

Հքսպես. և կլինիկ. թժշկ. ճանդես

XI, № 2, 1971

Журн. экспер. и клинич. медицины

УДК 616.441-006.5+612.015.32

Р. С. МАМИКОНЯН, В. М. АРУТЮНЯН, С. Е. ТОРОСЯН, С. К. АРУТЮНЯН
НЕКОТОРЫЕ ВОПРОСЫ РЕГУЛЯЦИИ УГЛЕВОДНОГО ОБМЕНА
У БОЛЬНЫХ ДИФФУЗНЫМ ТОКСИЧЕСКИМ ЗОБОМ

Механизмы регуляции углеводного обмена в организме многообразны и сложны. Поджелудочная железа с ее инсулярным аппаратом вместе с гипофизом, надпочечниками и вегетативными центрами образует сложную функциональную систему, регулирующую углеводный обмен в организме.

Наше сообщение посвящается изучению активности инсулярного аппарата и контраинсулярных систем у больных диффузным токсическим зобом путем непосредственного исследования концентрации инсулина в крови иммунохимическим методом и изучения реактивности гликемии на внутривенное введение инсулина.

Особенности углеводного обмена при тиреотоксикозе привлекают внимание многих исследователей; последний интенсивно изучается в различных аспектах клиницистами, экспериментаторами и патоморфологами [1—4, 7, 8, 11—14].

Параллельно с клиническими наблюдениями экспериментально было доказано активное участие гормонов щитовидной железы в различных звеньях обмена глюкозы в организме. В частности, работами лаборатории С. М. Лейтеса [9] было установлено, что тиреоидные гормоны активируют как аэробную, так и анаэробную фазы углеводного обмена, повышают активность гексокиназы. Кроме того, эти гормоны оказывают влияние на цикл Кребса, ускоряя пентозный цикл в нем. Наконец, тиреоидные гормоны усиливают неоглюкогенез из белков, активируют в печени инсулиназу. По данным С. М. Лейтеса [9], гормоны щитовидной железы также усиливают глюкокортикоидную функцию надпочечников. Несмотря на большое число работ в этом направлении, многие стороны нарушения регуляции углеводного обмена при диффузно-токсическом зобе еще остаются неясными.

До сих пор нет единого мнения об активности инсулярного аппарата при тиреотоксикозе. Одни авторы считают, что тиреоидные гормоны подавляют инсулинообразовательную функцию поджелудочной железы [3, 10], другие, наоборот, обнаруживают при этом гиперплазию инсулярного аппарата и увеличение активности инсулина [6, 15]. А. М. Гурова [5] у 3/5 части больных тиреотоксикозом находила гликемические кривые с понижением сахара в конце пробы до субнормальных и даже гипогликемических состояний. Последнее указывает на достаточную активность инсулярного аппарата при тиреотоксикозе.

Учитывая все вышесказанное для характеристики обмена глюкозы у больных тиреотоксикозом, мы определяли концентрацию глюкозы в крови натощак, содержание инсулина в крови и, наконец, реактивность гликемии на в/в введение инсулина как показатель активности контраинсулиновых систем. С этой целью нами изучено 30 больных тиреотоксикозом со средней (17) и тяжелой (13) формами заболевания. В качестве контроля изучено 10 здоровых лиц. Для сопоставления полученных данных по инсулину в крови мы использовали также результаты исследования 15 больных микседемой, 30—сахарным диабетом и 42 кролика с экспериментальной патологией.

Из 30 больных диффузно-токсическим зобом женщин было 26, мужчин—4. По возрасту больные распределялись следующим образом: до 30 лет было 6, от 31 до 40 лет—13, от 41 до 50—8 и старше 50—3 больных. Давность заболевания составляла от 1 до 12 лет.

Концентрация сахара в крови натощак у больных тиреотоксикозом в большинстве случаев находилась в пределах нормальных колебаний. У 8 из 30 больных тиреотоксикозом нами отмечена гипергликемия от 126 до 146 мг. Лишь у двух из них были отмечены преходящая глюкозурия и легкие признаки скрыто протекавшего диабета.

Таким образом, гликемия натощак, глюкозурия и клинические проявления диабета при тиреотоксикозе встречаются редко, концентрация сахара поэтому не может полностью характеризовать состояние регуляции углеводного обмена при тиреотоксикозе.

Концентрация инсулина в крови нами определялась по иммунологическому методу. Определение ее у больных диффузно-токсическим зобом показало неоднородные данные. Хотя и средние показатели концентрации инсулина у них почти не отличаются от контрольной группы, однако, как видно из рис. 1, у больных тиреотоксикозом концентрация инсулина в крови значительно выходит за пределы нормальных колебаний как в сторону понижения, так и его повышения.

Сопоставление концентрации инсулина крови с другими показателями углеводного обмена (сахар крови, гликемические кривые после натрузки сахара и др.) показало, что закономерной зависимости и соответствия между ними нет. У двух больных с явлениями сахарного диабета инсулин составлял 0,02 и 0,009 мед/мл, т. е. при почти одинаковой гликемии концентрация инсулина в крови отличается более чем вдвое. Такое соотношение полученных результатов дает нам основание предположить, что нарушение обмена глюкозы обусловлено не одним только инсулином, но и активностью противоинсулиновых систем. Аналогичные указания мы встречаем и в литературе. В частности, С. Г. Генес [4] приводит факты о том, что даже такое заболевание, как сахарный диабет, развивается как в условиях понижения продукции инсулина, так и при его нормальной и даже повышенной концентрации в крови. Аналогичные данные получены также нами у больных сахарным диабетом и микседемой (рис. 1).

Для полного представления о двух противоположных системах регуляции углеводного обмена у 30 больных тиреотоксикозом и у 10 здоровых лиц нами изучены результаты инсулиновых проб. Методика пробы заключалась в следующем. После определения сахара крови натощак больным вводился инсулин из расчета 1 ед на 6,5 кг веса, после чего через 10, 20, 30, 40, 60, 90, 120 мин. определение сахара крови повторялось.

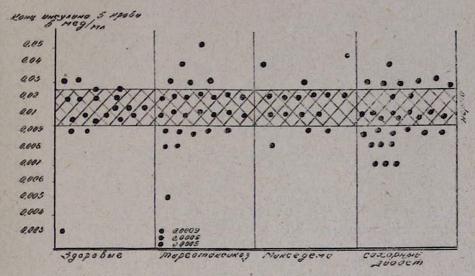


Рис. 1. Концентрация инсулина в крови у разных групп больных.

Как и ожидалось, даже у здоровых лиц были получены неодинаковые кривые. У 7 из 10 получен реактивный тип, при котором сахар в крови снижается до субнормальных цифр, а потом постепенно возвращается до исходного уровня. На рис. 2а представлен случай, когда снижение сахара в крови достигало 35 мг% с явлениями гипогликемии (головокружение, дрожание пальцев рук, потливость и др.). У двух здоровых лиц (из 10) получен ригидный тип кривой (рис. 2, б) и у одного атактический тип (рис. 2, в).

Таким образом, для здоровых лиц характерным является реактивный тип кривой инсулиновой пробы. Ригидный и атактический типы встречаются значительно реже.

Харажтер изменения гликемических кривых после введения инсулина нами расценивался как показатель состояния контраинсулярной системы в целом. Нормальной признавалась проба при снижении гликемии через 20—30 мин. после введения инсулина до уровня 80—40 мг%, с возвращением к концу исследования к исходным величинам. Слабое снижение или полное отсутствие гипогликемии (ригидный тип кривой), а также неполное восстановление ее исходного уровня к концу исследования принимались как повышение контраинсулярной активности. В выраженных случаях последнее проявляется парадоксальными кривыми, когда после введения инсулина наблюдается вместо снижения по-

вышение концентрации глюкозы в крови. Наконец, колебания сахара в крови после введения инсулина без явной тенденции в ту или иную сторону (атактический тип кривой) расценивались как неустойчивое равновесие между двумя системами в условиях их повышенной активности.

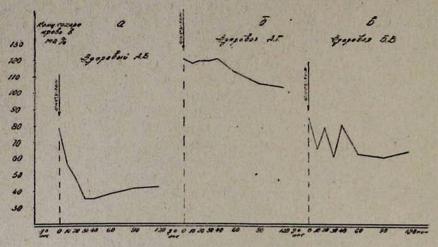


Рис. 2. Различные варианты инсулиновой пробы у здоровых лиц.

Теперь рассмотрим гликемические кривые на введение инсулина у больных тиреотоксикозом. Как и у здоровых лиц, и здесь нами получены различные типы гликемических кривых: реактивный, ригидный, атактический и парадоксальный (рис. 3, а, б, в, г). Однако у 6 больных тиреотоксикозом встречается и парадоксальный тип гликемической кривой, когда после введения инсулина отмечается повышение сахара крови вместо снижения. Кроме того, кривые любого типа здесь имеют тенденцию к нарастанию к концу пробы выше исходных величин.

По частоте отдельных типов гликемических кривых наибольшее число составляет реактивный тип—18 из 30, ригидный тип получен у 4, атактический—у 2 и парадоксальный—у 6.

Наиболее часто у больных тиреотоксикозом, как видим, остается реажтивный тип, однако эти кривые отличаются некоторыми характерными особенностями. Здесь мы видим умеренное или слабое снижение сахара крови на 10—30-й мин. исследования с последующим подъемом его до исходной величины и выше (рис. 3, а).

Такая ковшеобразная кривая после введения инсулина у больных тиреотоксикозом объясняется повышением активности как инсулярного аппарата, так и контраинсулярных систем. Поэтому, котя и наблюдается влияние инсулина на гликемию, однако оно выражено умеренно и длится коротко, после чего отмечается контраинсулярное влияние, что выражается в подъеме кривой выше исходных величин.

Так как в организме больных вследствие длительного напряжения функции островкового аппарата, надпочечников и др. всегда возможно и истощение этих органов и новые соотношения этих систем, то при этом могут быть и другие извращения инсулиновых проб. Как уже было сказано, у 6 больных тиреотоксикозом нами получен парадоксальный тип гликемических кривых на введение инсулина, который не встречается у здоровых лиц. Объяснение этого явления представляет определенное затруднение. Частично последнее можно объяснить подготовленностью ЦНС и симпатико-адреналовой системы подвлиянием гиперпродукции тиреоидных гормонов.

Рис. 3. Различные варианты инсулиновой пробы у больных тиреотоксикозом.

Мы сталкивались и с другими затруднениями. Оказалось, что парадоксальные реакции встречаются при средней тяжести тиреотоксикоза чаще, чем у больных тяжелой формой. Здесь мы сочли вероятным объяснить отсутствие парадоксальной реакции у больных тяжелым тиреотоксикозом истощением гликогеновых запасов, тем более что у них, как правило, устанавливались те или иные функциональные изменения со стороны печени.

Таким образом, мы приходим к заключению, что в клинике в регуляцию углеводного обмена, кроме инсулярного аппарата, вовлекаются новые факторы эндокринной и гуморальной регуляции. К этому нужно добавить возможность истощения этих систем, а также поражение печени и мышц, имеющие прямое отношение к процессам гликогенизации и гликогенолиза.

Вот почему регуляция углеводного обмена в клинике диффузно-токсического зоба принимает сложный характер, и в зависимости от соотношения отдельных эвеньев этого механизма (их активация или истощение) встречаются разные варианты нарушения этой регуляции.

Сопоставление результатов исследования механизмов регуляции гликемии у больных тиреотоксикозом по вышеуказанной методике по полу, возрасту и тяжести заболевания не обнаружило четкой зависимости между ними. Можно указать только на некоторую выраженность активизации инсулярного аппарата в начальной стадии заболевания с последующим ее снижением, а также на атактическую и парадоксальную реакции на инсулин у больных с лабильным течением тиреотоксикоза.

Выводы

- 1. Регуляция углеводного обмена при диффузно-токсическом зобе находится в сложной зависимости от функциональной активности инсулярного аппарата и контраинсулиновых систем (их активация или истощение), вследствие чего исследование отдельных его показателей (гликемия, концентрация инсулина крови и др.) дает неоднородные результаты.
- 2. Содержание инсулина в крови у больных тиреотоксикозом значительно колеблется как в сторону повышения, так и снижения. Последнее находится в зависимости от тяжести и длительности тиреотоксикоза. Четкой завноимости между содержанием инсулина в крови и гликемией не отмечается.
- 3. Гликемические кривые после введения инсулина у больных диффузно-токсическим зобом характеризуются умеренным и кратковременным снижением сахара в крови с последующим нарастанием его до исходной величины и выше в конце исследования, указывающим на активацию контраинсулиновой системы.
- 4. При тиреотоксикозе нередко встречается и парадоксальный тип гликемической кривой на введение инсулина, что связывается с длительной подготовленностью ЦНС под влиянием тиреоидных гормонов щитовидной железы.

Кафедра факультетской терапии Ереванского медицинского института

Поступило 13/ІІ 1970 г.

Ռ. Ս. ՄԱՄԻԿՈՆՅԱՆ, Վ. Մ. ՀԱՐՈՒԹՅՈՒՆՅԱՆ, Ս. Ե. ԹՈՐՈՍՅԱՆ, Ս. Կ. ՀԱՐՈՒԹՅՈՒՆՅԱՆ

ԴԻՖՈՒԶ ՏՈՔՍԻԿ ԽՊԻՊՈՎ ՀԻՎԱՆԴՆԵՐԻ ԱԾԽԱՋՐԱՏԱՅԻՆ ՓՈԽԱՆԱԿՈՒԹՅԱՆ ԿԱՐԳԱՎՈՐՄԱՆ ՄԻ ՔԱՆԻ ՀԱՐՑԵՐ

Udhnhnid

Հետազոտել ենք Թիրեոտոքսիկողով տառապող 30 հիվանդների. միջին ծանրության՝ 17 և շատ ծանր վիճակում՝ 13 հիվանդ։ Որպես ստուգիչ հետազոտել ենք նաև 10 առողջ մարդկանց։

Իրրև ածխաջրածնային փոխանակության ցուցանիշներ վերցրել ենք շաքարի (Հագեդորն-Իննսենի մեթոդ) և ինսուլինի (իմունոլոգիական մեթոդ) բաղադրությունը արյան մեջ, ինչպես նաև ինսուլինային փորձը։ Ամփոփելով հետաղոտության արդյունքները, նկել ենք այն եղրակացության, որ թիրնոտոքսիկողով տառապող հիվանդների ածխաջրատային փոխանակության կարգավորումը կախված է ինսուլյար և հակաինսուլինային սիստեմների ֆունկցիոնալ ակտիվությունից, որի հետևանքով նրա առանձին ցուցանիշները (գլիկեմիա, ինսուլինի բաղադրությունը արյան մեջ և այլն) տալիս են ոչ միանման տվյալներ։ Ինսուլինի բաղադրությունը դիֆուդ տոքսիկ խպիպով տառապող հիվանդների արյան մեջ նկատելիորեն տատանվում է (իջնում, բարձրանում), որը կախված է հիվանդության ծանրությունից և տևողությունից։ Արտահայտվածօրինաչափ կապ ինսուլինի բաղադրության և գլիկեմիայի միջև չի նկատվում։

ЛИТЕРАТУРА

- 1. Авиосор М. Л., Герасименко Н. И. В кн.: Заболевания эндокринных органов. М. 1964, стр. 5.
- 2. Алексеева Г. Г. Проблемы эндокринологии, 1967, 2, стр. 3.
- 3. Баранов В. Г. Архив биологических наук, 1927, т. 27, 4-5, стр. 275.
- Генес С. Г., Липкинд Э. Л. Бюллетень экспериментальной биологии, 1938, т. 5, 4, стр. 349.
- Гурова А. М. Материалы к патологии щитовидной железы на Урале. Свердловск, 1965, стр. 81.
- 6. Зарилова З. Х. Проблемы эндокринологии, 1970, 3, стр. 71.
- Златкина А. Р., Тер-Григорова Е. Н. Проблемы эндокринологии и гормонотерапии, 1966, 1, стр. 31.
- 8. Златкина А. Р. Терапевтический архив, 1967, 2, стр. 51.
- 9. Лейтес С. М. Патофизиология щитовидной и околощитовидной желез. М., 1965.
- Лейтес С. М., Лаптева Н. Н. Очерки по патофизиологии сбмена веществ и эндокринной системы. М., 1967.
- Мельник Т. Ф., Полотай В. А., Шевчук И. А. В кн.: Актуальные вопросы гистохимии и биохимии щитовидной железы. Киев, 1968, стр. 35.
- 12. Houssay B. A., Biasotti A. Pflug. Arch. ges. Physiol., 1931, Bd. 227, S. 239.
- 13. Houssey B. A., Foglia V. G., Martinez C. Endocrinology, 1946, 39, 361.
- 14. Lorand A. C. R. Soc. Biol. (Paris), 1904, 56, 488.
- 15. Foa P. P. Ciba Foundation Colloguia on Endocrinology. London, 1956, 9, 55.