

էքսպես. և կլինիկ. թժչկ. նանդես

XV, № 2, 1975

Журн. экспер. и клинич. медициим

УДК 615.816+612.2+612.127

В. Г. АМАТУНИ, Ю. М. ПОГОСЯН

О ВОЗМОЖНОСТИ ОПРЕДЕЛЕНИЯ ВОЗБУДИМОСТИ ДЫХАТЕЛЬНОГО ЦЕНТРА МЕТОДОМ ОКСИГЕМОМЕТРИИ

В статье предлагается простой способ определения состояния возбудимости дыхательного центра с помощью метода оксигемометрии при задержке дыхания. Исследования проводились во время учебно-тренировочных сборов в Цахкадзоре (1980 м над уровнем моря) на 190 спортсменах. Авторы пришли к выводу, что ПВДЦ может дать полезную информацию о функциональном состоянии дыхательного центра, тренированности и течении высотной адаптации у спортсменов.

Плительность времени задержки дыхания на глубоком выдохе определяется, с одной стороны, гуморальными факторами (соотношением между степенью снижения рО2 и повышения рСО2, увеличением конпентрации водородных ионов), а с другой-нервными факторами, в совокупности определяющими возбудимость дыхательного центра. Изменения в сфере гуморальных факторов находятся в зависимости от парциального давления О2 в атмосферном воздухе и в легких, от объема воздуха в легких в момент задержки дыхания и от уровня газообмена. Возбудимость дыхательного центра может варьировать также в зависимости от пола, вида двигательной деятельности, опортивной квалификации и тренированности спортсменов. В отличие от времени задержин дыхания среди факторов, определяющих продолжительность периода А-Б, полностью отсутствует компонент функционального состояния дыхательного центра. С другой стороны, время А-Б находится в прямой зависимости от комплекса вышеперечисленных условийрО2 и объема воздуха в легких перед задержкой дыхания (запас кислорода) и уровня газообмена (потребление О2 организмом). В связи с этим, пользуясь методом оксигемометрии при задержке дыхания, мы предлагаем простой способ определения состояния возбудимости дыхательного центра.

Показатель возбудимости дыхательного центра (ПВДЦ) определяется нами путем деления фазы А-Б оксигемограммы на время задержки дыхания:

ПВДЦ =
$$\frac{\text{фаза A-B (сек)}}{\text{время задержки дыхания (сек)}} 100^{\circ}/_{\bullet}$$
.

Степень накопления в крови CO₂ в периоде задержки дыхания, которая отражается только на времени задержки дыхания, соответствует уровню потребления O₂ (при отсутствии существенных изменений ДК) и поэтому может в расчет не приниматься. Остальные вышеизложенные

условия в равной степени отражаются как на времени задержки дыхания, так и на продолжительности периода А-Б.

Зависимость ПВДЦ от уровня газообмена может быть понята с позиций взаимосвязи между возбудимостью центра как чисто нервного явления и уровнем его гуморальных возбудителей—гипоксемии и пиперкальнии, возникающих во время задержки дыхания. В методике определения возбудимости дыхательного центра с вдыханием газовой смеси с повышенной концентрацией СО2 гуморальным возбудителем является только СО2, который дополнительно вводится в организм извне. В пробе с задержкой дыхания он соответствует уровню газообмена и увеличению рСО2 за счет собственной углекислоты. Однако в этой пробе присоединяется также возбуждающее на дыхательный центр действие второго мощного туморального фактора—пипоксемии, что выгодно отличает ее от метода с ингаляцией СО2 большей физиологичностью. Время задержки дыхания в изучаемом методе соответствует приросту легочной вентиляции в ингаляционной пробе.

Для выяснения влияния изменений газообмена на время задержки дыхания в период А-Б были проведены соответствующие сопоставления у 11 пловцов. Результаты показали, что корреляционной связи между ними нет (r=0,09 и 0,07).

Наш опыт работы по определению ПВДЦ у спортсменов показал, что при задержке дыхания на вдохе, как и следовало ожидать, разные объемы воздуха в лепких (соответствующие различия в ЖЕЛ) четко отражаются на времени А-Б и в меньшей степени на времени задержки дыхания. Это обстоятельство в известной степени онизило адекватность показателя при его определении у разных спортсменов. При определении же ПВДЦ после быстрого и глубокого выдоха прямая зависимость между ЖЕЛ, с одной стороны, и временем задержки дыхания, А-Б и ПВДЦ, с другой—исчезает. Естественно думать, что это вызвано значительно меньшими различиями в остаточном объеме воздуха в легких у разных спортстменов в сравнении к различиями в ЖЕЛ. Поэтому все определения оксигемометрических показателей мы проводили в стандартных условиях при глубоком выдохе.

Изменения рО₂ в атмосферном воздухе и в легких после переездаспортсменов из Еревана в Цахкадзор и из Цахкадзора в Қазань вызывают изменения А-Б и времени задержки дыхания в равной степени, в связи с чем ПВДЦ не меняется. Этим подтверждается отсутствие зависимости изменений показателя от уровня рО₂ в легких.

Исследования проводились нами с помощью оксигемометра модели 057-М во время учебно-тренировочных сборов в Цахкадзоре (высота над уровнем моря 1980 м) на 190 спортсменах в возрасте от 18 лет до 31 года со спортивным стажем от 3 до 11 лет на 2—3-й, 7—8-й, 14—15-й и 21—22-й цни пребывания. Были выделены три группы спортсменов: 1) 62 спортсмена высокого класса, тренирующихся на выносливость (мужчин—32, женщин—30); 2) 66 спортсменов второго и третьего разрядов, тренирующихся на выносливость, в том числе мужчин, про-

живающих на высоте 950 м (Ереван),—30, мужчин-горножителей (1765 м—Раздан)—36; 3) тяжелоатлеты высокого класса (62 чел.). Проводилась проба Генчи с максимальной задержкой дыхания на выдохе. Перед задержкой дыхания испытуемому предлагалось после обычного вдоха сделать быстрый и тлубокий выдох ртом, не напрягая мышц прудной клетки и брюшного пресса, закрыть рот, зажать нос и задержать дыхание. Опыт повторялся два-три раза. Определялись все основные фазы оксигемометрии.

Определения ПВДЦ показали, что у спортсменов разной квалификации, вида спорта и пола эта величина различна. Самый низкий показатель был у спортсменов высокой квалификации, тренирующихся на выносливость (41,7%), а самый высокий—у тяжелоатлетов (52,6%, табл. 1). У мужчин ПВДЦ оказалоя ниже, чем у женщин той же квалификации (49,2%).

Таблица 1 Зависимость ПВДЦ от вида двигательной деятельности,

Вид двигательной деятельности			Число исследо- ваний	M±m	t	P	
Спортсмены, тренирую- щнеся на вы- носливость	Высоки й классс	мужщины	32 30	41,7∓1,2 49,2±1,6	3,75	0,001	
носиньость	II-III	мужчины (Ереван)	30	47,7±1,4	3,27	0,01	
	разряды	мужчины-горно- жители	36	45,3 <u>+</u> 1,2	2,40	0,05	
Тяжелоатлеты высокого класса			62	52,6 <u>+</u> 1,1	6,70	0,001	

Как следует из табл. 1, различия при сопоставлении с группой спортсменов-мужчин высокого класса, тренирующихся на выносливость, достоверны.

На основании анализа результатов определения ПВДЦ спортсмены были распределены на 3 группы (табл. 2): 1) с низким показателем—от 26,0 до 45,0%, 2) со средним показателем—от 46,0 до 65,0%, 3) с высоким показателем—от 66,0 до 85,0%.

Как видно из табл. 2, на 2—3-й день пребывания в среднегорье у 69,0% спортоменов-мужчин высокого класса, тренирующихся на выносливость, обнаруживается низкий ПВДЦ и только у 3,4% исследованных имелся высокий показатель. У опортоменов, тренирующихся на силу, низкий показатель наблюдался только в 29,4% случаев, а у 22,4% имелся высокий показатель. Таким образом, чем выше мастерство и специальная выносливость опортсмена, тем ниже изучаемый показатель. Это, очевидно, обусловлено тем, что механизмы повышения выносливости к нагрузке во многом аналогичны повышению устойчивости организма к типоксемическому воздействию. Несомненно, между низкой величиной ПВДЦ, характеризующей относительно низкую воз-

Таблица 2 Динамика изменения ПВДЦ по мере адаптации в условиях среднегорья (число спортсменов в процентах)

Вид двигательной деятельности		Число иссл.	Дни обследо- вания	Группы			
				ľ	п	III	
Спортсмены, тренирующиеся на вы- носливость	Высокий классс	мужчины	32	2-3 7-8 14-15 21-22	3,4 - 3,6 -	27,6 28,6 28,0 30,0	69,0 71,4 68,4 70,0
		женщины	30	2-3 7-8 14-15	6,9 16,4 3,7	51,4 39,9 42,4	41,7 46,7 53,9
	II—III раз- ряды	мужчины (Ереван)	30	нсх.* 2—3 7—8 14—15 21—22	15.0 16,7 13,3 16,7 15,9	50,0 36,6 30,0 26,6 31,5	35,0 46,7 56,7 56,7 53,6
		мужчины- горножители	36	2-3 7-8	14,3 15,1	26,9 27,4	58,8 57,5
яжелоатлеты высокого класса			58	2—3 7—8 14—15	22,4 26,4 19,0	48,2 40,3 40,9	29,4 33,3 40,1

Исх.* - данные, полученные в Ереване.

будимость дыхательного центра, высокой резистентностью к гипоксии и высоким уровнем тренированности и мастерства опортсмена существует внутренняя связь.

Изучение показателя в процессе высотной адаптации показало, что у спортсменов-легкоатлетов невысокого класса нет существенных различий в ПВДЦ между ереванскими данными и результатами обследования в Цахкадзоре на 2—3-й день, а также между последующими цифрами в Цахкадзоре и 4—5-ым днями на уровне моря (в Казани после спуска с гор, рис. 1). Ввиду того, что изменения рО2 в легких и в крови на глубоком выдохе существенно не влияют на ПВДЦ, очевидно, существенно не меняются также нейрогуморальные условия возбуждения дыхательного центра—ее возбудимость, рСО2 и рН крови.

В однотилных условиях в Джермуке (2200 м над уровнем моря) при переезде туда жителей Еревана (950 м над уровнем моря) в первые дни пребывания не было установлено изменений рСО₂ в альвеолярном воздухе ввиду отсутствия реакции гипервентиляции, а также существенных изменений потребления О₂ при небольшом увеличении продукции СО₂ и ДК [1]. Эти исследования подтверждают заключение об отсутствии изменений условий возбуждения дыхательного цетра у спортсменов, приехавших в Цахкадзор из Еревана. С другой стороны, эти сопоставления говорят в пользу изучаемого нами показателя, кото-

рый при отсутствии изменений условий возбуждения дыхательного центра не обнаруживает никаких сдвигов, несмотря на довольно большие перепады рО₂ в альвеолярном воздухе.

Для спортсменов, приезжающих в Цахкадзор из местностей, расположенных на уровне моря, условия возбуждения дыхательного центра будут измененными, так как рСО₂ на высоте 2000 м ниже, чем на уров-

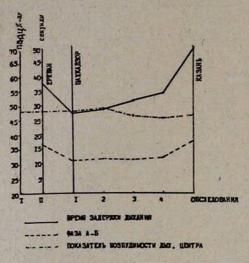


Рис. 1.

не моря в среднем на 6—8 мм рт. ст. (гипервентиляция), что свидетель-

В процессе дальнейшего пребывания спортсменов в Цахкадзоре происходит постепенное уменьшение ПВДЦ после незначительного увеличения на 7—8-й день. Это связано с тем, что до конца срока адаптации увеличение фазы А-Б незначительно и, в основном, недостоверно, в то время как увеличение времени задержки дыхания выражено и достоверно. Это может свидетельствовать о том, что в процессе адаптации происходит некоторое понижение возбудимости дыхательного центра, возможно, связанное с усилением коркового торможения на дыхательный центр. Незначительное снижение рСО2 в альвеолярном воздухе при адаптации в Джермуке говорит о том, что возбудимость дыхательного центра в среднегорье Армении у жителей гор. Еревана не сопровождается существенными изменениями гуморальных условий его возбуждения. Это находит объяснение в том, что снижение газообмена в Джермуке идет параплельно со снижением вентиляции легких без особых изменений дыхательного эквивалента по СО2.

Таким образом, одновременно с адаптационным процессом в среднегорые происходит также постепенное закономерное снижение ПВДЦ, что, чесомненно, надо рассматривать как явление положительное, поскольку, как следует из вышеизложенного, более низкие его показатели характерны для прушпы опортсменов-мужчин высокого класса, тренирующихся на выносливость. У спортоменов этой группы, по на-

шим данным, все основные показатели, характеризующие их более высокую устойчивость к гипоксии, работоспособность, функциональные резервы представлены в лучшем виде, чем у спортсменов-женщин той же квалификации и у спортсменов II—III разрядов и тяжелоатлетов. Это является наилучшим практическим подтверждением высокой информативности предлагаемого показателя, отражающего степень тренированности спортсмена и функциональное состояние его дыхательного центра.

выводы

- 1. ПВДЦ может дать полезную информацию о функциональном состоянии дыхательного центра, тренированности и течении высотной адаптации у спортоменов.
- 2. В зависимости от вида двигательной деятельности, спортивной квалификации и пола ПВДЦ различен.
- Изменения ПВДЦ непосредственно не овязаны с изменением рО₂ в атмосферном воздухе при переезде спортсмена в среднегорые.
- 4. По мере адаптации к условиям среднегорья ПВДЦ постепенно уменьшается, что связано со снижением возбудимости дыхательного центра.

Кафедра факультетской терапин Ереванского медицинского института

Поступила 13/III 1974 г.

վ. Գ. ԱՄԱՏՈՒՆԻ, Ցու. Մ. ՊՈՂՈՍՅԱՆ

ՕՔՍԻՀԵՄՈՄԵՏՐԻԱՅԻ ՄԵԹՈԴՈՎ ՇՆՉԱՌԱԿԱՆ ԿԵՆՑՐՈՆԻ ԳՐԳՌԱԿԱՆՈՒԹՅԱՆ ՈՐՈՇՄԱՆ ՀՆԱՐԱՎՈՐ ԵՂԱՆԱԿ

Udhnhnid

Հոդվածում առաջարկվում է արտաջնչումից Տետո շունչը պահելիս օքսիմետրիայի մեթողով շնչառական կենտրոնի ֆունկցիոնալ վիճակի որոշման հնարավոր եղանակ։ Հեղինակների շնչառական կենտրոնի գրգռականության ցուցանիշը (ՇԿԳՑ) որոշել են Տետևյալ բանաձևով.

$$7498 = \frac{4mc_{L} \text{ A-B } 4p_{L}}{2mch_{2}p} \frac{4mc_{L} \text{ A-B } 4p_{L}}{2mch_{2}p} \cdot 100\%$$

Ուսումնասիրությունները կատարվել են Ծաղկաձորում (բարձրությունը 1980 մ ծովի մակերևույթից), 3-ից 11 տարվա մարզական ստաժ ունեցող 18-ից 31 տարեկան 190 մարզիկների վրա՝ ուսումնամարզական հավաքների ժամանակ, Ծաղկաձոր գալու 2—3, 7—8, 14—15, 21—22-րդ օրերին։

Հեղինակները եկել են այն եզրակացության, որ ՇԿԳՑ-ն կարող է տալ օգտակար ինֆորմացիա մարզիկների շնչառական կենտրոնի ֆունկցիոնալ վիձակի, նրանց սպորտային մարզվածության, ինչպես նաև միջին լեռնային պայ-

մաններին հարմարվելու մասին։

ՇԿԳՑ-ի որոշման արդյունքները ցույց են տվել, որ կախված մարզական որակավորումից, մարզվածությունից և սեռից, այդ ցուցանիշները տարբեր են։ Միջին լեռնային պայմաններին հարմարվելուն զուդնթաց ՇԿԳՆ-ն աստիճա-նարար փոքրանում է, որը կարելի է կապել շնչառական կենտրոնի դրդովածու-թյան իջեցման հետ։

ЛИТЕРАТУРА

- 1. Аматунян В. Г. Биолог. журн. Армении. АН Арм. ССР, 1967, 4, сгр. 99.
- Дембо А. Г., Тюрин М. М. Оксигемометрия в функциональном исследовании. М., 1970.
- 3. Крепс Е. М. Оксигемометрия. Л., 1959.
- 4. Маршак М. Е. Регуляция дыхания у человека. М., 1961.
- 5. Плохинский Н. А. Биометрия. М., 1961.
- 6. Франкштейн С. И., Сергеева З. Н. Саморегуляция дыхания в норме и патологии. М., 1966.
- 7. Холден Дж. С., Пристли Дж. Г. Дыхание. М., 1937.