2 Ц 3 Ч Ц Ч Ц Т U U Z Ч Р S П Р В П Р Т Т Т В Г Р Ц Ц Ц Т В Г Р Ц Ц Ц Т В Г Р Ц Ц Ц Т В Г Р Ц Ц Ц Т В Г Р С Р

Էքսպես. և կլինիկ. թժչկ. հանդես

X, № 2, 1970

Журн. экспер. и клинич. медицины

УДК 616-006-02

д. х. гарибян, с. а. папоян

ЭКСПЕРИМЕНТАЛЬНОЕ ИЗУЧЕНИЕ РАННИХ СТАДИИ ЭПИДЕРМАЛЬНОГО КАНЦЕРОГЕНЕЗА В РАЗЛИЧНЫЕ ФАЗЫ ВОЛОСЯНОГО ЦИКЛА

На протяжении жизни у грызунов и других млекопитающих постоянно происходит обновление волосяного покрова. Это явление привлекло внимание многих исследователей. Еще в прошлом столетии немецкие авторы провели довольно детальное изучение формирования и смены волос у различных млекопитающих. В своей работе относительно формирования первой шерсти и смены волос у морских свинок Сегал [27] дал подробный обзор предшествующей литературы. Дальнейшее развитие эта проблема получила в работе Драя [16], выявившего закономерности этого процесса у мышей. Им установлено, что смена волос происходит циклически. В каждом цикле он различает три стадии.

- І. Стадия анаген—период роста от начала развития волосяного зародыша до прекращения размножения клеток матрикса. В первой генерации этот период начинается за несколько дней до рождения мыши формированием зародыша из мальпигиева слоя эпидермиса и сосочка из соединительной ткани дермы. Нисходящий эпителиальный тяж, обхватывая сосочек, образует луковицу, которая достигает наиболее глубокого положения в подкожной соединительной ткани на 12-й день жизни [19]. В последующих генерациях этот процесс, за исключением нисходящего роста из эпидермиса, повторяется. Чейз и др. [13] весь период анагена делят еще на 6 стадий. Продолжительность анагена примерно 17 дней.
- II. Стадия катаген—переход прекратившего свой рост волоса в неактивное состояние. В этом периоде наблюдается уменьшение размероз луковицы, разрушение внутренней оболочки, атрофия матрикса. Волос превращается в так называемый «clab hair», который затем быстро поднимается из подкожной ткани на место своего конечного положения в дерме. В конце этой фазы на основании фолликула происходит образование волосяного зародыша следующей генерации. Фаза катаген длится 2—3 дня.
- III. Стадия телоген—фаза покоя, в течение которой в фолликулах никаких изменений не наблюдается. Для первой генерации она короткая (8—10 дней), в последующих генерациях увеличивается, занимая большую часть волосяного цикла [1, 6, 29]. Продолжительность циклов также значительно увеличивается.

У мышей за год сменяется 6—8 генераций волос. Распространение волос каждой новой генерации происходит волнами, переходящими с вентральной поверхности на спину [6, 16].

У крыс формирование и смена волос очень сходны с таковыми у мышей. Развитие I генерации начинается во внутриутробном периоде и заканчивается на 17-й лень жизни. После короткого катагена (3—1 дня) наступает фаза покоя, которая продолжается до 32-го дня жизни. ІІ цикл длится примерно столько же (34 дня) [9, 10]. Смена волос, как и у мышей, идет волнами, распространяющимися с вентральной поверхности на спину [9, 10, 20, 21]. Это вентро-дорзальное направление волн очень стойкое, и попытки изменить его не имели успеха [17, 18].

Циклические изменения волосяных фолликулов сопровождаются изменениями во всей коже. В зависимости от фазы меняется толщина кожи в целом и отдельных ее слоев [14, 22]. Размеры сальных желез уменьшаются в позднем анагене и катагене [14, 24]. В фазе роста увеличивается содержание гликогена [28], усиливается васкуляризация кожи [17, 20].

Реакция кожи на различные воздействия (химические вещества, рентгеновские лучи) в значительной степени обусловливается фазой, в течение которой наносится раздражитель [11, 25, 26]. Особенно поразительной оказалась зависимость изменений от состояния волосяных фолликулов при экспериментальном канцерогенезе. При однократной аппликации канцерогена максимальный выход опухолей получали лишь в том случае, когда канцероген наносился в фазе покоя волосяного цикла, аппликации в фазе роста оказались малоэффективными [2, 5, 7]. Механизм этого явления, получившего название «эффект волосяного цикла», окончательно не выяснен. Беренблюм и др. [5] считают, что здесь основную роль играют не различия в чувствительности кожи в разных фазах, а меньшая продолжительность соприкосновения канцерогена с кожей в период роста. В результате этого канцероген оказывает только индуцирующее действие, не успевая оказать активирующего.

Фазовые изменения в волосяных фолликулах влияют и на уже возникшие опухоли. Борум обнаружила, что при прохождении волны роста через участок кожи, на котором находится опухоль, последняя увеличивается в объеме [8].

Большой интерес представляет изучение влияния циклических изменений волосяного фолликула на ранние стадии эпидермального канцерогенеза. В литературе этому вопросу посвящено ограниченное число работ, из которых видно, что повреждающее действие канцерогена более выражено при аппликации его в фазе покоя [3, 12, 22, 23, 29]. Следует отметить, что данные о степени изменений при аппликации в фазе роста у различных авторов различны.

В настоящей работе мы задались целью проследить динамику изменений, наступающих в коже в ранние сроки после аппликации канцерогена в различные фазы волосяного цикла.

Опыты проводились на белых беспородных мышах 2-3 месячно-

го возраста. В качестве канцерогена мы использовали 0,5%-ный раствор 9.10-диметил-1.2-бензантрацена (ДМБА) в бензоле. Однократнал аппликация производилась на кожу межлопаточной области в фазе покоя и в фазе роста волосяного цикла. Фазу роста получали выщипыванием шерсти в смазываемой области, что, согласно Дейвиду [15] и Чейзу [11], переводит фолликулы в активное состояние. Аппликации канцерогена в фазе роста производили через 3 дня после выщипывания, в фазе покоя на 25-й день. Материал брался в течение 10 суток ежедневно, затем на 15-, 20-, 25 и 30-ые сутки после аппликации. У контрольных животных, которые после выщипывания аппликации канцерогена не получали, а также у части опытных животных взятие материала производилось ежедневно в течение месяца. Материал фиксировался в 10%-ном формалине и жидкости Карнуа, срезы окрашивались гематоксилинэозином, суданом III—IV.

После выщипывания у животных кожа тонкая, розовая. В дальнейшем она утолщается и уплотняется. Волосы на поверхности кожи появляются на 10—11-й день, и вскоре вся эпилированная область зарастает шерстью. Аппликация канцерогена в фазе роста за исключением небольшого покраснения и шелушения кожи особых изменений не вызывала. Волосы появлялись на 7-й день после аппликации (11-й день после выщипывания). Зарастание шерстью проходило так же, как и у контрольных животных, эпиляции не наблюдалось. При аппликации в фазе покоя на покрасневшей коже вскоре появились желтоватые струпики, которые затем, сливаясь, покрыли смазанную область сплошной коркой. По мере отпадания этой корки происходила эпиляция (на 8— 9-ые сутки после аппликации). Появление волос на эпилированной области началось с 20-х суток. У некоторых животных на 25—30-ые сутки имелись гребнеобразные утолщения в центре смазанной области. На этих участках кожа шерстью не зарастала.

При гистологическом исследовании у контрольных животных в первые же сутки после выщипывания отмечается размножение клеток волосяного зародыша. На 3-й день виден нисходящий тяж клеток на основании фолликула. В последующие сутки формируется волосяная луковица, которая на 6-ые сутки проходит в подкожную соединительную ткань. Волос достигает поверхности эпидермиса на 9-10-ые сутки. К этому времени луковица располагается уже довольно глубоко в подкожной соединительной ткани. Проникая вглубь, она затем достигает мышцы. Атрофия луковицы наблюдается на 19-ые сутки. Clab hair образуется глубоко в подкожной жировой ткани. Укорочение корня происходит на 20-21-ые сутки. На 22-ые сутки clab hair завершает свое восхождение и в течение последующей фазы покоя остается на чуть ниже сальных желез. Сразу после выщипывания сальные заметно увеличиваются, в последующие сутки они несколько уменьшаются. Гиперплазия эпидермиса, выраженная вначале, с ростом волоса уменьшается, несколько усиливается кератинизация. Усиление кератинизации наблюдается и внутри волосяного канала, в верхних его частях, соответственно месту расположения выщипанного волоса.

В 1-ые сутки после аппликации канцерогена в фазе роста наблюдались гиперплазия эпидермиса и наружной корневой оболочки, увеличение ядер эпителиальных клеток, в дерме—явления воспаления. В последующие сутки гиперплазия эпителия уменьшается, усиливается кератинизация эпидермиса. Сальные железы, сильно увеличенные в первый день после смазывания, на 2—3-ы сутки уменьшаются в размерах и на 4—5-ые сутки они уже не обнаруживаются (рис. 1). В дальнейшем, с 6-х суток, сальные железы вновь хорошо видны. Волосяные фолликулы находятся в непрерывной фазе роста. Формирование луковицы и нисходящий рост ее проходят так же, как и у контрольных животных.

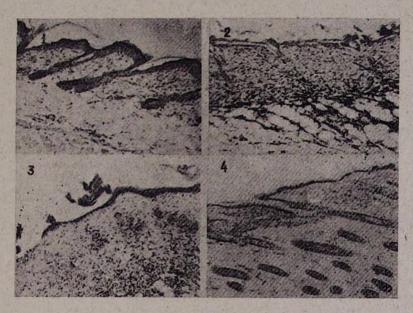


Рис. 1. 5-ые сутки после аппликации ДМБА в фазе роста. Рис. 2. 5-ые сутки после аппликации ДМБА в фазе покоя. Рис. 3. 8-ые сутки после аппликации ДМБА в фазе покоя. Рис. 4. 20-ые сутки после аппликации ДМБА в фазе покоя.

При аппликации в фазе покоя резко выражены дегенеративные изменения эпидермиса и наружной корневой оболочки. Эпидермис некротизируется, разрушается эпителиальная оболочка волоса (рис. 2). На месте исчезнувшего волосяного фолликула остаются только его соединительнотканные контуры. В дерме—сильное воспаление. По краям некротизированного участка эпителий гиперплазирован, волосяные фолликулы представляют собой солидные тяжи эпителия, содержащие роговые массы. Сальные железы полностью исчезают на 3-ы сутки. Восстановительные процессы эпителия выступают с 8—10-х суток (рис. 3). На 15-ые сутки волосяные фолликулы находятся в фазе роста, видны новообразованные сальные железы. На препаратах 20—25 суток

рост волос продолжается, сальные железы увеличены (рис. 4), На 30-ые сутки волосяные фолликулы переходят в фазу катаген.

Таким образом, наши исследования показали, что фазы волосяного цикла имеют решающее значение в развитии изменений в коже в ранние стадии экспериментального канцерогенеза. Меньшая уязвимость кожи в фазе роста, вероятно, имеет какую-то связь с меньшим выходом опухолей при апликации канцерогена в фазе роста. Этот вопрос нуждается в дальнейшем, более подробном изучении.

Армянский институт рентгенологии и онкологии

Поступило 8/XII 1969 г.

Ջ. Խ. ՂԱՐԻՐՑԱՆ, Ս. Ա. ՊԱՊՈՑԱՆ

ԷՊԻԴԵՄԻԱԼ ԿԱՆՑԵՐՈԳԵՆԵԶԻ ՎԱՂ ՇՐՋԱՆՆԵՐԻ ԷՔՍՊԵՐԻՄԵՆՏԱԼ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆԸ ՄԱԶԻ ՑԻԿԼԻ ՏԱՐԲԵՐ ՓՈՒԼԵՐՈՒՄ

Udhnhnid

Ուսումնասիրվել են 9—10 դիմեթիլ 1—2 բենզանտրացենի միանվագ ապլիկացիայի հետևանքով սպիտակ մկների մաշկում առաջացած վաղահաս փոփոխությունները մազի ցիկլի տարբեր շրջաններում։ Մաշկը հանգիստ փուլում ավելի զգայուն է կանցերոգեն նյութերի ազդեցության նկատմամբ։ Մաշկի ապլիկացիան այդ փուլում առաջացնում է խիստ արտահայտված դեգեներատիվ փոփոխություններ՝ ընդհուպ մինչև էպիթելի նեկրող և ճարպագեղձերի ղեգեներացիա։ Ճարպագեղձերի նորագոյացությունը դիտվում է 15 օրում։

Աճման փուլում ապլիկացիան ուղեկցվում է էպիթելի ոչ մեծ Տիպերպլազիայով և ճարպագեղձերի կարճատև անՏետացմամբ (4—5-րդ օրերին)։

ЛИТЕРАТУРА

- 1. Andreasen E. Acta Path. et Microbiol. Scandinav., 1953, 32, 157.
- 2. Andreasen E., Engelbreth-Holm J. Acta Path. et Microbiol. Scandinav., 1953, 32,
- 3. Andreasen E., Borum K. Acta Path. et Microbiol. Scandinav., 1959, 46, 59.
- 4. Argyris T. S. J. Nat. Cancer Inst., 1952, 12, 1152.
- 5. Berenblum G., Haran-Ghere N., Trainin N. Brit. J. Cancer, 1958, 12, 402.
- 6. Borum K. Acta Path. et Microbiol. Scandinav., 1954, 34, 521.
- 7. Borum K. Acta Path. et Microbiol. Scandinav., 1954, 34, 542.
- 8. Borum K. Acta Path. et Microbiol. Scandinav., 1958, 44, 190.
- 9. Butcher E. O. Anat. Rec., 1934. 61, 5.
- 10. Butcher E. O. Ann. N. Y. Acad. Sci., 1951, 53, 508.
- 11. Chase H. B. J. Morph., 1949, 84, 57.
- 12. Chase H. B., Montagna W. Proc. Soc. Exper. Biol. a. Med., 1951, 76, 35.
- 13. Chase H. B., Rauch H. a. Smith V. W. Physiol. Zool., 1951, 24, 1.
- 14. Chase H. B., Montagna W. a. Malone J. D. Anat. Rec., 1953, 116, 75.
- 15. David L. T. J. Exper. Zoöl., 1934, 68, 501.
- 16. Dry F. W. J. Genet., 1926, 16, 287.

- 17. Durward A., Rudall K. M. J. Anat., 1949, 83, 325.
- 18. Durward A., Rudall K. M. J. Anat., 1950, 84, 66.
- 19. Gibbs H. F. Anat. Rec., 1941, 80, 61.
- 20. Haddou A., Rudall K. M. Endeavor, 1945, 4, 141.
- Haddou A., Elson L. A., Roc E. M. F., Rudall K. M., Timmis C. M. Nature, 1945, 155, 379.
- 22. Liang H., Cowdry E. V. Cancer Res., 1954, 14, 340.
- 23. Montagna W., Chase H. B. Anat. Rec., 1950, 107, 82.
- 24. Parnell J. P. Am. J. Anat., 1949, 85, 41.
- 25. Rademacher A. H. Montagna W. J. Invest. Dermatol., 1956, 26, 69.
- 26. Rauch H. Physiol. Zool., 1952, 25, 268.
- 27. Segall A. Arch. f. Micro. Anat., 1918, 91, 218.
- 28. Shipman M., Chase H. B., Montagna W. Proc. Soc. Exp. Biol.; et Med., 1955, 88, 449.
- 29. Suntzeff V., Cowdry E. V., Croninger A. Cancer Res., 1955, 15, 637.