2 И 3 4 И 4 И 6 И И 2 ТР 5 ПР В В ПР Б Б Б Р В И 4 И Р В И Р И АКАДЕМИЯ НАУК АРМЯНСКОЙ ССР

¢քսպեր. և կլինիկ. թժշկ. ճանդես

VII, № 4, 1967

Журн. экспер. и клинич. медицины

Э. С. МАИЛЯН

ИЗМЕНЕНИЯ ДЫХАТЕЛЬНОГО ЦЕНТРА У КРОЛИКОВ С ОСТРОЙ ЛУЧЕВОЙ БОЛЕЗНЬЮ, ОСЛОЖНЕННОЙ КРОВОПОТЕРЕЙ

Описанное в литературе влияние кровопотери на течение лучевой болезни [1, 3, 5, 6] не только представляет интерес для клиники, но также может осветить некоторые вопросы, касающиеся патогенеза самого лучевого заболевания.

Настоящее исследование является продолжением нашей предыдущей работы [2] и посвящено изучению изменений функционального состояния дыхательного центра при комбинированном воздействии лучевой болезни и кровопотери на организм кроликов. В основную серию экспериментов вошли пять животных, которые через 0,5—1 ч. после облучения в дозе 800 р подвергались кровопусканию. Контролем служили пять кроликов, перенесших только кровопускание, и 10—облучение. Облучение животных производилось с помощью рентген-терапевтического аппарата РУМ-11, содержащего одну рентгеновскую трубку, однократно, тотально, при следующих технических условиях: напряжение—185 кв, сила тока—19 мА, фильтр—0,5 мм Сu+1 мм Аl, расстояние—60 см, мощность—18—20 р/м. Во время облучения животные помещались в свинцовую конуру, специально предусмотренную для защитных целей. Поэтому следует учитывать, что они, кроме жестких лучей, получали также и мягжие, возникающие за счет вторичного и третичного излучений.

Кровопускание производилось в объеме 30% общей массы циркулирующей крови в асептических условиях. Функциональное состояние дыхательного центра изучалось путем определения порогов электро- и химических раздражений (углекислота и аммиак). Электрораздражение вызывалось с помощью электростимулятора ИСЭ 01 с тазовой области седалищного нерва. Для раздражения углекислотой животные помещались в специально сконструированную дыхательную камеру, к которой были присоединены установка для графической регистрации дыхания, мешок с углекислотой и газоприемник для периодических взятий проб воздуха камеры. Взятые пробы анализировались на аппарате Холдена. Сопоставление полученных данных о содержании СО2 в воздухе камеры с изменениями пневмограмм давало возможность уловить пороговую концентрацию СО2, т. е. то минимальное содержание углекислоты в воздухе камеры, которое вызывало углубление дыхания. Кроме того, изучались дыхательные реакции на дыхание аммиаком. Для контроля за развитием луче-

вой болезни и определения стадии заболевания производился клинический анализ периферической крови, измерялась температура, вес.

В нашем предыдущем сообщении указывалось, что облучение кроликов в дозе 800 р вызывает изменение функционального состояния дыхательного центра волнообразного характера. При изучении дыхательных реакций на различные концентрации углекислоты во вдыхаемом воздухе оказалось, что у животных с благоприятным течением болезни (выжившие) преобладают периоды повышения возбудимости дыхательного центра, особенно в промежутке между 4- и 21-м днем. У погибших же повышение и понижение чувствительности в части случаев выражены в равной мере, а в большинстве случаев чаще обнаруживается снижение чувствительности.

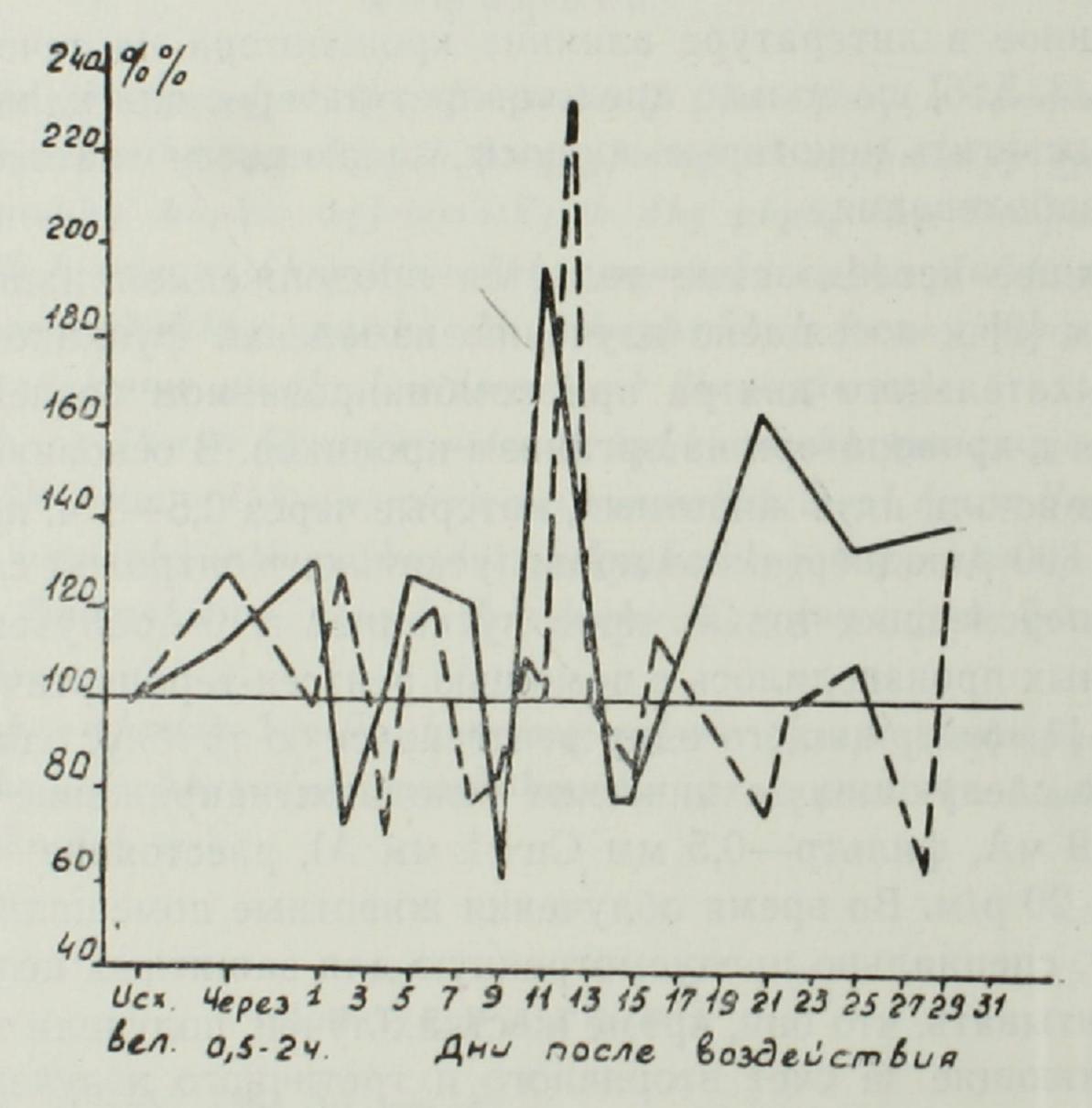


Рис. 1. Изменение пороговых концентраций СО₂ после облучения и комбинированного поражения.

———— Облучение — кровопускание

Сравнение этих данных с комбинированным воздействием (облучение и кровопотеря) показало, что при последнем чувствительность к углекислоте также претерпевает волнообразные изменения (рис. 1). Ход волн в обоих случаях приблизительно одинаков: наблюдаются периоды повышения порога на 1—2-й, 5—6-й, 11—12-й, 21—25-й день и периоды снижения на 2—4-й, 8—9-й, 14—15-й и 28-й день. Среди этих колебаний значительные отклонения наблюдались лишь в разгаре лучевой болезни (через 11—12 дней пороговая концентрация углекислоты доходила до 200—237%).

Для выяснения роли кровопотери в картине комбинированного поражения были проведены контрольные исследования на кроликах, перенесших только кровопускание. Оказалось, что в течение почти всего периода наблюдения (30 дней) изменения возбудимости дыхательного центра у них были сходны с результатами, полученными в серии с осложненной лучевой болезнью. Заметное расхождение возникло лишь через 11—12 дней, когда у кроликов с кровопотерей порог снижался, а у животных с комбинированным поражением повышался. Такое кратковременное повышение чувствительности после кровопотери, очевидно, и было причиной того, что в случаях осложненной лучевой болезни возрастание порога СО2 через 11—12 дней было несколько менее выраженным, чем у кроликов с чистой лучевой патологией.

При сравнении двух основных серий опытов оказалось, что в промежутке между 20 и 30 днями пороговые концентрации СО₂ у облученных кроликов были ниже, чем у животных с комбинированным поражением. Такая разница стала более четкой при сравнении только выживших животных обеих групп. Из рис. 2 видно, что у кроликов с лучевой болезнью, осложненной кробспотерей, почти во все дни исследования (кроме 2-го и 3-го дня) наблюдались более высокие пороги, чем у облученных.

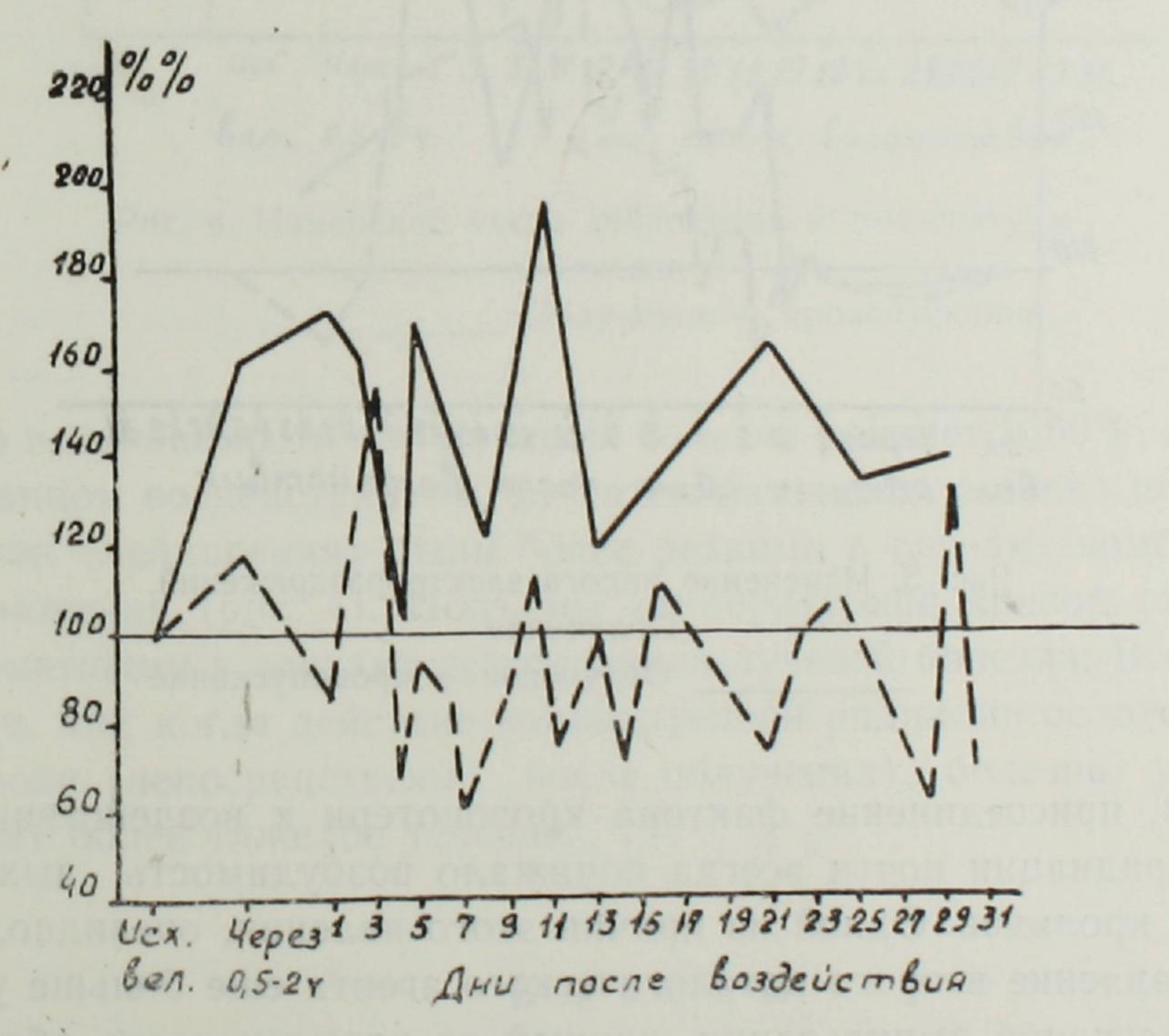


Рис. 2. Изменение пороговых концентраций СО₂ у выживших животных.

———— Облучение

———— Облучение + кровопускание

В приведенных данных пороговой концентрацией углекислоты считалось то минимальное содержание СО₂ во вдыхаемом воздухе, которое вызывало хорошо заметное углубление дыхания. Но в наших опытах очень часто к изменению глубины дыхания присоединялось также из-

менение и частоты. При учете дыхательных реакций по этому признаку во многих случаях нам также удалось установить более низкие пороги у облученных (по сравнению с осложненными случаями).

Указанная закономерность была выявлена также при электростиму ляции дыхательного центра (рис. 3). Острая лучевая болезнь вызывала постепенное нарастание порога (после кратковременного снижения на 4-й день). В течение второй и третьей недели порог был значительно повышен (максимум до 250% через 13 дней), а затем понижался, приближаясь к исходному концу первого месяца. Когда же к действию реакции прибавлялась еще и кровопотеря, чувствительность дыхательного центра становилась еще ниже: пороги с четвертого дня заболевания в преобладающем большинстве случаев были выше, чем после облучения.

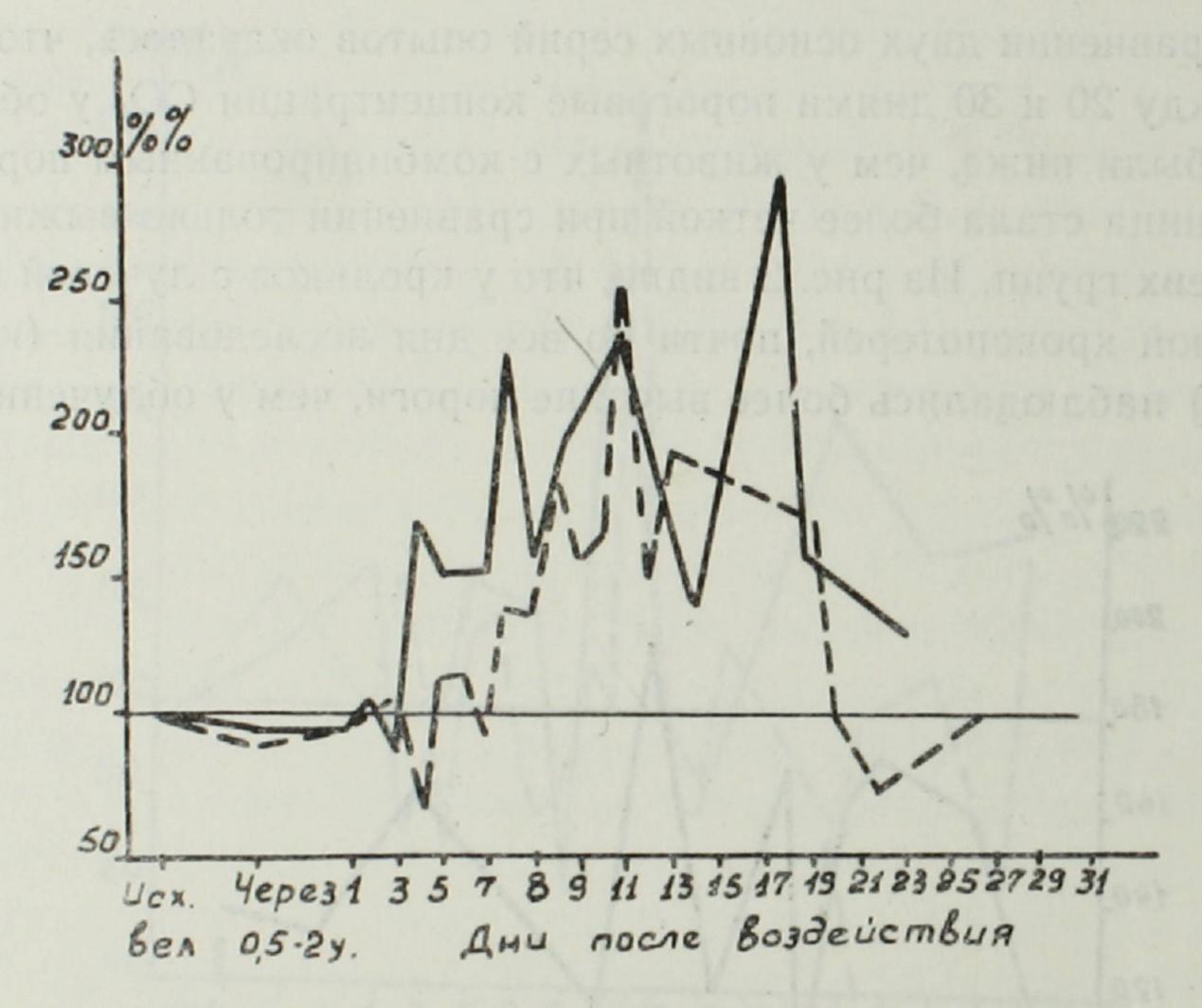


Рис. 3. Изменение порога электрораздражений.
----- Облучение

— Облучение + кровопускание

Итак, присоединение фактора кровопотери к воздействию ионизирующей радиации почти всегда понижало возбудимость дыхательного центра у кроликов. Одной из причин этого явления, очевидно, было то, что прибавление второго патологического агента еще больше усиливало поток массивной импульсации, идущей во время и после облучения от рецепторов к дыхательному центру и приводило его в состояние перераздражения, истощения. О таком изменении функционального состояния можно думать еще и на основании того, что длительность рефлекторного апное, вызываемого вдыханием паров аммиака, в ходе заболевания прогрессивно снижалась. Так, если остановка дыхания у нормальных кроликов исчислялась 8—10 сек., то уже к концу первого месяца заболевания она длилась всего лишь 4—5 сек.

Естественно, что в результате этих нарушений могло наступить сни-

жение сопротивляемости организма и более тяжелое течение заболевания, особенно, если описанное изменение функционального состояния касалось не только дыхательного центра, но и других регулирующих систем. При дальнейшем сравнении обеих опытных групп по другим признакам это наше предположение нашло свое подтверждение. Так, оказа-

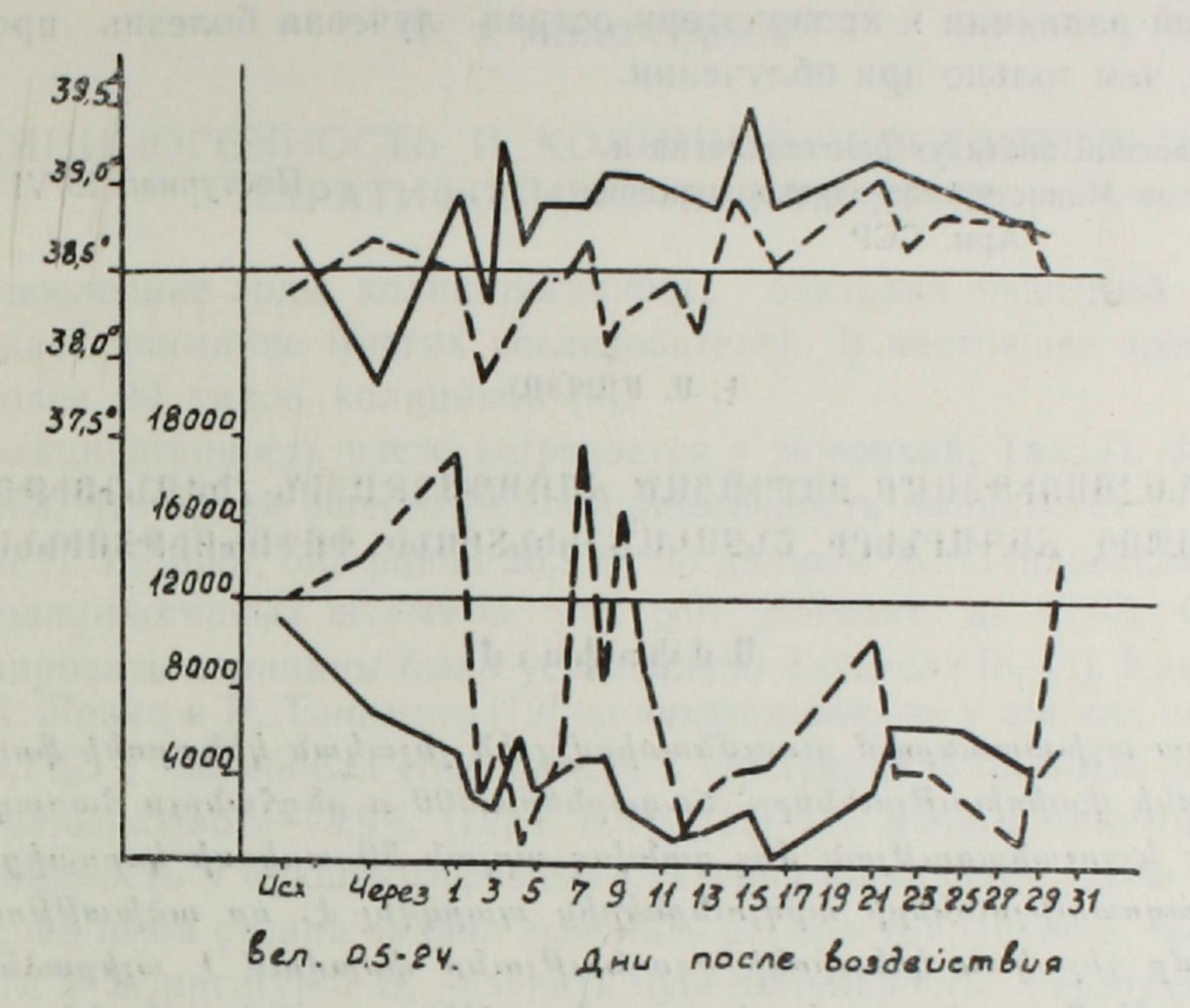


Рис. 4. Изменение числа лейкоцитов и температуры.
------ Облучение

_____ Облучение + кровопускание

in the land of the dependence of the state o

лось, что выживаемость при лучевой болезни равняется 60%, а при комбинированном воздействии—40%. Затем изменения состава периферической крови (лейкопения) были более резкими в случаях комбинированного поражения (рис. 4). Подъемы температурной кривой также были более заметными в случаях осложненной лучевой болезни. Все это говорит о том, что, когда действие ионизирующей радиации осложняется потерей крови (непосредственно после облучения), болезнь у кроликов принимает более тяжелое течение.

Выводы

i. Typen se M. S. Winnen and the senson and the senson sen

1. При острой лучевой болезни (800 р), осложненной непосредственно после облучения кровопотерей, возбудимость дыхательного центра у кроликов изменяется: а) чувствительность к углекислоте претерпевает волнообразные изменения (с наибольшим снижением через 11—12 дней); б) чувствительность к электрораздражению снижается с четвертого дня заболевания и затем повышается, приближаясь к исходной только к концу первого месяца.

- 2. Присоединение фактора кровопотери к воздействию ионизирующей радиации в большинстве случаев понижает возбудимость дыхательного ценгра (пороги раздражения углекислотой и электростимуляцией при комбинированном поражении выше, чем у облученных).
- 3. При комбинированном воздействии на организм животных ионизирующей радиации и кровопотери острая лучевая болезнь протекает тяжелее, чем только при облучении.

Армянский институт рентгенологии и онкологии Министерства здравоохранения Арм. ССР

Поступило 18/VI 1966 г.

է. Ս. ՄԱԻԼՅԱՆ

ԱՐՅՈՒՆԱՀՈՍՈՒԹՅԱՄԲ ԲԱՐԴԱՑԱԾ ՃԱՌԱԳԱՑԹԱՅԻՆ ՀԻՎԱՆԴՈՒԹՅԱՄԲ ՏԱՌԱՊՈՂ ՃԱԳԱՐՆԵՐԻ ՇՆՉԱԿԱՆ ԿԵՆՏՐՈՆԻ ՓՈՓՈԽՈՒԹՅՈՒՆՆԵՐԸ

Ասփոփում

Ներկա աշխատանքում ուսումնասիրվել են շնչական կենտրոնի ֆունկցիոնալ վիճակի փոփոխությունները՝ ճագարների 800 ռ ընդհանուր ճառագայթահարումից և շրջանառության մեջ գտնվող արյան 30 տոկոսի կորստից հետո։

Հետաղոտությունների արդյունքներից պարզվել է, որ ածխաթթու գազի նկատմամբ շնչական կենտրոնի զգայնությունը փոխվում է ալիքաձև՝ մերթ իջնում է, մերթ բարձրանում, ընդ որում, ամենաշատ իջեցումը նկատվում է հիվանդության 11—12-րդ օրերին։ Շնչական կենտրոնի զգայնությունը էլեկտրըական գրգորչի նկատմամբ հիվանդության 4-րդ օրից սկսած իջնում է, այնուհետև բարձրանում է և միայն ամսվա վերջին օրերում նորմալանում։ Եթե կենդանիներին ձառագայթահարում և նրանց մոտ արյունահոսություն է առաջ բերվում միաժամանակ, ապա նկատվող փոփոխությունները ավելի արտահայտված են լինում, քան այդ երկու գործոնների առանձին-առանձին ներգոր-ծության դեպքում։

Դիտումներից պարզվել է, որ արյունահոսությունը ծանրացնում է սուր ճառագայթային հիվանդության ընթացքը։

ЛИТЕРАТУРА

- 1. Гуревич И. Б. Медицинская радиология, 1957, т. 2, 6, стр. 49.
- 2. Маилян Э. С. Вопросы рентгенологии и онкологии, т. 7. Ереван, 1963, стр. 193.
- 3. Мовсесян М. А. Вопросы рентгенологии и онкологии, т. 4-5. Ереван, 1960, стр. 347.
- 4. Провецкий В. Н. Труды Всесоюзной конференции по медицинской радиологии. М., 1957, стр. 101.
- 5. Чайковская М. Я., Сергель О. С., Елпатьевская Г. Н., Петросян С. Л. Труды Всесоюзной конференции по медицинской радиологии. М., 1957, стр. 108.
- 6. Черкасов В. Ф. Автореферат. М., 1958.