2 Ц В 4 Ц 4 Ц Б U U Z Ч Р S II Р В П Р Б Г Р Б Ц Ц Ц Т Р Г Р Д А К А Д Е М И Я Н А У К А Р М Я Н С К О Й С С Р

էքսպես. և կլինիկ. բժշկ. ճանդես

XIII, № 1, 1973

Журн. экспер. и клинич. медицины

УДК 618.3-008.6+616.15

В. Г. МХИТАРЯН, Л. М. МЕЖЛУМЯН, С. А. АЛЕКСАНЯН, К. Д. ДАНИЭЛЯН

УРОКАНИНАЗНАЯ И ГИСТИДАЗНАЯ АКТИВНОСТЬ КРОВИ ПРИ ОСЛОЖНЕННОЙ ТОКСИКОЗОМ БЕРЕМЕННОСТИ

При нормально протекающей беременности гистидазная и уроканиназная активность в сыворотке крови нулевая, что свидетельствует об интактности печеночной паренхимы. У беременных с нефропатией происходит миграция из печени гистидинрасщепляющих ферментов в кровь, причем гистидазная активность определяется по сравнению с уроканиназной значительно чаще и с более высокой активностью. При отеке беременных гистидазная и уроканиназная активность в сыворотке крови выражена слабее, чем при нефропатии. При токсикозах второй половины беременности в большинстве случаев наблюдается изменение печеночной паренхимы, которое, как правило, проходит после родов.

Ферменты, расщепляющие пистидин, —пистидава, уроканиназа и гистидинпируваттрансаминаза являются органоспецифическими ферментами, находятся в печеночной паренхиме и могут мигрировать в кровьлишь при ее поражениях. Поэтому у практически здорювых лиц уроканиназная и гистидазная активность в крови нулевая. Те же случаи, когда указанные ферменты определяются в крови, следует рассматривать как артефакт либо как свидетельство скрытого поражения паренхимы печени, не определяемого современными функциональными печеночными пробами.

В связи с этим за последнее время изменениям гистидавной и уроканинавной активности в печени и особенно их появлению в кровяном русле придается важное диагностическое и прогностическое значение.

Исследованиями ряда авторов [1, 2, 4—7 и др.] `показана зависимость между тяжестью поражения печеночной паренхимы и уроканиназной и гистидазной активностью сыворотки крови.

В ряде работ показано влияние малобелкового ращиона на активность пистидинрасщепляющих ферментов в печени, резкое снижение дополного отсутствия их активности в печени при длительном малобелковом ращионе и быстрое восстановление после перевода животных на полноценное питание.

Гормональная регуляция активности вышенаэванных ферментов исследовалась рядом авторов [10—12]. Эти исследования показали, что у животных при гипофизэктомии и тиреоидэктомии активность ферментов в печени повышается и, наоборот, онижается при адреналэктомии и гипертиреоидозе.

К. Н. Мясоедова [8] изучала влияние кортикостероидов на интенсивность расщепления гистидина в печени и показала, что у адреналэктомированных животных пистидазная активность не уменьшается и практически не увеличивается после введения кортизона. Согласно ее данным, интенсивность расщепления гистидина в печени обратно пропорщиональна величине тиреоидной продукции.

Фейгельсон [9], изучая эстрогенную регуляцию гистидазной активности в печени в прощессе постнатального развития и у вэрослых животных, показал, что у оварэктомированных животных ее активность понижена. При ежедневном введении 17—β-эстрадиола она значительно повышается, причем прогестерон не влияет на активность пистидазы независимо от присутствия 17—β-эстрадиола.

Общеизвестню, что при беременности функция одних органов внупренней секрещии повышена, в то время как других, наоборот, понижена, вследствие чего при нормально протекающей беременности наступают определенные гормональные одвиги. Одновременно с этим некоторые органы при беременности функционируют с повышенной нагрузкой, что характерно для печени, особенно при токсикозах.

В связи с вышеизложенным было интересно изучить пистидазную и урожаниназную активность в крови при нормальной беременности и установить степень поражения печени при токсикозах второй половины беременности.

Уроканинавную и гистидавную активность в крови определяли спектрофотометрическим методом Тейбора и Мелера [13] в модификации С. Р. Мардашева и В. А. Буробина [7]. Активность гистидавы и уроканинавы выражали в условных единицах. Одна условная единица равна количеству микромолей ×10² уроканиновой кислоты, образовавшейся (для гистидавы) или разложившейся (для уроканинавы) за час инкубащии в ракчете на 1, мл сывюротки крови.

Наряду с определением ферментативной активности крови изучали также сдвиги в содержании белковых фракций сыворотки крови, уробилина, некоторых показателей свертывающей системы крови, реакцию Ван ден Берга и тимоловую пробу. Активность ферментов исследовалась в динамике, т. е. при поступлении в клинику, в период лечения и спустя 2—4 мес. после родов.

Под наблюдением находилось 88 беременных женщин, из которых с токсикозом второй половины беременности было 57 чел., из них с нефропатией первой и второй степени—45 и с отеками—12. В контрольную группу входили женщины со сроком беременности свыше 20 недель без клинических проявлений какой-либо патологии (31 чел.).

Полученные результаты показывают, что при нормально протекающей беременности у всех обследованных, за исключением трех, уроканиназная и гистидазная активность в крови нулевая. Небольшую активность ферментов в сыворотке крови при нормальной беременности мы склонны объяснить либо артефактом, либо невыраженной недостаточностью печени, не определяемой клинически и другими лабораторными пробами.

Сведения об активности пистидазы и уроканиназы в сыворотке ирови у беременных с нефропатией приведены в табл. 1.

Таблица 1 Активность гистидазы и уроканиназы в крови у беременных с нефропатией

Статистический показатель	Уроканиназа	Гистидаза
М <u>+</u> ш	0,49±0,07 (n=45)	0,56±0,08 (n=45)
Пределы колебаний	0,0-3,0 0,65	0,0-4,0 0,70

Примечание. Активность ферментов выражена в условных единицах.

Как видно из данных табл. 1, у беременных с нефропатией в ряде случаев гистидазная и уроканиназная активность эначительно высока и достигает 3,0—4,0 ед./мл/ч.

В большинстве же случаев гистидаза и уроканиназа в сыворотке крови имеют небольшую активность, причем. пистидаза вспречается значительно чаще и с более высокой активностью, чем уроканиназа. В среднем активность уроканиназы составляет 0.49 ± 0.7 , а гистидазы 0.56 ± 0.08 ед./мл/ч., что овидетельствует о наличии определенных поражений леченочной паренхимы.

Сдвиги в гистидазной и уроканиназной активности крови при отеке беременных выражены сравнительно слабее (табл. 2).

Таблица 2 Активность гистидазы и уроканиназы в сыворотке крови при отеке беременных

Статистический показатель	Уроканиназа!	Гистидаза
М±ш	0,17±0,11 (n=12)	0,34±0,18 (n=12)
Пределы колебания	0,0-0,9	0,0-1,6
σ	0,31	0,50

Как видно из табл. 2, при отеке беременных наибольшая активность уроканиназы достигает 0,9, гистидавы 1,6, составляя в среднем для уроканинавы $0,17\pm0,11$, а для пистидавы $-0,34\pm0,18$ ед./мл/час.

Любопытно, что гистидаза, как правило, при поражениях печени появляется в крови значительно чаще и с более высокой активностью, чем уроканиназа. Различная скорость выхода этих ферментов в кровяное русло обусловлена либо различием в величине молекулярного веса ферментов, либо их различной локализацией в клетке.

У большинства обследованных беременных с токсикозом повторные определения активности ферментов, проведенные через 2—4 мес. после родов, показали нулевую активность, и лишь у некоторых она осталась на том же уровне или даже нескслько выше. Полученные данные позволяют заключить, что при беременности, осложненной токсикозом, наблюдаемые изменения со сторолы печени в большинстве случаев проходящие. Мы рекомендуем рассматривать уроканиназную и гистидазную активность в сыворотке крови как ранний и весьма чувствительный показатель начальной стадии поражения печени при токсикозе второй половины беременности и проводить соответствующие лечебно-профилактические мероприятия. Рекомендуется при нормальной беременности проводить определение уроканиназной и гистидазной активности крови и проявление ее рассматривать как показатель скрытой фазы печеночной недостаточности.

Кафедра биохимии, кафедра акушерства и гинекологии Ереванского медицинского института

Поступила 12/V 1972 г.

Վ. Գ. ՄԽԻԹԱՐՑԱՆ, Լ. Մ. ՄԵԺԼՈՒՄՅԱՆ, Ս. Ա. ԱԼԵՔՍԱՆՑԱՆ, Կ. Գ. ԳԱՆԻԵԼՅԱՆ

ՈՒՌՈԿԱՆԻՆԱԶԱՅԻ ԵՎ ՀԻՍՏԻԴԱԶԱՅԻ ԱԿՏԻՎՈՒԹՅՈՒՆԸ ՀՂԻՆԵՐԻ ԱՐՅԱՆ ՄԵՋ՝ ՀՂԻՈՒԹՅԱՆ ԵՐԿՐՈՐԴ ԿԵՍԻ ՏՈՔՍԻԿՈԶՆԵՐԻ ԺԱՄԱՆԱԿ

Udhnhnid

Նորմալ Տղիության ժամանակ Տիստիդազա և ուռոկանինազա ֆերմենտներն արյան ջինուկում բացակայում են, որը վկայում է լյարդի Տյուսվածքի ինտակտության մասին։

Երիկամախտով տառապող հղիների մոտ տեղի է ունենում այդ ֆերմենտների միգրացիա լյարդից դեպի արյուն, ընդ որում հիստիդազան որոշվում է ավելի հաճախ և ավելի բարձր ակտիվությամբ, քան ուռոկանինազան։

Հղիության այտուցի ժամանակ վերոհիշյալ ֆերմենաների ակտիվությունը արյան շիջուկում եղել է ավելի թույլ արտահայտված, քան երիկամախտի ժամանակ։

Հետծննդյան շրջանում ծննդկանների մեծ մասի արյան շիճուկում հիստիդազայի և ուռոկանինազայի ակտիվությունը արագ իջել է ու հասել գերոյի։

ЛИТЕРАТУРА

- 1. Блинова Т. В. Вопросы мед. химии, 1968, 3, стр. 307.
- 2. Блинова Т. В. В кн.: Биохимия микробов и иммунохимия. Горький, 1966, стр. 118.
- 3. Бунин К. В. В кн.: Ранняя диагностика и лечение инфекционных болезией. Л., 1969, стр. 221.
- 4. Буробин В. А. и Леонова Н. А. Вопросы мед. химии, 1963, 3, стр. 322.
- Горкина З. А. и Блинова Т. В. Биохимия микробов и иммунохимия. Горький, 1966, стр. 117.

- 6. Мансурова И. Д. Биохимия печени при болезни Боткина и боткинских циррозах. Душанбе, 1946, стр. 40.
- 7. Мардашев С. Р. и Буробин В. А. Вопросы мед. химии, 1962, 3, стр. 320.
- 8. Мясоедова К. Н. Биохимия, 1966, 1, стр. 182.
- 9. Felgelson M. J. Biol. Chem, 1968, 243, 5088.
- Noda K., Kusaka Y. and Yoshida A. Agr. Biol. Chem., 1967, 31, 217.
 Noda K. and Yoshida A. Agr. Biol. Chem., 1969, 33, 31.
- 12. Schirmer M. D. and Harper A. E. J. Biol. Chem., 1970, 245, 1204.
- 13. Tabor H. and Mehler A. H Meth. Enzymol., 2, 288, 1955.