլանտացիոն մահացության բարձրացում այն խմբերի մոտ, որոնց թունավորումը ընդգրկել է հղիության առաջին օրերը և հետիմպլանտացիոն մահացության բարձրացում այն խմբերի մոտ, որոնց թունավորումը ընդգրկել է հղիության զգայուն ժամանակահատվածները։

ЛИТЕРАТУРА

- 1. Арутюнян М Л. Автореферат дисс. канд. Ереван, 1970.
- Давтян Р. № В сб.: Токсижология и гигиена продуктов нефтехимии и нефтехимических про ізводств. ІІ Всесоюзная конференция. Ярославль, 1972, стр. 95.
- Мелик-Алавердян Н. О. Генеративная функция яичников и эстральный цикл белых крыс при хронической хлоропреновой интоксикации. Ереван, 1967, стр. 163.
- 4. Сальникова Л. С. Автореферат дисс. канд. М., 1970.
- 5. Сальникова Л. С., Фоменко В. Н. Гигнена труда и профзаболеваний, 1973, 8, стр. 23.
- 6. Moor Th. В сб.: Факторы, воздействующие на плодовитость. М., 1970, стр. 26.
- 7. Oettingen W. J. Am. Hyg. and Toxicol., 1937, 19, 8, 349.
- 8. Thompson J. В сб.: Факторы, воздействующие на плодовитость. М., 1970, стр. 40
- 9. Van Dyke R. A. Biochemical Pharmacology, 1971, 20, 463.
- 10. Wirtschafter Z. T., Cronyn M. B. Arch. Envir. Health, 1964, 9, 186.