էքսպեր, և կլինիկ. թժշկ, ճանդես

XVI, № 2, 1976

Журн. экспер. и клинич. медицины

УДК 612.827+612.015.31

Э. С. АНДРИАСЯН, Л. Г. ГРИГОРЯН

О РОЛИ МОЗЖЕЧКА В РЕГУЛЯЦИИ АКТИВНОСТИ НЕКОТОРЫХ МЕТАЛЛОПРОТЕИДОВ И КОЛИЧЕСТВА СОПРЯЖЕННЫХ МИКРОЭЛЕМЕНТОВ

В опытах на собаках и кроликах с хронически вживленными электродами в червь и полушария мозжечка определялся уровень железа, меди, цинка и марганца в крови и некоторых органах, а также активность сопряженных металлопротендов (трансферрина, церулоплазмина, карбоангидразы и щелочной фосфатазы) в условиях высокочастотной электростимуляции мозжечка.

Установлено, что филогенетически более древний отдел мозжечка—червь приводит к разносторонним специфическим изменениям констелляционных типов микроэлемент металлопротеид.

Работы школы Л. А. Орбели позволили рассматривать мозжечок как ведущий орган регуляции и модуляции всех звеньев рефлекторной деятельности организма. Ряд работ [1, 4, 7, 13, 16] подтверждает влияние мозжечка на такие вегетативные процессы, как кровообращение, кроветворение, секреторная деятельность желудочно-кишечного тракта, углеводный обмен и др. Однако в доступной нам литературе мы не встретили работ, посвященных роли мозжечка в регуляции микроэлементного обмена.

Учитывая актуальность вопроса нервной регуляции микроэлементов в свете учения Л. А. Орбели об адаптационно-трофическом влиянии мозжечка, мы сочли необходимым изучить связь микроэлементов (Fe, Cu, Zn, Mn) с биохимическими компонентами крови—металлопротеидами (трансферрин, церулоплазмин, карбоангидраза и щелочная фосфатаза). Это позволит составить мнение, во-первых, о кинетике микроэлементов во-вторых, о влиянии микроэлементов на комплекс сложных и многогранных взаимоотношений микроэлемент—металлофермент.

Эксперименты проводились в динамике на 5 собаках и 15 кроликах. Количество микроэлементов определялось с помощью эмиссионноспектрографического анализа по методу трех эталонов В. К. Прокофьева [11], активность трансферрина и церулоплаэмина—по Г. А. Бабенко [2], карбоангидразы—по Meldrum и Raughton, описанному М. Д. Подильчаком [9], щелочной фосфатазы—по В. Е. Предтеченскому [10].

Учитывая данные Э. С. Андриасян [1], свидетельствующие о том, что эффект раздражения мозжечка имеет длительный латентный период (5—10 мин.) и большое последействие, кровь и навески органов для определения микроэлементов брались к концу 10-й минуты после электростимуляции мозжечка на протяжении 2 часов через каждые 30 ми-

нут. Раздражение мозжечка производилось через биполярные субдуральные электроды, вживленные в области червя и полушария мозжечка, электрическими прямоугольными импульсами длительностью 0,5 мсек, напряжением в 5 вольт, частотой 300 гц, экспозицией в 30 сек. Статистическая обработка всех цифровых данных производилась методом Стьюдента с учетом распределения при малых значениях п.

Данные физиологического разброса изучаемых нами микроэлементов крови и органов интактных кроликов в определенной степени согла-

суются с литературными [3, 6, 8].

Результаты наших опытов по определснию активности металлоферментов в плазме крови при высокочастотном раздражении червя мозжечка представлены в табл. 1 и 2. Для сравнения приведены данные о микроэлементном составе крови и некоторых органов кроликов в тех же условиях эксперимента.

Таблица 1
Активность металлопротендов и концентрация микроэлементов в мг% на свежее вещество в крови и органах до и после раздражения червя мозжечка

В	ещество в кр	ови и органах д	о и после раздр	ажения червя м	озжечка				
Металлопротенды Трансферрин п=8 Церулоплазмин п=10 Щелочная фосфатаза п=10		До раздраже-	После раздражения						
		ния	через 30'	через 60'	через 90' 0,20±0,01 24,07±3,8 через 150' 1,8±0,43 P<0.01				
		0,19±0,01	0,15+0,01 P<0,05	0,17±0,01					
		19,35 <u>+</u> 1,10	26.40±2,30 P<0,05	31,10±3,10 P<0,02					
		2,84±0,39	через 30' 1,40+0,45 P<0,02	через 90' 0,74±0,14 P<0,001					
0-		микроэлементы							
Органы п=6		железо	медь	цинк	марганец				
Кровь	до после	58,70±2,20 51,30±1,12 P<0,05	0,105±0,005 0,160±0,015 P<0,02	0,59±0,06 0,33±0,08 P<0,05	0,015±0,001 0.012±0,001				
Печень	до после	16,70±1,20 17,40±1,50	0,496±0,057 0,267±0,061 P<0,05	2,86±0,52 2,05±0,46	0,188±0,025 0,196±0,015				
Почка	до после	7,60±0,65 8,86±0,75	0,350±0,032 0,312±0,025	2,15±0,04 1,85±0,25 P<0,05	0,095±0,014 0,092±0,015				
Мышца	до после	1,20±0,08 1,266±0,10	0,165±0,015 0,152±0,02	0,88±0,04 0,85±0,05	0,020±0,005 0,018±0.006				
Легкие	до после	5,71±0,15 7,20±0,50 P<0,05	0,240±0,029 0,205±0,018	1,78±0,32 1,95±0,40	0,025±0,008 0,052±0,006 P<0,05				
Грудина	до после	25,17±1,36 34,.2±5,1 P<0,05	0,984±0,075 1,10±0,05	5,52±1,10 5,21±0,89	0,201±0,01 0,212±0,015				

Таблица 2 Активность карбоангидразы интактных кроликов до и после раздражения

				A STATE OF THE PARTY.	STREET, SQUARE, SQUARE,		the Contract of the last	- Partie 1	M±m	P
Интактные	1,32	1,25	1,00	3,50	2,60	1,59	2,15	1,60	1,88±0,29	1

После раздражания червя мозжечка

Через 30 мин	3,10	2,70	2,00	0,50	0.59	3,20	-	2,00	2,29±0,43	>0,3
1 час	3, 10	1,70	2,00	0,20	-	4,45	4,40	_	2,47±0,16	>0,3

Как показали наши исследования, активность трансферрина находится в прямой зависимости от концентрации железа в крови. Так, например, максимальное понижение активности металлопротеида отмепосле стимуляции— 0.15 ± 0.01 чается спустя 30 мин. (в контроле-0.19+0.01, Р<0.05) и соответствует понижению содержания железа в крови—51,30±1,12 (в контроле—58,70±2,20, Р<0,05). Уменьшение степени насыщения трансферрина железом можно объяснить, исходя из данных Э. С. Андриасян [1], установившей стимуляцию эритропоэза в результате раздражения червя мозжечка. Оживление красного ростка костного мозга вызывает усиленную утилизацию железа, в результате чего уменьшается его транспортная фракция [5]. Об усилении эритропоэза свидетельствует увеличение содержания железа (34,12+5,10, в контроле $-25,17\pm1,36, P<0,05)$. В то же время недостоверное увеличение железа в печени, вероятно, является результатом повышения поглотительной способности РЭС.

Медьоксидазная активность возрастает, особенно к концу 1-го часа после раздражения, с 19,35±1,10 до 31,10±3,10 (Р < 0,02) параллельно увеличению меди в крови (0,160±0,015, в контроле—0,105±0,005, Р < 0,02). Как видно, гиперкупремия является следствием мобилизации меди из депо (печени) в ответ на повышение тонуса симпатической нервной системы в результате раздражения мозжечка. Увеличение активности церулоплазмина к концу первого часа после раздражения в определенной мере обусловливает восстановление активности трансферрина, наблюдаемое к этому времени. Если учесть стимулирующее влияние меди на кроветворение [14, 15], то становится ясной причастность гиперкупремии и увеличение активности церулоплазмина к механизму стимуляции эритропоэза при раздражении червя мозжечка.

Колебания активности угольной ангидразы в условиях электростимуляции носили недостоверный характер, котя в каждом конкретном случае имели определенную направленность в зависимости от исходного уровня. При раздражении червя моэжечка кислородная емкость крови увеличивается как в результате оживления эритропоэза и эритроцитоза в периферической крови, так и за счет повышения кровенаполнения легких (о чем свидетельствует увеличение количества исследуемых микроэлементов в легочной ткани). Вероятно, в результате этого отпадает необходимость в повышении активности карбоангидразы.

Изучение активности щелочной фосфатазы проведено на собаках. Результаты показали, что при раздражении, особенно через 1,5 часа, возникает выраженная гипофосфатаземия (0,74±0,14, в контроле—2,84±0,39, P<0,02). Возможно, что гипофосфатаземия является не только следствием понижения содержания цинка в крови с 0,59±0,06 до 0,33±0,08 (P<0,05), но и лейкопении [1], вызванной раздражением червя мозжечка. Угнетение лейкопоэза проявляется не только количественными, но и качественными сдвигами со стороны белой крови и, в частности, нарушением инкорпорации микроэлементов в гранулоцитах костного мозга, что не может не отразиться на активности щелочной фосфатазы. Раздражение полушария мозжечка в тех же условиях не вызывало аналогичных и достоверных изменений со стороны исследуемых показателей.

Таким образом, анализ фактического материала показал, что раздражение червя мозжечка приводит к выраженным изменениям концентрации микроэлементов в крови и органах кроликов, а также активности соответствующих металлопротендов, в то время как раздражение полушария мозжечка не вызывало четких и закономерных изменений исследуемых показателей. Можно заключить, что филогенетически более древняя часть мозжечка—червь оказывает свое адаптационно-трофическое влияние посредством изменения констелляционных типов микроэлемент—металлопротенд.

Кафедра физиологин Ереванского медицинского института

Поступила 20/XII 75 г.

է. Ս. ԱՆԴՐԻԱՍՑԱՆ, Լ. Գ. ԳՐԻԳՈՐՑԱՆ

ՈՒՂԵՂԻԿԻ ԴԵՐԸ ՈՐՈՇ ՄԵՏԱՂԱՊՐՈՏԵԻԴՆԵՐԻ ԱԿՏԻՎՈՒԹՅԱՆ ԵՎ ՄԻԿՐՈՏԱՐՐԵՐԻ ՔԱՆԱԿԻ ԿԱՐԳԱՎՈՐՄԱՆ ՄԵՋ

Ամփոփում

Շների և ճագարների մոտ տևական փորձի պայմաններում ուղեղիկի որդը և կիսագնդերը բարձր հաճախականության էլեկտրական հոսանքով դրգռելով որոշվել է երկաթի, պղնձի, ցինկի և մանգանի քանակական փոփոխությունները արյան մեջ և մի շարք օրգաններում, ինչպես նաև որոշ մետաղապրոտեիդների ակտիվությունը։

Պարզվել է, որ ուղեղիկի, ֆիլոգենետիկ իմաստով ավելի հնագույն գոյացությունը՝ որդը, առաջացնում է բազմակողմանի բնորոշ փոփոխություններ համագործակցվող միկրոտարը- մետաղապրոտեիդ կոմպլեքսների միջև։

ЛИТЕРАТУРА

- 1. Андриасян Э. С. Докт. дисс. Ереван, 1968.
- Бабенко Г. А. Определение микроэлементов и металлосодержащих ферментов в клинической лаборатории. Киев, 1967.
- 3. Ворошиловская С. П. Автореферат канд. дисс. Черновцы, 1966.
- Вышатина А. И., Гуревич М. И. Структурная и функциональная организация мозжечка. Матер. III Всесоюз. симпозиума. Винница. Кнев, 1974, стр. 59.
- 5. Истаманова Т. С. Очерки функциональной гематологии. Л., 1963.
- 6. Клименко А. А. В сб.: Микроэлементы в медицине. Ивано-Франковск, 1974, 5, стр. 25.
- 7. Логинов А. А. Автореферат канд. дисс. Баку, 1951.
- Падалка Е. С., Дэюбак С. Т., Саевич Х. Н. В сб.: Микроэлементы в медицине. Ивано-Франковск, 1975, 6, стр. 106.
- 9. Подильчак М. Д. Клиническая энзимология. Киев, 1967.
- Предтеченский В. Е. Руководство по клиническим лабораторным исследованиям. М., 1960.
- Прокофьев В. К. Фотометрические методы количественного спектрального анализа металлов и сплавов. Л., 1951.
- 12. Свистун Ю. Д. В сб.: Микроэлементы в медицине. Ивано-Франковск, 1975, 6, стр. 33.
- 13. Талан М. И. Физиологический журнал СССР, 1973, 59, 2, 222.
- 14. Gubler C., City S. J. Am. Med. Assoc., 1956, 817, 23, 530.
- Hatta J., Marusana J., Tsuruoko W., Jamaguehi A., Rutita M., Sugata F., Schimizu M. Acta Haemat. Jap., 1962, 25, 6, 682.
- 16. Hoffer B. Dissrt. Abstr. USA, 1966, 27, 2B, 591.]