

էքսպես. և կլինիկ. թժշկ. ճանդես

XV, № 3, 1975

Журн. экспер. и клинич. медицины

УДК 612.017+615.371

А. С. КАЗАРЯН

СЕРОЛОГИЧЕСКИЕ ПОКАЗАТЕЛИ ПО МИКРОАГГЛЮТИНАЦИИ И ЛИЗИСУ У КРОЛИКОВ, ИММУНИЗИРОВАННЫХ ОДНОВРЕМЕННО ПРОТИВ ЛЕПТОСПИРОЗА, ПАСТЕРЕЛЛЕЗА И БРУЦЕЛЛЕЗА

Выяслена возможность и эффективность одновременной иммунизации кроликов против лептоспироза и пастереллеза; лептоспироза и бруцеллеза; лептоспироза, пастереллеза и бруцеллеза комплексными и ассоциированными методами. Выявлено, что при применении смеси трех вакцин антигенное раздражение на организм кроликов было более длительным и что антителогенез в отношении лептоспирозной поливалентной вакцины при совместном применении ее с бруцеллезной и пастереллезной вакцинами не подавляется, а в некоторых случаях даже усиливается.

В предыдущих работах при одновременном применении лептоспирозной, пастереллезной и бруцеллезной вакцин была показана их совместимость, а также отсутствие суммации реактогенных и сенсибилизирующих свойств [5, 7].

В настоящей работе приведены данные по микроагглютинации и лизису (РМАЛ) сывороток крови иммунизированных кроликов, показавшие почти аналогичные с предыдущими [6] результаты.

Исследования сывороток по РМАЛ проводились на 60 кроликах по 12 в каждой группе (І группа—иммунизированные поливалентной лептоспирозной вакциной из пяти серотипов, ІІ—лептоспирозной и бруцеллезной, ІІІ—лептоспирозной и пастереллезной, ІV—лептоспирозной, пастереллезной и бруцеллезной комплексно, V—смесью трех вакцин ассоцинрованно). Кровь от кроликов брали из ушной вены один раз до и девять раз после вакцинации (на 7-, 15-, 23-, 31-, 45-, 60-, 90-, 120- и 150-й дни).

Разведение сывороток для РМАЛ с 1:10 было доведено до предельного титра с удвоением последующих разведений. В качестве антигена применяли пять серотипов живых лептоспир (grippotyphosa, pomona, icterohaemorrhagiae, canicola, tarassovi).

Реакция микроагглютивации и лизиса проверялась в темном поле с помощью универсального микроскопа МБИ-6 под увеличением 10×10 без покровного стекла (30—40 проб одновременно на одном предметном стекле).

Показатели агглютинационных титров сывороток крови статистически обработаны по методу И. П. Ашмарина и А. А. Воробьева [1] (таблица, рис. 1).

	Дни исследования и средний титр после вакци нации											
		кроликов		7-й	15-й	23-й	31-ii	45-й	60-й	90-й	120-й	150-й
	Группы п метод вакцинации против		Антигены для РМАЛ	по сероти-	по сероти- пам всего	по сероти- пам всего	по сероти- пам всего	по сероти- пам всего	по сероти- пам всего	по сероти- пам всего	по сероти- пам всего	по сероти- пам всего
	I Раздельно лептоспироза	12	Гриппотиф. Помона Иктерогем. Каникола Тарассови	83 174 148 161 127 274	192 295 227 206 319 248	295 451 319 382 364 480	256 384 295 281 348	114 151 160 159 225	41 14 50 42 53 47	18 24 17 13 2)	12 15 14 12 15 16	10 10 11 11 10 14
K O M II	II лептоспироза и бруцеллеза	12	Гриппотиф. Помона Иктерогем. Каникола Тарассови	79 77 109 40 48	132 182 174 174 174 203	295 403 348 331 348	319 426 334 384 403	187 264 240 154 295	91 103 101 98 98 95	42 44 36 43 43 49	14 2) 14 15 15 14	13 13 13 13 13
Л Е К	III лептоспироза и настереллеза	12	Гриплотиф. Помона Иктерогем. Каникола Тарассови	120 137 147 127 86 148	156 192 226 206 197	274 480 426 384 403	256 426 334 284 403 341	182 295 234 197 295 261	61 142 70 94 89	36 42 29 26 49 36	12 19 18 13 15	12 14 14 14 12 13
CHO	IV лептоспироза, пастереллеза и бруцеллеза	12	Гриппотиф. Помона Иктерогем. Каникола Тарассови	68 79 52 53 85 67	148 167 130 94 167	307 334 319 274 319	337 480 348 307 451 378	212 264 220 206 274 235	85 94 109 94 154	42 50 53 29 18	24 38 15 18 18 18	14 16 14 13 16
	V Ассоциирован, лептоспироза, пастереллеза + бруцеллеза	12	Гриппотиф. Помона Иктерогем. Каникола Тарассови	29 77 39 26 61	106 113 120 103 102	284 295 319 256 295	307 511 334 319 426 319	167 451 319 284 285	85 124 101 96 160	43 49 44 49 42 45	18 37 18 26 37 27	14 20 20 12 17

Данные, полученные при исследованиях, подтверждают, что все вакцинированные кролики (в разных сочетаниях вакцин) на 7-й день после первичной вакцинации по РМАЛ на все пять серотипов реагировали положительно. Однако уровень среднего титра по группам животных варьировал в разных пределах. Так, агглютинационный титр на 7-й день по РМАЛ у животных І-й группы в среднем составлял 1:161, у комплексно иммунизированных—от 1:67 до 1:127, а у ассоциированно иммунизированных—1:46, при этом наивысший титр отмечен в І и ІІІ группах животных.

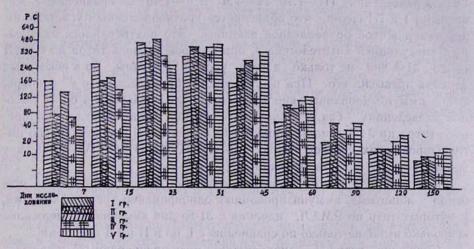


Рис. 1. Титр по РМАЛ у кроликов.

Агглютинообразовательный процесс у животных на 15-й день во всех группах в отношении пяти серотипов несколько усиливался, при этом уровень титра по РМАЛ соответственно составлял: І группа— 1:248, ІІ—1:172, ІІІ—1:188, ІV—1:141, V—1:112. Максимальный титр агглютининов и лизинов у кроликов, иммунизированных одной лептоспирозной вакциной, и у кроликов, иммунизированных одновременно раздельно против лептоспироза и пастереллеза, отмечен на 23-й день после первичной вакцинации (І группа—1:382, ІІІ—1:389). Как видно, уровень титра у животных ІІІ группы несколько выше, чем в І.

Максимальный титр по РМАЛ у животных II, IV и V групп появился с некоторым опозданием, т. е. наивысший титр был отмечен на 31-й день после первичной вакцинации. По нашему мнению, это связано с наличием живой бруцеллезной вакцины в этих сочетаниях, т. е. более сильного антигена, действие которого на прививаемый организм в первые дни оказывается более выраженным, чем у животных III группы, где в комплексе с лептоспирозной вакциной была убитая вакцина пастереллеза. Присутствие последней не только не действовало угнетающе на образование спецагглютининов и лизинов в отношении лептоспирозной вакцины, но даже наблюдалось некоторое усиление этого пропесса по сравнению с I группой животных. Антитела (агглютинины и лизины) у этих двух групп животных после соответствующих вакцинаций появились одновременно, и титр их был почти на одинаковом уровне. Розкое снижение титра у раздельно иммунизированных одной лептоспирозной вакциной наблюдалось на 45-й день (с 1:313 до 1:162), тогда как у одновременно иммунизированных этот процесс отмечается на 60-й день после вакцинации.

Динамика нарастания, а также снижения титра во II, IV и V группах животных протекала несколько своеобразно, т. е. на 7-й день вакцинации у них также отмечалась положительная реакция, но в очень
низких разведениях (II—1:70, IV—1:67 и V—1:46) по сравнению с животными I и III групп, что объясняется кратковременным угнетающим
действием живой бруцеллезной вакцины. Это подтвердилось дальнейшей стимуляцией антителогенеза, при которой уровень титра по РМАЛ
на 23-, 31-й дни не только достиг уровня I группы, но в некоторых
случаях превысил его. При последующих проверках титр у одновременно иммунизированных кроликов сохранялся дольше и в более высоких разведениях. Так, у животных I группы уровень агглютинационного титра на 31-й день вакцинации был равен 1:313, у комплексно иммунизированных соответственно: II—1:376, III—1:341, IV—1:378, а у
ассоциированно иммунизированных (V гр.)—1:379.

Высокий титр у этих животных сохранялся более длительно, особенно у животных, иммунизированных одновременно тремя вакцинами, у которых титр по РМАЛ, начиная с 31-го дня вакцинации, держался несколько выше не только по сравнению с I, но и II и III группами.

Снижение титра у одновременно иммунизированных животных проходило более равномерно, при этом уровень титра агглютининов у І группы животных на 60-й день вакцинации был равен 1:47, у ІІ—1:98, ІІІ—1:91, ІV—1:107 (в два раза выше І), а у ассоципрованно иммунизированных (V гр.)—1:113.

Уровень титра по реакции микроагглютинации и лизиса во всех группах иммунизированных животных снизился до минимального на 120-, 150-й дни после вакцинации, при этом у одновременно иммунизированных животных он был более высоким, чем у иммунизированных раздельно одной лептоспирозной вакциной. По-видимому, присутствие здесь этих двух вакцин (в смеси) замедляло иммунообразовательный процесс лептоспирозного антигена.

Хотя в первые дни исследования наблюдалась некоторая задержка ответной реакции организма в отношении лептоспирозной вакцины при ее одновременном применении с брущеллезной живой вакциной, однако она была кратковременной и не производила отрицательного действия на иммуногенез, что подтверждается дальнейшим нарастанием титра агглютининов, начиная с 15-го дня вакцинации.

Неравномерность повышения агглютинационного титра по РМАЛ наблюдалась и по отдельным серотипам, которая у отдельных животных варьировала от 1:10 до 1:3200, при этом наивысший титр отмечался в отношении серотипов ротопа и tarassovi, более низкие титры отмечены

в отношении grippotyphosa и canicola, что объясняется, по-видимому,

их реактогенной способностью.

Отметим, что стимуляция агглютиногенеза у I и III групп животных начиналась с 7-го дня, максимальный титр при этом в обеих группах отмечен на 23-й день исследования. В дальнейшем он постепенно снижался и в последнем исследовании (150-й день) не все животные I группы по РМАЛ реагировали положительно, тогда как у одновременно иммунизированных начиная с 23-го дня титр поднимался, достигая на 31-й день наивысшего уровня, и до конца опыта эти кролики положительно реагировали на антиген в более высоких разведениях.

Полученные данные доказывают, что при применении смеси трех вакцин антигенное раздражение на организм кроликов было более длительным и что антителогенез в отношении лептоспирозной поливакцины при совместном применении ее с бруцеллезной и пастереллезной вакцинами не подавляется. Аналогичные результаты были получены при серологических исследованиях по РА в отношении бруцеллезной вакцины.

На основании этих данных мы исключаем возможность конкуренции между этими тремя антигенами.

Аналогичные результаты при одновременном применении лептоспирозной вакцины с другими получены многими авторами [2—4, 8— 10].

Если считать, что продолжительность иммунитета при этих инфекпиях в какой-то степени обусловливается появлением и динамикой нарастания спецагглютининов и лизинов, то можно сказать, что напряженность поствакцинального иммунитета у ассоциированно иммунизированных кроликов была более выраженной, поскольку сравнительно высокий титр агглютининов до конца нашего наблюдения сохранялся у одновременно иммунизированных животных, и особенно в V группе. При применении смеси трех вакцин антителогенез к этим антигенам не только не угнетался, но даже в некоторых случаях усиливался.

Учитывая полученные данные по серологическим показателям и реактогенности лептоспирозной, пастереллезной и бруцеллезной вакцин при их одновременном применении, мы приходим к заключению об эффективности указанных сочетаний. Эти данные показывают, что противолептоспирозную поливалентную вакцину (из пяти серотипов) вполне возможно применять одновременно с бруцеллезной и пастереллезной.

Ա. Ս. ՂԱԶԱՐՅԱՆ

ՍԵՐՈԼՈԳԻԱԿԱՆ ՑՈՒՑԱՆԻՇՆԵՐԸ ԸՍՏ ՄԻԿՐՈԱԳԼՅՈՒՏԻՆԱՑԻԱՅԻ ԵՎ ԼԻԶԻՍԻ, ՃԱԳԱՐՆԵՐԻՆ ՀԱԿԱԼԵՊՏՈՍՊԻՐՈԶԱՅԻՆ, ՀԱԿԱԲՐՈՒՑԵԼՈԶԱՅԻՆ ԵՎ ՀԱԿԱՊԱՍՏԵՐԵԼՈԶԱՅԻՆ ՎԱԿՑԻՆԱՆԵՐՈՎ ՀԱՄԱՏԵՂ ՆԵՐԱՐԿԵԼԻՍ

Ամփոփում

Տարբեր եղանակներով իմունացված ճագարների արյան շիճուկները լեպտոսպիրոզի հակածնի նկատմամբ վակցինացման 7-րդ օրը տվել են դրական ռեակցիա։ Ի դեպ դրական ռեակցիա տված արյան շիճուկների նոսրացման աստիճանը՝ կապված վակցինացման եղանակից, տատանվել է տարբեր սահմաններում։ Վակցինացման 7-րդ օրը արյան շիճուկների ավելի բարձր տիտր է գրանցվել հակալեստոսպիրոզային և հակապաստերելողային վակցինաներով իմունացված 1-ին և համալիրներից 3-րդ խմբերում, որը վկայում է այն մասին, որ հակապաստերելողային վակցինայի համատեղ առկայունյունը չինիս ագլյուտինադոյացման վրա։

Հաշվի առնելով համատեղ իմունացված ճագարների օրդանիզմի ռեակտիվության աստիճանը, նրանց սերոլոգիական ցուցանիշները ըստ ՌԱ և ՌՄԱԼ, գալիս ենջ այն եղրակացության, որ հակալեպտոսպիրողային վակցինան կարելի է համատեղել հակապաստերիլոզային և հակաբրուցելողային վակցինաներով։

ЛИТЕРАТУРА

- 1. Ашмарин И. П., Воробьев А. А. Статистические методы в микробнологических исследованиях. М., 1962.
- 2. Гловацкая М. Г. ЖМЭИ, 1961, 2, стр. 107.
- 3. Горчакова Ю. П. ЖМЭИ, 1961, 12, стр. 121.
- 4. Зубахин А. В. Ветеринария, 1971, 9, стр. 41.
- 5. Казарян А. С. Журн. экспер. и клинич. медицины АН Арм. ССР, 1974, 6, стр. 8.
- 6. Казарян А. С. Биологический журнал Армении, 1974, т. XXVII, 11, стр. 103.
- 7. Казарян А. С. Журн. экспер. и клинич. медицины АН Арм. ССР, 1975, т. XV, 1, стр. 35.
- 8. Коломакин Г. А. и Сарсенов У. С. Ветеринария, 1959, 8, стр. 48.
- 9. Петров В. Ф., Безбородкин Н. С. Ветеринария, 1966, 11, стр. 35.
- Шпаковский А. А. Тезисы докл. итоговой научной конференции за 1969 г. Витебск, 1970.