2 Ц 3 4 Ц 4 Ц 6 U U 2 Ч Р 8 П Р В П Р В П Р Б Г Р Ц Ц Ц Т В Г Р Ц А Д Е М И Я Н С К О Я С С Р

էքսպեւ. և կլինիկ. թժշկ. նանդես

XII, № 1, 1972

Журн. экспер. и клинич. медицины

УДК 616-001.28+612.172

м. А. МОВСЕСЯН, Л. Х. БАРХУДАРЯН, Д. Е. АРУТЮНЯН

СОДЕРЖАНИЕ ГЛИКОГЕНА, МОЛОЧНОЙ И ПИРОВИНО-ГРАДНОЙ КИСЛОТ В СЕРДЕЧНОЙ МЫШЦЕ КРЫС ПРИ ОСТРОЙ ЛУЧЕВОЙ БОЛЕЗНИ РАЗЛИЧНОЙ ТЯЖЕСТИ

В работе установлено, что содержание гликогена в сердечной мышце крыс повышается при легкой степени острой лучевой болезни, а при тяжелой степени вначале не изменяется, а затем в терминальном периоде снижается.

До недавнего времени сердце считалось радиорезистентным органом. Однако в последние годы в связи с изучением ЭКГ и показателей гемодинамики как в эксперименте, так и клинике окончательно было опровергнуто это неверное представление [1—10 и др.]. Этим надо объяснить тот интерес, который в настоящее время проявляют радиобиологи к изучению биохимических показателей миокарда у облученных животных. В настоящем сообщении приводятся результаты исследований содержания гликогена, молочной и пировиноградной кислот в сердечной мышце крыс, страдающих острой лучевой болезнью различной тяжести.

Исследования проводились на белых крысах весом 180—220 г. В различные сроки после общего однократного облучения рентгеновскими фильтрованными лучами в дозах 500 р (I серия) и 1000 р (II серия) животные забивались для исследования содержания гликогена, молочной и пировиноградной кислот.

В наших условиях облучения доза 1000 р вызывала у крыс острую лучевую болезнь тяжелой степени со смертельным исходом, большинство животных погибало на 4—7-й день после облучения. Облучение в дозе 500 р вызывало легкую степень острой лучевой болезни без смертельных случаев в течение 30-дневного наблюдения.

Определение содержания гликогена в тканях проводилось по методу Мендель-Хугласа, молочной кислоты — по методу Баркера и Саммерсона, а количество пировиноградной кислоты — по Фридману и Хауджену в модификации М. В. Миллер-Шабановой и Л. И. Силиной (по [7]). Контролем служили данные исследований этих же показателей в сердечной мышце у интактных крыс. Полученные результаты приводятся в табл. 1 и 2.

Содержание гликогена в сердечной мышце крыс при легкой степени острой лучевой болезни умеренно повышается, а при тяжелой степени—вначале не изменяется и лишь в терминальном периоде болезни

Таблица 1 Содержание гликогена, молочной и пировиноградной кислот в мг⁰/₀ в сердечной мышпе коыс до и после общего однократного облучения в дозе 500 р

TAVE S			Гликоген			Молочная кислота			Пировиноградная кислота		
Исследования проводились		число проб	M <u>+</u> m	P	число проб	М <u>+</u> т	P	число проб	M <u>+</u> m	P	
Без облучения (контроль)		25	420 <u>+</u> 36	-	8	36 <u>+</u> 5,0	-	11	0,28 <u>+</u> 0,04	-	
После облучения через	10—15 мин.	7	497±23	>0,05	7	22±1,0			0,29+0,05	>0,5	
	2 ч.	12	486±23	<0,1 > 0,05	6	50±3,1	<0,01 0,1		0,33 <u>+</u> 0,07	0,5	
	24 ч.	13	425 <u>+</u> 37	<0,1 > 0,5	6	58 <u>+</u> 8,0	0,02	7	0,18 <u>+</u> 0,04	>0,05 <0.1	
	на 4-й день 7-й "	14 11	485 <u>+</u> 47 540 <u>+</u> 39	0,2 0,05	7 6	63±12,6 50±12,0	0,05 >0,2		0,47±0,04 0,48±0,16	<0,001 >0,05	
	10-й 15-й	12 12		<0,01 >0, 2			>0.2 >0,5		0,50±0,10 0,37±0,07		

Примечание. В табл. 1 и 2 для каждой пробы использовались сердца 3 крыс

Таблица Содержание гликогена, молочной и пировиноградной кислот в мг % в сердечной мышце крыс до и после общего однократного облучения в дозе 100 р

		Гликоге	H	Молочная кислота				Пировиноградная кислота		
Исследования проводились	число проб	M±m	P	число проб	M <u>-+</u> m	P	число проб	M±m	Р.	
До облучения (контроль) через 10—16 мин. 2 ч. 24 ч. на 4-й день	25 7 15 14 13	495+42 435+27 555+43 410+34 400±30	- >0,2 >0,2 >0,1 0,05	6	36±5,0 51±2,9 50±1,2 75±4,5 47±2,0	<0,01 <0,01 <0,01 0,001 <0,05	11 6 8 7 6	0,28±0,04 0,25±0,03 0,23±0,05 0,29±0,05 0,71±0,24	>0,2 >0.5	

умеренно снижается. При 500 р облучения содержание молочной кислоты в сердечной мышце крыс после весьма кратковременного снижения в первые дни повышается, а затем постепенно снижается, доходя до ормального уровня. У этих же животных содержание пировиноградной кислоты через 24 ч. после облучения снижается, а затем повышается—с 4-го по 10-й день после облучения.

После 1000 р облучения содержание молочной кислоты в сердечной мышце с первых же минут достоверно повышается и остается на

высоком уровне до самой гибели животного. Содержание пировиноградной кислоты повышается в терминальном периоде лучевой болезни.

О чем говорят эти данные? Ведь в нормальных условиях преобладание в сердечной мышце аэробных процессов над анаэробными приводит к тому, что в ней при распаде гликогена не накапливается молочной кислоты. Более того, в сердечной мышце используется молочная кислота, доставляемая с кровью системой коронарных сосудов.

Исходя из сказанного, можно думать, что при острой лучевой болезни в сердечной мышце повышение содержания пировиноградной и молочной кислот является следствием чрезмерно усиленного распада гликогена. Однако это предположение отпадает, ибо в наших опытах содержание гликогена в сердечной мышце облученных животных (в отличие от печени) или не изменялось (1000 р), или же повышалось (500 р). Понижение содержания гликогена в сердечной мышце имеет место лишь в терминальной стадии тяжелой острой лучевой болезни.

Однако в наших исследованиях не исключается возможность усиления гликолиза в сердечной мышце за счет использования глюкозы, доставляемой с кровью системой коронарных сосудов.

Общеизвестно, что пировиноградная кислота образуется не только в процессе углеводного обмена, но также и в межуточном превращении некоторых аминокислот (серина, цистина, аланина и т. д.). Можно предполагать, что при острой лучевой болезни этот процесс усиливается, благодаря чему в сердечной мышце повышается содержание пировиноградной и молочной кислот, которые, в свою очередь, служат источником ресинтеза гликогена (глюконеогенез). По-видимому, при лучевой болезни легкой степени в сердечной мышце этот процесс также усиливается, что способствует повышению содержания гликогена. Все эти предположения нуждаются в дальнейшей экспериментальной проверке, пока же можем утверждать, что сердечная мышца в первую очередь использует глюкозу крови, не затрачивая своего резерва гликогена, лишь в экстренных случаях сердце использует свой запас гликогена. Такой случай в наших опытах возникает в терминальном периоде тяжелой формы острой лучевой болезни, когда в связи с голоданием животных истощается резерв гликогена печени.

Армянский институт рентгенологии и онкологии

Поступила 15/II 1971 г.

Մ. Ա. ՄՈՎՍԻՍՅԱՆ, Լ. Խ. ԲԱՐԽՈՒԴԱՐՅԱՆ, Ջ. Ե. ՀԱՐՈՒԹՅՈՒՆՅԱՆ

ՏԱՐԲԵՐ ԱՍՏԻՃԱՆԻ ՍՈՒՐ ՃԱՌԱԳԱՑԹԱՑԻՆ ՀԻՎԱՆԴՈՒԹՅԱՄԲ ՏԱՌԱՊՈՂ ՍՊԻՏԱԿ ԱՌՆԵՏՆԵՐԻ ՍՐՏԱՄԿԱՆՈՒՄ ԳԼԻԿՈԳԵՆԻ, ԿԱԹՆԱԹԹՎԻ ԵՎ ՊԻՐՈԽԱՂՈՂԱԹԹՎԻ ՊԱՐՈՒՆԱԿՈՒԹՅՈՒՆԸ

Udhnhnid

Փորձի տակ գտնվող կենդանիները ենթարկվել են միանվագ ընդհանուր Ճառագայթավորման ռենտգենյան ֆիլտրված ճառագայթներով, (մի մասը 500 ռ., մյուսը՝ 1000 ռ.), որը հնարավորություն է տվել նրանց մոտ առաջ բերել թեթև և ծանր աստիճանի սուր ճառագայթային հիվանդություն։

Կատարված հետազոտությունների արդյունըներից պարզվել է, որ՝

- 1. Թեթև աստիճանի սուր ճառագայթային հիվանդությամբ տառապող առնետների սրտամկանում գլիկոգենի և կաթնաթթվի պարունակությունն ավելանում է։ Կաթնաթթվի քանակությունն ավելանում է։ Կաթնաթթվի քանակի ավելացմանը նախորդում է շատ կար-ճատև նվաղում, որը նկատվում է ճառագայթավորումից անմիջապես հետո։ Այդ նույն կենդանիների սրտամկանում պիրոխաղողաթթվի քանակն ավելա-նում է ճառագայթավորման 4-րդ օրից սկսած։ Նշված բոլոր փոփոխություն-ներն անհետանում են հիվանդության լավացմանը ղուգընթաց։
- 2. Ծանր ընթացող ճառագայթային հիվանդությամբ տառապող առնետների սրտամկանում կաթնաթթվի քանակն ավելանում է ճառադայթավորումից անմիջապես հետո, իսկ պիրոխաղողաթթվի և գլիկոգենի պարունակությունը սկզբում չի փոփոխվում, բայց հիվանդության բուռն արտահայտման շըրջանում պիրոխաղողաթթվի քանակն ավելանում է, իսկ գլիկոգենինը պակասում։

ЛИТЕРАТУРА

- 1. Воробьев Е. И. Автореферат докт. дисс. М., 1968.
- Мовсесян М. А. Труды Закавказской конференции по медицинской радиологии.
 Тбилиси, 1956, стр. 137.
- Мовсесян М. А., Маилян Э. С., Мелик-Мкртчян Л. Н. Материалы IV Всесоюзной конференции патофизиологов, т. І. Тбилиси, 1964, стр. 75.
- 4. Мовсесян М. А. Автореферат докт. дисс. Ереван, 1965.
- 5. Мороз Б. Д., Гроздов С. П. Медицинская радиология, 1969, 2, стр. 46.
- Надарейшвили К. М. Вопросы влияния ионизирующей радиации на сердечно-сосудистую систему. Тбилиси, 1966.
- 7. Петрунькина А. М. Практическая биохимия. М., 1961.
- 8. Теплов С. И., Свердлов В. С., Коровкин Б. Ф. Медицинская радиология, 1959, 3. стр. 27.
- Тимофеев В. Н. Функциональные изменения сердечно-сосудистой системы при острой лучевой болезни. М., 1959.
- 10. Фанарджян В. А., Кяндарян К. А., Папоян С. А., Абовян М. Н. Вестник рентгенологии и радиологии, 1954, 1, стр. 55.