էքսպես. և կլինիկ. թժչկ. հանդես

VIII, № 5, 1968

Журн. экспер. и клинич. медицины

э. с. АНДРИАСЯН

ИЗМЕНЕНИЕ СОДЕРЖАНИЯ ЖЕЛЕЗА В СЫВОРОТКЕ, СИДЕРОЦИТОВ В ПЕРИФЕРИЧЕСКОЙ КРОВИ И СИДЕРОБЛАСТОВ В КОСТНОМ МОЗГУ ПОСЛЕ УДАЛЕНИЯ МОЗЖЕЧКА

По представлению ряда авторов [6, 7, 9, 10, 13], при некоторых анемиях, когда имеется неполноценный эритропоэз, вследствие нарушения синтеза гемоглобина, утилизации железа повышается количество неиспользованного железа в сыворотке, сидероцитов в периферической крови и сидеробластов в костном мозгу. С другой стороны, многочисленными исследованиями [3, 4, 5, 11] доказано, что микроэлементы играют большую роль в жизнедеятельности организма, в частности в физиологических процессах, происходящих в центральной нервной системе, а некоторые микроэлементы—в процессе кровотворения (наиболее активны кобальт, медь, цинк, марганец и др.).

Исходя из этих представлений и наших предыдущих исследований о том, что церебеллэктомия приводит к развитию гиперхромно-макроцитарной анемии с мегалобластической реакцией со стороны костного мозга с задержкой созревания эритробластов [1, 2], мы полагаем, что изучение содержания сывороточного железа, сидеробластов в костноммозгу, сидероцитов и микроэлементов (Со, Си, Zn и Мn) в периферической крови может служить показателем для выяснения некоторых вопросов механизма наблюдаемых анемий у собак после удаления мозжечка.

С этой целью на пяти собаках определялось содержание сывороточного железа, сидероцитов, сидеробластов и микроэлементов как до экстирпации мозжечка, так и в различные дни после операции. Количество сывороточного железа определялось ортофенантролиновым методом, калориметрия—визуальным калориметром-831. В сидероцитах и сидеробластах железо в виде зерен обнаруживалось методом берлинской лазури [8].

Определение микроэлементов в цельной крови производилось путем эмиссионного спектрографического анализа.

Данные нарушения и восстановления содержания сывороточного железа, сидероцитов и сидеробластов у собак после церебеллэктомии представлены в табл. І, 2. Как видно из данных этих таблиц, отмечается волнообразное изменение количества указанных показателей. В первой неделе после удаления мозжечка количество сывороточного железа повышалось (с 120±11,18 γ % до 203±25,92 γ %; Р<0,02). В дальней-

шем содержание сывороточного железа продолжало повышаться, достигнув максимального количества через 15—18 дней после церебеллэктомии (233,2 \pm 37,62 γ %; P<0,05).

На 20—25-ый день количество сывороточного железа несколько уменьшилось (213 \pm 28,34 $_{\gamma}$ %; P<0,05), оставаясь выше исходного, а на 40—48-й день после церебеллэктомии снова отмечалось повышение его (241 \pm 26,92 $_{\gamma}$ %; P>0,02), после чего резко уменьшалось и на 80—90-й день доходило до 108,8 \pm 10,37 $_{\gamma}$ %, т. е. ниже исходного уровня, и только через 110—120 дней возвращалось к норме, оставаясь чуть выше нормы.

Аналогичные изменения наблюдались со стороны количества сидероцитов. Во время первой анемической волны количество сидероцитов повышалось с $1,0\pm0,13$ до $2,0\pm0,38\%$; P>0,05, а количество сидеробластов в костном мозгу с $33,4\pm4,84$ до $53,0\pm4,12\%$; P>0,02.

Во время второй анемической волны количество сидероцитов увеличилось еще больше, превышая исходную величину (P>0,01), а количество сидеробластов оставалось на уровне первой анемической волны ($53,0\pm4,12\%$; P>0,05).

Исходя из вышеизложенного, можно сказать, что имеется прямая зависимость между указанными тремя величинами: количеством сывороточного железа, содержанием сидеробластов и сидероцитов.

Таким образом, у церебеллэктомированных собак изменение кровотворения выражается не только в торможении процессов созревания эритробластов, но и в повышении сывороточного железа. Это указывает на то, что клетки эритропоэтического отростка недостаточно используют сывороточное железо.

Повышение сидеробластов в костном мозгу и сидероцитов в периферической крови также свидетельствует, что клетки костного мозга используют не все внутриклеточное железо для синтеза гемоглобина.

С другой стороны, нашими предыдущими исследованиями [1, 2] было показано, что у церебеллэктомированных собак не наблюдается симптома повышенного распада крови, осмотическая резистентность эритроцитов в отношении гипотонического раствора не только не понижена, а даже несколько повышена, следовательно, гемолитический момент отсутствует.

Таким образом, причиной развивающейся макроцитарно-гиперхромной анемии с мегалобластической реакцией со стороны костногомозга не является недостаточность железа. Она связана скорее с тем, что костный мозг не в состоянии использовать имеющиеся в организменеобходимые факторы для синтеза гемоглобина, что приводит к увеличению содержания железа в сыворотке, а также к увеличению количества сидероцитов и сидеробластов.

Данные опытов этой серии согласуются с данными, полученными в результате морфологических исследований [1, 2]. Увеличение количества сидероцитов и сидеробластов заставляет предположить, что на-

Таблица 1 Динамика нарушения и восстановления содержания сидеробластов в костном мозгу, сидер оцитов и сывороточного железа в крови до и в различные сроки после церебеллэктомии

Клички собак	Содер	жание	Железо	Содет	жание	Железо	Содеря	кание	Железо	Содер	жание	Железо
	сидеро- цитов (в ⁰ / ₀₀) сидеро- бластов (в ⁰ / ₀)		сыворо- точное (в 7°/о)	сидеро- цитов (в ⁰ / ₀₀)	сидеро- бластов (в °/ ₀)	сыворо- точное (в $\gamma^0/_0$)	сидеро- цитов (в ⁰ / ₀₀)	сидеро- бластов (в ⁰ / ₀)	сыворо- точное (в 7°/о)	сидеро- цитов (в ⁰ / ₀₀)	сидеро- бластов (в ⁰ / ₀)	сыворо- точное (вү ⁰ / ₀)
	TO WHO!	TOWNS MOO		REIS.		пос	пе уда	лени	я моз	жечка		
	до удал	ения моз	жечка	чер	ез 4—8 ді	ней	чере	з 10—12	цней	чер	ез 15—18	дней
Тузик	1,1 -	28,0	110,0	2,6	42,0	173,0	1,8	33,0	102,0	2,7	36,0	205,0
Шарик	1,2	44,5	96,5	1,7	49,0	133,0	1,7	40,0	110,0	2,2	45,0	125,0
Мопсик	0,5	17,5	160,5	0,8	37,0	288,0	.0,9	22,0	190,0	3,3	50,0	360,0
Чита	1,2	41,0	107,0	1,9	69,0	197,0	1,1	39,0	143,0	2,8	59,0	236,0
Арап	1,0	36,0	126,0	3,0	- 68,0	224,0	2,0	51,0	200,0	3,3	60,5	240,0
M	1,0	33,4	120,0	2,0	53,0	203,0	1,5	37,0	149,0	2,86	50,1	233,2
<u>+</u> m	0,13	4,84	11,18	0,38	4,12	25,92	0,21	4,74	20,06	0,20	4,51	37,82
t	BALLER!			2,49	3,08	2,94	2,01	0,53	1,26	7,62	2,52	2,85
P				>0,05	<0,02	<0,02				>0,05	<0,05	>0,05

Таблица 2 Динамика нарушения и восстановления содержания сидеробластов в костном мозгу, сидероцитов и сывороточного железа в крови до и в различные сроки после церебеллэктомии

	Содера	кание	Железо-	пезо- Содержание			Содер	жание	Железо	Содер	Железо	
Клички собак	сидеро- цитов (в ⁰ / ₀₀)	сидеро- бластов (в °/ ₀)	сыворо- точное (в 7°/о)	сидеро- цитов (в ⁰ / ₀₀)	сидеро- бластов (в ⁰ / ₀)	Железо сыворо- точное (в $\gamma^0/_0$)	сидеро- цитов (в %00)	сидеро- бластов (в °/ ₀)	сывороточное (в 7°/0)	сидеро- цитов (в ⁰ / ₀₀)	сидеро- бластов (в °/0)	сыворо- точное (в ү°/о)
	V Barrell		12 61	тосле	удал	ения	м озже	чка	THE A			
	чере	3 20—25 z	ней	чере:	з 40—48 д	ней	чере	з 80—90 д	ней	чере	3 110-12	0 дней
Тузик	2,5	39,0	157,0	3,0	45,0	200,0	0,8	30,0	94,0	0,8	31,0	126,0
Шарик	1,4	40,0	143,0	2,3	46,0	160,0	1,0	38,0	100,0	1,5	37,5	80,5
Мопсик	3,5	37,0	306,0	3,6	64,0	300,0	0,7	15,0	150,0	1,0	23,0	170,0
Чита	1,1	36,0	250,0	1,6	48,0	280,0	1,2	47,0	101,0	1,4	50,0	109,5
Арап	2,0	43,0	210,0	3,3	62,0	265,0	0,4	45,0	99,0	0,9	32,5	149,0
M	2,1	39,0	213,2	2,76	53,0	241,0	0,82	35,0	108,8	1,08	34,8	127,0
±m	0,42	1,22	28,34	0,36	4,12	26,29	0,13	5,82	10,37	0,03	4,45	15,49
t	2,47	1,12	3,22	4,68	3,08	4,24	1,06	0,21	0,72	0,59	0,24	0,36
P	>0,05		<0,05	>0,01	<0,05	>0,02						

ряду с другими патогенетическими факторами имеет место и фактор синтеза гемоглобина.

После удаления мозжечка (на 4-7-й день) относительное содержание исследованных нами микроэлементов у всех собак понизилось: кобальта—до 0.244 ± 0.02977 (P>0.05), меди—до 0.99 ± 0.07622 (P<0.1), цинка—до 0.29 ± 0.0405 (P<0.05), марганца—до 0.22 ± 0.05035 (P<0.05) (табл. 3, 4). На 8-10-й день после операции содержание кобальта, цинка и марганца оставалось на низком уровне и даже еще более снизилось; содержание же меди увеличилось до 1.45 ± 0.1326 . Через 12-13 дней после операции содержание кобальта, цинка и марганца достигло своего наименьшего уровня, содержание же меди, насборот, максимально возросло $(1.83\pm0.1561; P<0.02)$.

Таким образом, после удаления мозжечка содержание кобальта, цинка и марганца уменьшается и сохраняется на низком уровне в течение двух недель, количество же меди со второй недели начинает увеличиваться. С 15 по 27-ой день наблюдалась противоположная картина: содержание кобальта, цинка и марганца повысилось, а уровень меди, наоборот, понизился. С 30 по 35-й день после церебеллэктомии снова отмечалось понижение кобальта до $0.20\pm0.0161~(P=0.02)$, цинка—до $0.22\pm0.0192~(P<0.001)$, марганца—до $0.19\pm0.0215~(P<0.05)$; уровень же меди повысился до 1.66 ± 0.3277 .

Восстановление нормального уровня указанных показателей происходило через 80—85 дней после операции, причем содержание кобальта, цинка и марганца оставалось чуть ниже исходной величины, а содержание меди, наоборот, было чуть выше.

Необходимо указать, что у церебеллэктомированных собак параллельно с ухудшением морфологического состава крови уменьшалось количество кобальта, цинка и марганца. Содержание же меди, негемоглобинного сывороточного железа, сидероцитов и сидеробластов, как указывалось выше, возрастало. С улучшением морфологического состава крови содержание кобальта, цинка и марганца увеличивалось, т. е. возвращалось к исходным показателям, количество меди, сывороточного железа, сидероцитов и сидеробластов уменьшалось.

Таким образом, снижение уровня кобальта сопровождалось увеличением содержания сывороточного железа, что свидетельствует о нарушении утилизации железа клетками костного мозга. Далее, нарушение количества сидероцитов и сидеробластов также является доказательством нарушения синтеза гемоглобина и задержки созревания клеток эритропоэтического ряда.

На основании полученных данных можно считать, что после церебеллэктомии содержание кобальта и марганца в крови уменьшается и, по всей вероятности, это играет определенную роль в патогенезе анемии.

Таким образом, нами было установлено, что после удаления мозжечка нарушается минеральное равновесие—двухфазное понижение содержания кобальта, цинка и марганца и повышение уровня меди.

Таблица 3 Изменение содержания кобальта, меди, цинка и марганца в цельной крови у собак до и в различные сроки после удаления мозжечка

	Co	Cu V	$\frac{Zn}{V}$	Mn V	Co	Cu V	$\frac{Zn}{V}$	Mn V	Co V	Cu V	$\frac{Zn}{V}$	$\frac{Mn}{V}$	Co V	CuV	$\frac{Zn}{V}$	Mn
Клички собак	100	N. W.					п	осл	еуд	але	ния	моз	жеч	ка		
	до у	далени	я мозж	ечка		через	4-7		чер	ез 8	10 дне	i	чер	рез 12-	-13 дн	eii
Чанс	0,28	1,04	0,36	0,25	0,14	0,91	0,15	0,10	0,18	1,76	0,20	0,12	0,10	1,57	0,13	0,11
Верный	0,47	1,23	0,51	0,38	0,27	1,10	0,37	0,22	0,21	1,09	0,29	0,19	0,16	2,27	0,24	0,15
Джага	0,29	1,10	0,38	0,25	0,28	0,77	0,35	0,21	0,25	1,47	0,34	0,21	0,19	1,84	0,20	0,13
Листик	0,50	1,25	0,49	0,39	0,22	1,21	0,33	0,40	0,30	1,38	0,28	0,19	0,25	1,78	0,34	0,25
Кобс	0,36	1,21	0,46	0,36	0,31	0,96	0,25	0,21	0,26	1,55	0,31	0,32	0,14	1,69	0,17	0,15
M	0,38	1,17	0,44	0,326	0,244	0,99	0,29	0,22	0,24	1,45	0,28	0,206	0,17	1,83	0,216	0,16
±m	0,043	0,044	0,029	0,03	0,029	0,076	0,04	0,05	0,02	0,132	0,023	0,03	0,025	0,156	0,035	0,024
t		1			2,57	2,04	2,99	1,785	2,89	2,0	4,25	2,66	4,15	4,07	4,82	4,22
P	i				>0,05		<0,05	>0,05	<0,05		<0,02	>0,05	<0,02	<0,02	<0,01	<0,02

Таблица 4 Изменение содержания кобальта, меди, цинка и марганца в цельной крови у собак до и в различные сроки после удаления мозжечка

			A STATE OF		OKII III	Jene ya	аления	MUSAC	- TRO	1000		70 YS 1			6.23				
Клички		Cu V	$\frac{Zn}{V}$	Mn V	CoV	Cu	Zn V	Mn V	Co V	Cu V	$\frac{Zn}{V}$	Mn	Co V	Cu	$\frac{Zn}{V}$	M			
собак		после удаления мозжечка																	
	через 15-20 дней				че	рез 25-	-27 дн	ей	чеј	рез 30-	—35 дней		че	рез 80-	80—85 дней				
Чанс	0,16	1,62	0,43	0,15	0,30	2,27	0,38	0,26	0,21	2,12	0,28	0,24	0,22	1,93	0,36	0,2			
Верный •	0,22	1,71	0,51	0,21	0,21	1,40	0,47	0,30	0,19	2,23	0,20	0,15	0,52	1,52	0,28	0,4			
Джага	0,21	1,69	0,26	0,16	0,47	1,38	0,39	0,25	0,17	0,94	0,19	0,13	0,30	0,88	0,23	0,1			
Листик	0,29	1,55	0,33	0,20	0,29	1,22	0,58	0,27	0,25	0,79	, 0,25	0,23	0,30	1,05	0,47	0,			
Кобс	0,15	1,71	0,42	0,25	0,25	1,43	0,57	0,38	0,16	2,24	0,18	0,19	0,41	1,16	0,25	0,			
M	0,206	1,65	0,39	0,19	0,30	1,54	0,48	0,29	0,20	1,66	0,22	0,19	0,35	1,31	0,32	0,2			
±m	0,025	0,013	0,043	0,018	0,044	0,18	0,042	0,023	0,016	0,327	0,019	0,02	0,052	0,187	0,044	0,0			
1	3,45	8,84	0,952	3,745	1,28	1,935	0,77	0,916	3,86	1,48	6,24	3,57	0,129	0,727	2,264	1,3			
P	<0,05	<0,001		0,02	1500				0,02		<0,001	<0,05		THE P	>0,05	53			

Эти сдвиги являются прямым доказательством нарушения процесса обмена веществ у церебеллэктомированных животных, так как изученные нами микроэлементы входят в состав таких ферментных систем, как аскорбиноксидаза, полифенолоксидаза и карбангидраза, ацетилорнитиназа и др., которые играют в организме весьма большую роль, связанную непосредственно с окислительно-восстановительным процессом, то есть с интимными химическими реакциями, разыгрывающимися внутри самих клеток.

Таким образом, в свете новых экспериментальных данных еще раз подтверждается правомерность концепции Л. А. Орбели об адаптационно-трофической роли мозжечка.

Кафедра физиологии Ереванского медицинского института

Поступило 2/III 1968 г.

է. Ս. ԱՆԴՐԻԱՍՑԱՆ

ՈՒՂԵՂԻԿԻ ՀԵՌԱՑՈՒՄԻՑ ՊԵՐԻՖԵՐԻԿ ԱՐՅԱՆ ՄԵՋ ՇԻՃՈՒԿԱՅԻՆ ԵՐԿԱԹԻ ԵՎ ՍԻԴԵՐՈՑԻՏՆԵՐԻ, ԻՍԿ ՈՍԿՐԱԾՈՒԾՈՒՄ՝ ՍԻԴԵՐՈԲԼԱՍՏՆԵՐԻ ՔԱՆԱԿԻ ՓՈՓՈԽՈՒԹՅՈՒՆՆԵՐԸ

Udhnhnid

Ելնելով մեր նախորդ փորձերի տվյալներից, որ ուղեղիկի հեռացումը պայմանավորում է հիպերխրոմ անեմիայի առաջացում, և գրականության մեջ եղած այն պատկերացումից, որ երկաթի և մի շարք միկրոէլեմենտների քանակի փոփոխությունները կարևոր նշանակություն ունեն անեմիաների առաջացման պաթոդենեզում, մենք 5 շան վրա ուսումնասիրել ենք նշված ցուցանիշների քանակը ուղեղիկը հեռացնելուց առաջ և հետո։

Հինգ Թուլաների վրա ուղեղիկագրկումից առաջ և հետո կատարած փորձերից ստացված արդյունքները Թույլ են տալիս եզրակացնելու հետևյալը.

- 1. Ուղեղիկազրկված շների մոտ զարգացող անեմիան ուղեկցվում է շիճուկային երկաթի, սիդերոցիաների, սիդերոբլաստների, ինչպես նաև միկրոէլեմենտային կազմության ալիքաձև փոփոխություններով.
- ա) ուղեղիկը հեռացնելուց հետո առաջին երկու շաբաթվա ընթացքում շի-Հուկային երկաթի քանակը հուսալի թվերով ավելանում է, որը ուղեկցվում է նաև սիդերոցիտների և մանավանդ սիդերոբլաստների տոկոսի զգալի բարձրացմամբ.
- ր) նշված ժամանակամիջոցում արյան մեջ կորալտի, ցինկի և մանդանի ջանակը, ընդհակառակը; իջնում է, իսկ պղնձի ջանակը բարձրանում.
- գ) 20—25 օր Տետո վերոհիշյալ ցուցանիշները որոշ չափով վերադառնում են իրենց ելման մակարդակին, իսկ 40—48 օր անց նկատվում է նրանց ջանակի նոր փոփոխություն, որը արտահայտվում է դարձյալ շիճուկային երկաթի, սիդերոցիաների, սիդերոգլաստների և պղնձի ջանակի շատացմամբ, իսկ կորալտի, ցինկի և մանգանի ջանակի անկմամբ։
- 2. Ուղեղիկազրկված շների արյան հանքային կազմությունում նկատվող տեղաշարժերը հանդիսանում են նյութափոխանակության պրոցեսների

խանդարումը հաստատող ուղղակի փաստ և, մեր կարծիքով, մի նոր տվյալի հիման վրա ապացուցում ուղնղիկի ադապտացիոն-տրոֆիկ նշանակության մասին Լ. Ա. Օրբելու կոնցեպցիայի ճշմարտացիությունը։

ЛИТЕРАТУРА

1. Андриасян Э. С. Физнологический журнал СССР, 1965, г. 1, 3, стр. 318.

 Андриасян Э. С. Материалы X съезда Всесоюзного общества физиологов им. М. Б. Павлова, т. 2, М., 1964, стр. 48.

3. Атауллиханов И. Л. Вопросы медицинской химии, 1963, т. ІХ, 6, стр. 587.

- 4. Бала Ю. М. и Ливишц В. М. Проблемы гематологии и переливания крови, 1966, т. X, 6, стр. 23.
- 5. Беренштейн Ф. Я. Физиологический журнал СССР, 1950, т. ХХХІІІ, 2, стр. 209.

6. Кассирский И. А. и Алексеев Г. А. Клиническая гематология. М., 1962.

 Идольсон Л. И. и Жуковская Е. Д. Проблемы гематологии и переливания крови, 1965, т. Х, 1, стр. 3.

8. Роскин Г. И. Микроскопическая техника. М., 1951.

- 9. Урисон Ю. П. и Тушинская М. М. Проблемы гематологии и переливания крови, 1961, т. VI, 7, стр. 25.
- 10. Эфендиев Ф. А. и др. Проблемы гематологии и переливания крови, 1961, 2, стр. 24.

11. Шустров В. Я. Микроэлементы в гематологии. М., 1967.

12. Biermer A. Korrpesp. f. schwciz Aerzte, 2, 15, 1872.

13. Ysraclis M. G., Wilkinson J. F. Quart Journ. Med., 5, 69, 1936.