

էքսպես. և կլինիկ. թժշկ. ճանդես

XII, № 1, 1972

Журн, экспер. вклинич, медицины

УДК 612.460/463+612.015.33

К. А. ЧОБАНЯН, А. С. ОГАНЕСЯН

ВЛИЯНИЕ СТРОФАНТИНА НА ТРАНСПОРТ АСПАРАГИНОВОЙ КИСЛОТЫ И ОБРАЗОВАНИЕ АММИАКА ИЗ НЕЕ В СРЕЗАХ КОРКОВОГО СЛОЯ ПОЧЕК НОВОРОЖДЕННЫХ И ЗРЕЛЫХ КРЫС

Показано, что срезы коркового слоя почек новорожденных крыс в условиях инкубации поглощают из среды определенное количество L-аспарагиновой кислоты, часть которой подвергается деаминированию с образованием большого количества аммиака. В присутствии строфантина этот процесс значительно подавляется. В контрольных опытах при добавлении этого глюкозида усиливается выход ГК из ткани в среду.

Исследованиями ряда авторов установлено, что перенос аминокислот через клеточную мембрану в мышечную [9], почечную [3, 8], мозговую [5, 12] ткани и в тонкий кишечник [6, 11] осуществляется не простой диффузией, а путем активного транспорта.

Наши исследования показали, что мембранная АТФ-аза почечных клеток играет важную роль в процессах транспорта L-аминокислот [1]. Подавление активности этого фермента приводит к торможению поглощения аминокислот из инкубируемой среды, и наоборот. Было установлено также, что под действием инсулина повышается активность мембранной АТФ-азы почечных клеток, что сопровождается усилением реабсорбции глюкозы в почечных канальцах [2].

Наши прежние исследования показали, что у новорожденных крысиз ряда L-аминокислот деаминируется только аспарагиновая кислота [4]. Результаты этих исследований побудили нас изучить скорость поглощения аспарагиновой кислоты срезами коркового слоя почек у новорожденных и зрелых крыс, а также выяснить сравнительное действие строфантина на этот процесс. С этой целью были проведены опыты со срезами коркового слоя почек новорожденных и зрелых крыс. Срезы (по 200 мг) инкубировали в Кребс-Рингер-бикарбонатном буфере при t—37°С в течение одного часа (рН—7,4). На каждую пробу добавляли 16 мкмоль аспарагиновой кислоты. После инкубации путем центрифутирования отделяли срезы почечной ткани от инкубационной среды и определяли содержание глютаминовой и аспарагиновой кислот в срезах и инкубационной среде в отдельности.

Результаты исследований, приведенные в табл. 1, показывают, что в контрольных опытах как у новорожденных, так и зрелых крыс в ходе инкубации определенное количество глютаминовой кислоты выходит из

Таблица 1 Влияние строфантина на поглощение L-аспарагиновой кислоты срезами коркового слоя почек новорожденных и зрелых белых крыс (средние данные 5 опытов)

Возраст животных	Условия опыта	Количество аминокислот в мкмолях/г ткани/час							
		контроль		аспарагино- вая кислота				аспарагино- вая кисло- та+стро- фантин	
		глютамино- вая кисло- та	аспараги- новая кис- лота	глютамино- вая кисло- та	аспараги- новая кис- лота	глютамино- вая кисло- та	аспарагино- вая кис- лота	глютамино- вая кисло- та	аспарагино- вая кис- лота
Новорожденные	среда ткань	1,0	1,6	2,2 8,8	4,0 3,5	1,5 4,8	1,6	2,8 6,4	6,4
Взрослые	среда ткань	0,5	1,4	2,4 6,2	1,8	1,4	1,2	2,1	4,2 2,5

почечных клеток в окружающую среду, где количество этой аминокислоты у новорожденных жрыс больше, чем у зрелых.

Это, по-видимому, связано с несовершенностью механизмов, осуществляющих транспорт аминокислот и удержание их внутри клеток у новорожденных крыс. Вместе с этим в срезах почек новорожденных крыс после инкубации определяется больше глютаминовой кислоты, чем у зрелых. Это объясняется тем, что в почках новорожденных, а также крыс до 15-дневного возраста глютаминовая кислота не подвергается деаминированию, а у зрелых крыс интенсивно деаминируется, в результате чего у последних значительное количество этой аминокислоты утилизируется в ходе инкубации.

При добавлении аспарагиновой кислоты наблюдается ее значительное поглощение срезами почек обоих возрастов крыс. Причем у зрелых крыс она поглощается более интенсивно, чем у новорожденных. При инкубации в присутствии аспарагиновой кислоты в срезах почек наблюдается значительное увеличение ее количества, при этом возрастает также количество глютаминовой кислоты как в срезах, так и инкубационной среде. Это объясняется тем, что поступившая в клетку аспарагиновая кислота, переаминируясь с эндогенной с КГЛ, вызывает повышение количества глютаминовой кислоты, часть которой выходит из клеток в инкубационную среду.

Строфантин ускоряет выход глютаминовой кислоты из почечных клеток в окружающую среду. По данным ряда авторов [7, 10, 12], этот глюкозид подавляет активность мембранной АТФ-азы, которая, как по-казали наши прежние исследования [2], играет важную роль в процессах транспорта аминокислот через клеточную мембрану. При добавлении строфантина к аспарагиновой кислоте наблюдается значительное подавление поглощения этой аминокислоты срезами почек, что более

выраженно проявляется в срезах почек новорожденных крыс, по сравнению со зрелыми.

Как было упомянуто выше, из L-аминокислот только аспарагиновая кислота деаминируется срезами коркового слоя почек новорожденных крыс. С другой стороны, была показана важная роль мембранной АТФ-азы в процессах образования аммиака из L-аминокислот в корковом слое почек. Исходя из этого, мы изучали также влияние строфантина на образование аммиака из L-аспарагиновой кислоты.

Исследования по влиянию строфантина на образование аммиака из аспарагиновой кислоты показывают, что строфантин подавляет образование аммиака из аспарагиновой кислоты как у новорожденных (прирост аммиака в мкмолях/г ткани/час из аспарагиновой кислоты $6,1\pm1,1$, из аспарагиновой кислоты+строфантин $2,5\pm0,5$), так и у зрелых крыс ($9,5\pm1,6$; $7,0\pm1,1$ соответственно). Вместе с этим видно, что подавляющий эффект строфантина на образование аммиака из аспарагиновой кислоты в более выраженной форме проявляется у новорожденных крыс, по сравнению с зрелыми, как это отмечалось и в отношении транспорта аспарагиновой кислоты.

Таким образом, результаты наших исследований показывают, что строфантин подавляет транспорт аспарагиновой кислоты в срезах коркового слоя почек и образование аммиака из нее. Это явление в более выраженной форме проявляется у новорожденных крыс, по сравнению с зрелыми. В наших прежних исследованиях было установлено, что в процессах транспорта L-аминокислот важную роль мембранная АТФ-аза. Подавление поглощения аспарагиновой кислоты в присутствии строфантина нужно объяснить ингибированием активности АТФ-азы этим сердечным глюкозидом. С другой стороны, было показано также, что аммиак при помощи особых механизмов из внутриклеточной фазы активно секретируется в окружающую среду функционирование этих механизмов является важным условием проявления активности ферментов, деаминирующих L-аминокислоты, в том числе и L-аспарагиновую кислоту. Установлено, что АТФ-аза клеточной оболочки принимает активное участие и в деятельности этих механизмов.

При ингибировании мембранной АТФ-азы нарушается секреция аммиака, что приводит к накоплению его внутри клетки и подавлению процессов деаминирования аспарагиновой кислоты и образования аммиака из нее.

Как видно из вышеприведенных данных, несмотря на то, что в присутствии строфантина определенное количество аспарагиновой кислоты поступает в клетку (преимущественно путем диффузии), тем не менее процессы ее деаминирования значительно подавляются, что указывает на важное значение упомянутых механизмов как в процессах транспорта аминокислот, так и их деаминирования.

Наши другие исследования показали, что чувствительность АТФазы почечной ткани к строфантину (которая принимает активное участие в процессах транспорта аминокислот и образования аммиака из них) у новорожденных крыс выше, чем у зрелых.

Надо полагать, что неодинаковый эффект строфантина в отношении мембранной АТФ-азы почечных клеток крыс различного возраста связан с особенностями этого фермента у незрелых животных. Активность этого фермента у новорожденных крыс намного ниже, по сравнению с таковой у зрелых крыс. По-видимому, транспортный механизм аминокислот, частью которого является мембранная АТФ-аза, в период постнатальной жизни животных претерпевает определенные изменения, в результате чего и изменяется его чувствительность к строфантину.

Институт биохимии АН АрмССР

Поступила 11/1 1972 г.

Կ. Ա. ՉՈՔԱՆՑԱՆ, Ա. Ս. ՀՈՎՀԱՆՆԻՍՑԱՆ

ՍՏՐՈՖԱՆՏԻՆԻ ԱԶԴԵՑՈՒԹՅՈՒՆԸ Լ—ԱՍՊԱՐԱԳԵՆԱԹԹՎԻ ԿԼԱՆՄԱՆ ԵՎ ՆՐԱՆԻՑ ԱՄԻԱԿԻ ԱՌԱՋԱՑՄԱՆ ՎՐԱ՝ ՆՈՐԱԾԻՆ ՈՒ ՀԱՍՈՒՆ ԱՌՆԵՏՆԵՐԻ ԵՐԻԿԱՄՆԵՐԻ ԿԵՂԵՎԻ ԿՏՐՎԱԾՔՆԵՐՈՒՄ

Udhnhnid

Փորձերը ցույց են տվել, որ նորածին առնետների երիկամների կեղևի կտրված քները ինկուբացիայի են թարկելու դեպքում միջավայրից կլանում են որոշակի քանակությամբ Լ-ասպարադենաթթու, որի մի մասը են թարկվում է դեամինացման, առաջացնելով զգալի քանակությամբ աղատ ամիակ։ Ստրոֆանտինի ներկայությամբ զգալիորեն ճնշվում է ասպարադենաթթվի կլանումը, ինչպես նաև ամիակի առաջացումը նրանից։

Ստուգիչ փորձերում այդ գլյուկողիդի աղդեցության տակ ուժեղանում է գլյուտամինաթթվի արտազատումը բջջից դեպի ինկուբացիոն միջավայրը։
Այս երևույթը բացատրվում է թաղանթային ադինողինտրիֆոսֆատաղայի ակտիվության Ճնշմամբ (ստրոֆանտինի ազդեցության տակ), որը կարևոր դեր ունի բջջի թաղանթով ամինոթթուների փոխադրման պրոցեսներում։

ЛИТЕРАТУРА

- 1. Геворкян Ж. С. Автореферат канд. дисс. Ереван, 1959.
- Оганесян А. С. Известия АН Арм. ССР (серия биол. науки), 16, (9), 23, 1963.
- 3. Оганесян А. С., Геворкян Ж. С. ДАН Арм. ССР, 47, (2), 95, 1968.
- 4. Оганесян А. С., Чобанян К. А. ДАН Арм. ССР, 49, (5), 269, 1969.
- 5. Cherail A., Canderra J. a, Lajta A. J. Neurochem., 14, 105, 1967.
- 6. Czaky T. Z. Fed. Proc., 20, 139, 1961.
- 7. Glynn J. M. J. Physiol., 136, 148, 1957.
- 8. Fox M., Their S., Rosenberg L. a. Segal S. Biochem. Biophys. Acta, 102, 161, 1965.
- 9. Kipnis D. M. a. Parrish J. E. Fed. Proc., 24, 1051, 1965.
- 10. Post R. L. a. Albricht C. D. in: Membrane transport and Metabolism. Pragua, 1961.
- 11. Rosenberg H., Coleman A. a. Rosenberg L. E. Biochem. Biophys. Acta, 102, 161,
- 12. Skou F. C. Physiol. Rev., 45, 59, 1965.