

էքսպես. և կլինիկ. թժշկ. ճանդես

VI, № 1, 1966

Журн. экспер. и клинич. медицины

А. А. ГАЛСТЯН

ИЗУЧЕНИЕ СИСТОЛИЧЕСКИХ ЭКВИВАЛЕНТОВ У ДЕТЕЙ

Для изучения сердечного механизма в настоящее время все больше применяется поликардиографический метод, который дает возможность комплексно исследовать как временные соотношения внутрисистолических фаз, так и продолжительность электрической, механической и электромеханической систол. Электрическая систола желудочков на поликардиограмме представляется интервалом Q—Т; ее продолжительность находится в зависимости от ритма сердечных сокращений. Для определения нормальной длительности электрической систолы при различном ритме сердца в педиатрической практике широко применяется видоизмененная формула Базетта [10], электрическая систола = К V С, где К есть константная величина—0,38 независимо от пола ребенка, С—длительность одного сердечного цикла. Таран и Сцилаги [14] предложили определение корректированной электрической систолы: электрическая систола = $\frac{Q-T}{C}$. В наших же исследованиях существенное значение

систола = $\frac{Q-1}{\sqrt{C}}$. В наших же исследованиях существенное значение придавалось определению абсолютной величины электрической систолы.

Механическая систола — это время, в течение которого поддерживается высокое внутрижелудочковое давление. Этот период состоит из продолжительности фаз изометрического и изотонического сокращений миокарда. Различные авторы по разному определяют механическую систолу. Блюмбергер [10], Хегглин [12], А. А. Михайлов [6] считают механическую систолу от зубца Q электрокардиограммы до начала II тона на фонокардиограмме; Уиггерс [9], Н. Н. Савицкий [8] продолжительность механической систолы определяют от начала зубца Q электрокардиограммы до точки d на сфигмограмме; затем Н. Н. Кипшидзе [5] внес поправку в данный метод (вычет из интервала Q—d времени, которое требуется для распространения пульсовой волны от сердца до сонной

артерии—0,015±0,005 сек.). Наиболее распространенным и общепринятым считается измерение продолжительности механической систолы по интервалу I—II тон [3, 7]. Однако в настоящее время более правильным считается определение механической систолы по В. Л. Карпману [4], суммарная длительность фазизометрического и изотонического сокращений миокарда. На продолжительность фазизометрического и изотонического сокращений влияют многочисленные факторы: возраст, пол, частота ритма сердечных сокращений, сократительная способность миокарда, ударный объем, диастолическое давление в левом желудочке и аорте, тонус сосудов, состояние

периферического кровообращения [2, 7, 13]. В течение фазы изометрического сокращения достигается высокое внутрижелудочковое давление, незначительная деформация клапанов, а также изменение формы и положения сердца, которые способствуют дальнейшему быстрому и мощному изгнанию крови из желудочка в аорту — фаза изотонического сокращения, что заканчивается захлопыванием аортальных клапанов. Для определения продолжительности фазы изотонического сокращения желудочка в зависимости от частоты ритма и длительности сердечного цикла предложены разные формулы.

Ренати и Симеони (по Кайту [15]) в 1943 г. предложили формулу, отражающую взаимоотношение частоты ритма сердечных сокращений и длительности изотонического сокращения: Е (изотоническое сокращение) = 0,378-0,00122×P, где Р есть частота ритма, числа 0,378 и 0,00122-константные величины. Кайт [15], сопоставляя установленным методом поликардиографии истинные величины продолжительности фазы изотонического сокращения с определенными по формуле, видоизме-

нил ее и представил в следующем виде: E = 0,388-0,00136 × P.

В Советском Союзе математическое взаимоотношение длительности сердечного цикла и фазы изотонического сокращения впервые изучено В. Л. Карпманом [4], который в результате своих наблюдений предложил следующее уравнение: E=0,109×C+0,159, где С есть продолжительность сердечного цикла в диапазоне от 0,65 до 1,1 сек.; допустимое уклонение от истинных величин ± 0,035 сек. Е. Б. Бабский и В. Л. Карпман [1], определяя длительность механической систолы по интервалу В-Е динамокардиограммы, предложили формулу, отражавшую зависимость механической систолы от продолжительности сердечного цикла: Sm (механическая систола) = 0,324 V C, где 0,324 есть константа, С—длительность сердечного цикла. В дальнейшем В. Л. Карпман [4], используя метод синтетической электрокардиологии при анализе взаимоотношений сердечного цикла и длительности механической систолы, предложил более точную формулу: $Sm = 0,114 \times C + 0,185$.

Электромеханическая систола—это период, в течение которого возбуждение охватывает весь миокард, повышается внутрижелудочковое давление до аортального и в дальнейшем следует выброс крови из желудочка в аорту. Таким образом, при анализе внутрисистолических временных соотношений по Голлдаку и Вольфу [14] этот период включает в себя фазу напряжения и изотонического сокращения миокарда. Общепринятым считается также измерение электромеханической систолы на поликардиограмме интервалом Q—II тон. В. Л. Карпманом впервые разработана и представлена линейная связь между продолжительностью сердечного цикла и электромеханической систолы: S (электромеханическая систола) = $0.120 \times C + 0.235$. Используя метод поликардиографии, В. Л. Карпман [4] и З. Л. Долабчян [3] предложили ряд новых и ценных показателей для оценки функционального состояния миокарда, диагностики характера поражения клапанов и нарушения внутрисердечной гемодинамики: 1. Внутрисистолический показатель (ВСП) по Карпману

или корректированный показатель фазы изгнания систолы желудочка (КПИ) по З. Л. Долабчяну: КПИ = $\frac{E}{Sm}$ 100%, являющийся отношени-

ем фазы изотонического сокращения ко всей механической систоле. Этот показатель отражает время, которое затрачивает сердечная мышца на выброс крови из желудочка в аорту, т. е. интервал времени фазы изотонического сокращения в течение всего периода повышенного внутрижелудочкового давления. 2. Внутренний коэффициент систолы желудочка (ВКС) по З. Л. Долабчяну—это отношение фазы напряжения к фазе

изотонического сокращения: $BKC = \frac{\phi_{a3a} + \alpha_{n} p_{n} p_{n}}{\phi_{a3a}} = \frac{\phi_{a3a} + \alpha_{n} p_{n} p_{n}}{\phi_{a3a}}$

=T/E. Он четко изменяется как при понижении сократительной способности миокарда, так и при формировании различных клапанных пороков на фоне текущего ревматического процесса. 3. Корректированный показатель фазы напряжения систолы желудочка (КПН)—этс отношение фазы напряжения ко всей электромеханической систоле, выраженное в

фазы напряжения ко всей электромеханической систоле, выраженное в $^{0}/_{0}$: КПН = $\frac{T}{S}$ $100^{0}/_{0}$. КПН имеет тенденцию к повышению при

недостаточности миокарда, стенозировании левого венозного отверстия. 4. Механический показатель систолы желудочка (МЭП)—это отношение механической систолы к электрической, выраженное в процентах:

 $M \ni \Pi = \frac{S}{Q-T} 100\%$. При патологических состояниях, особенно при

формировании митрального порока, этот показатель подвергается значительным изменениям, ввиду отклонений в фазовой структуре механической систолы (изометрическое и изотоническое сокращение).

В настоящей работе нами приводятся данные исследований 115 здоровых детей в возрасте от 7 до 15 лет, у которых в анамнезе отрицались хронический тонзиллит, ревматизм и инфекционные заболевания. При исследовании детей особое внимание обращалось на функциональное состояние органов дыхания и кровообращения. Синхронная запись электрокардиограммы (I и II стандартные отведения), фонокардиограммы четырех точек сердца и сфигмограммы сонной артерии велась с помощью шестиканального электрокардиографа типа Кардиовар-6 со скоростью движения ленты 50 мм/сек. Запись велась после 20-минутного отдыха ребенка в горизонтальном положении. При анализе поликардиограммы нами определялись: длительность сердечного цикла, отсюда и ритм сердечных сокращений, продолжительность электрической (Q-T), механической (суммарная величина фаз изометрического и изотонического сокращения и интервала І—ІІ тон), электромеханической (суммарная величина фаз напряжения и изотонического сокращения по Голлдаку и интервал Q-11 тон) систол, а также отношение длительности электромеханической систолы к электрической, электромеханической и электрической систол к механической и разность между различными систолическими эквивалентами. Нами изучены также новые гемодинамические показатели: ВКС, КПИ, МЭП и КПН.

Обследуемые нами дети были подразделены на четыре группы. В І группу вошли 11 детей с ритмом сердечных сокращений 60—70 в минугу, во II—35 детей с ритмом 71—80, в III—41 ребенок с ритмом 81—90, в IV—28 детей с ритмом 91—100.

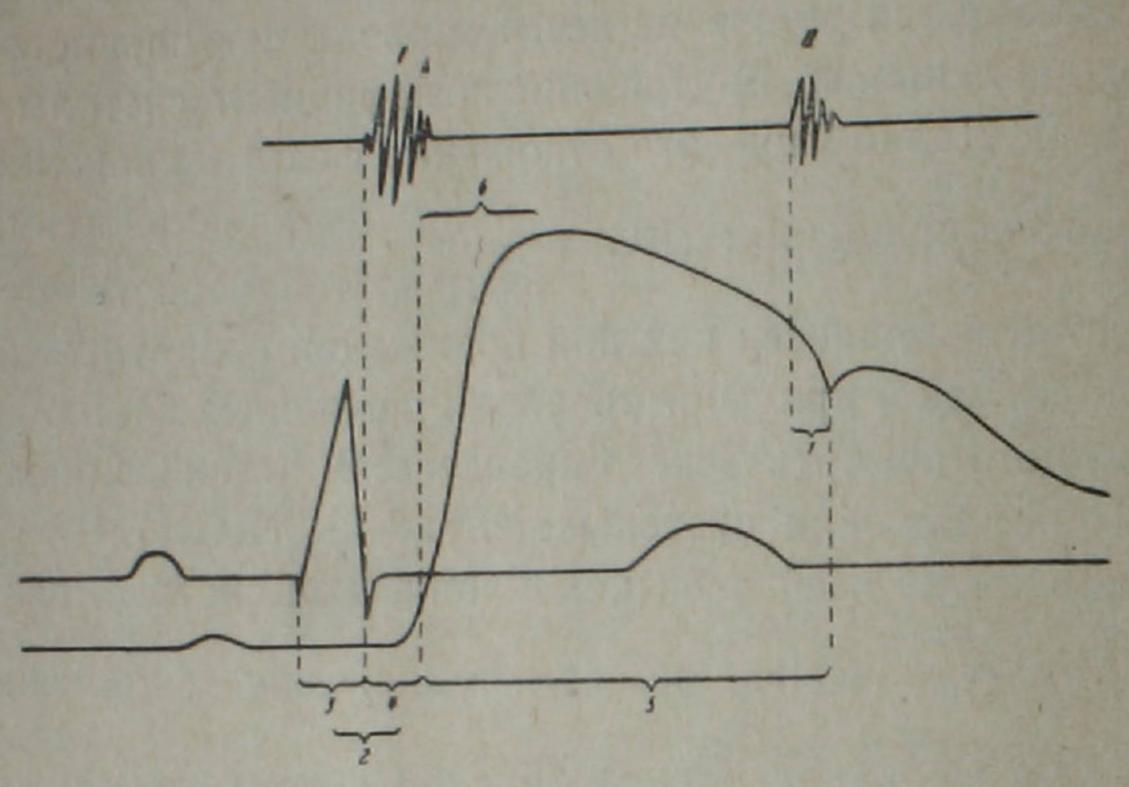


Рис. 1. Синхронная запись электрокардиограммы, фонокардиограммы и сфигмограммы с сонной артерии по Голлдаку. Отрезок 2 минус отрезок 1 — фаза напряжения. Отрезок 3 — фаза асинхронного сокращения миокарда. Отрезок 2 минус отрезок 1 плюс отрезок 3 — фаза изометрического сокращения миокарда. Отрезок 5 — фаза изотонического сокращения миокарда. Отрезок 6 — фаза быстрого изгнания крови. Отрезок 5 минус отрезок 6 — фаза замедленного изгнания крови. Отрезок 5 минус отрезок 6 — фаза замедленного изгнания крови. Отрезок 1 — время запаздывания пульсовой волны.

В табл. 1 приводятся данные о продолжительности систолических эквивалентов у здоровых детей в зависимости от длительности цикла и частоты ритма сердечных сокращений. Как видно из таблицы, при колебании ритма сердечных сокращений от 60 до 100 в минуту (C=1,01-0,60) электрическая систола соответственно колеблется в пределах от 0,364 ± $\pm 0,027$ сек. до $0,302\pm 0,019$ сек. При сопоставлении длительности электрической и механической систол полное совпадение наблюдали у 3 детей (3%), у остальных 112 (97%) электрическая систола была продолжительнее механической на 0,01-0,06 сек. При сравнении электрической и электромеханической систол полное совпадение отмечено у 6% детей, у 91% электромеханическая систола была продолжительнее электрической, а у 3%-короче. Колебание между величинами электрической и электромеханической систол составляло от 0,01 до 0,05 сек. Механическая систола устанавливалась как по интервалу I—II тон, так и путем определения суммарной величины фаз изометрического и изотонического сокращений. Как видно из таблицы, абсолютные величины механической систолы, определяемые вышеуказанными методами, мало отличались. Полное совпадение отмечено у 47 (40%) детей, колебание с разницей 0,01 сек.—у 42 (37%), колебание от 0,02 до 0,04 сек.—у 26 (23%).

Длительность механической систолы по интервалу I—II тон при ритме сердечных сокращений от 60 до 100 в минуту колебалась от 0.312 ± 0.012 сек. до 0.267 ± 0.017 сек., а по методу В. Л. Карпмана—от 0.324 ± 0.014 сек. до 0.276 ± 0.012 сек. (табл. 1). Фаза изотонического сокращения миокарда при этом колебалась от 0.304 ± 0.022 сек. до 0.251 ± 0.015 сек. Сопоставления истинных величин продолжительности фазы изото

Продолжительность систолических эквивалентов у здоровых детей в зависимости от длительности цикла и частоты ритма сердечных сокращений

			A COUNTY OF THE PARTY OF THE PA		ша серде	mor corp	ащении		
Длитель- ность сердеч- ного цикла в сек.	Частота сердечных сокращений с мин.	Электри- ческая систола	Механическая систола		Электромеханическая систола				
		интервал	фаза изометриче- ского сокращения ского сокращения	интервал 1 тон-	фаза напряжения	фаза изотониче-	по Голлдаку фаза напряжения+фа- за изотонического сокращения	интервал О—П тон	
1,01-0,85	6070	M = 0.364 s = 0.027 m = 0.008	s = 0,014	s = 0,012	s = 0,001	s = 0,022	s = 0,018	s = 0,018	
0,84-0,75	71—80	M = 0,342 s = 0,025 m = 0,004	s = 0,015	s = 0,015	s = 0,011	s = 0.011	s = 0,017	s = 0,018	
0,74-0,67		M = 0,325 s = 0,017 m = 0,002	s = 0.014	s = 0,016	s = 0,011	s = 0,012	s = 0,022	s = 0,016	
0,66-0,60	91 - 100	M = 0,302 s = 0,019 m = 0,003	s = 0.012	s = 0.017	s = 0,011	s = 0,015	s = 0.017	s = 0,022	

М-средняя величина определения по способу моментов,

s ± -- среднеквадратическое отклонение,

m ± - средняя ошибка средней арифметической.

нического сокращения с определенными по формулам Ренати, Кайта и В. Л. Карпмана приведены в табл. 2. Как видно из таблицы, для определения длительности фазы изотонического сокращения с успехом можно применять формулы Ренати и Кайта, при использовании же формулы В. Л. Карпмана были получены несколько заниженные величины. Исходя из анализа этих данных, для определения продолжительности фазы изотонического сокращения у детей мы предлагаем применять видоизмененную формулу В. Л. Карпмана: $E=0,109\times C+0,189$ ($\pm0,02$ сек.). Изучение продолжительности всей механической систолы, определяемой суммарной величиной фаз изометрического и изотонического сокращений и сопоставление ее истинной величины с данными формулы

В. Л. Карпмана показало, что у детей эта формула представлена в несколько видоизмененном виде: $Sm=0.114\times C+0.205$ (± 0.02 сек.). Электромеханическая систола нами исчислялась суммарной величиной длительности фаз напряжения и изотонического сокращения, а также по интервалу О—II тон. При ритме сердца от 60 до 100 в минуту продолжительность электромеханической систолы определялась по первому методу от 0.385 ± 0.018 сек. до 0.332+0.017 сек. и по интервалу Q—II тон от 0.380 ± 0.018 сек. до 0.335 ± 0.022 сек. (табл. 1). В наших исследованиях

Таблица 2 Длительность фазы изотонического сокращения по данным поликардиографии и определенная по формулам

	tapa. I							
Ритм сердечных сокращений	Длительность фазы изотонического сокращения в сек.							
	наши дан-	по формуле Ренати $E = 0,378 - 0,001 \times P$ по формуле Кайта $E = 0,388 - 0,001 \times P$ по формуле Кайта $E = 0,109 \times 0.00136 \times P$ $E = 0,109 \times 0.00136 \times P$						
60-70	s = 0,022	0,305-0,293 0,306-0,293 0,268-0,252						
71-80	m = 0,006 $M = 0,280$ $s = 0,011$	0,292-0,280 0,292-0,279 0,251-0,240						
81-90	m = 0,002 $M = 0,266$ $s = 0,012$ $m = 0,002$	0,279-0,268 0,278-0,266 0,2390,232						
91-100	M = 0,002 M = 0,002 S = 0,015 M = 0,003	0,267-0,256 0,264-0,252 0,230-0,224						

Некоторые показатели гемодинамики у здоровых детей от 7 до 15 лет

Ритм сердеч-		0—2т	O-T	ВКС	В процентах		
щений в мин.	O-T	Sm	Sm	DIC	КПИ	кпн	МЭП
60 - 70 71 - 80 81 - 90 90 - 100	1,04 1,07 1,08 1,1	1,1 1,2 1,2 1,2	1,1 1,1 1,1 1,1	0,30 0,30 0,31 0,32	93 91 91 90	24 23 23 23	89 89 90 91

предпочтение отдаем методу определения продолжительности электромеханической систолы с использованием фазового анализа, ибо этот метод у больных в динамике заболевания четко отражает не только абсолютную величину электромеханической систолы, но и в противовес интервалу Q—II тон динамику внутрисистолических фаз — асинхронного, изометрического и изотонического сокращений.

Фаза напряжения (суммарная величина асинхронного и изометрического сокращений), по нашим данным, зависит от частоты сердечных сокращений и при ритме 60—100 в минуту определяется в пределах от 0,091 ± 0,010 сек. до 0,080 ± 0,011 сек. (табл. 1). Сопоставление истинных величин электромеханической систолы с определяемыми по формуле В. Л. Карпмана показало их полное совпадение с колебаниями ±0,02 сек. В процессе изучения систолических эквивалентов нами были получены и апробированы новые показатели динамики сердечного сокращения, которые приведены в табл. 3. Особенностью этих показателей у здоровых детей от 7 до 15 лет является их незначительное колебание в зависимости от ритма сердечных сокращений. Отношение длительности электромеханической систолы к длительности электрической систолы в абсолютных величинах колеблется от 1,04 до 1,1, а к длительности механической систолы—от 1,1 до 1,2. Взаимоотношение же длительности электрической и механической състол при ритме сердца от 60 до 100 остается постоянным—1,1. Внутренний коэффициент систолы желудочка (ВКС) с учащением ритма сердца увеличивается от 0,30 до 0,32 (табл. 3).

Исследование корректированного показателя фазы изотонического сокращения желудочка (КПИ) показало, что продолжительность изотонического сокращения составляет от 93 до 90% длительности всей механической систолы. Длительность же фазы напряжения у детей составляла 24—23% всей электромеханической систолы (КПН).

Сопоставление длительности электрической и механической систол в процентах (МЭП) показало, что их взаимоотношение у здоровых детей остается почти постоянным и продолжительность механической систолы составляет 89—91% электрической.

Таким образом, поликардиография дает возможность детально изучить как фазовую структуру динамики сердца, так и длительность систолических эквивалентов, их взаимоотношения и новые показатели функционального состояния сердечно-сосудистой системы, отражающие одновременно и внутрисердечную гемодинамику.

Кафедра педиатрии Ереванского медицинского института и Центрального института усовершенствования врачей

Поступило 10/Х 1964 г.

Ա. Ա. ԳԱԼՍՏՅԱՆ

ՍԻՍՏՈԼԱՅԻ ԷԿՎԻՎԱԼԵՆՏՆԵՐԻ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆԸ ԵՐԵԽԱՆԵՐԻ ՄՈՏ

Ulupnyni

Ուսումնասիրվել է սին թետիկ էլեկտրոկարդիոգրաֆիայի մեթոդով սիստոլայի տարբեր էկվիվալենտների տևողությունը, միջսիստոլային փուլերի հարաբերությունները առողջ երեխաների մոտ։ Հայտնաբերվել է այդ ցուցանիշների կախումը սրտի աշխատանքի տարբեր ռիթմից։ Ստացվել են սրտի աշխատանքը արտացոլող մի շարք ցուցանիշներ, որոնք բնորոշ են առողջ երեխաների համար։

ЛИТЕРАТУРА

1. Бабский Е. Б., Карпман В. Л. Доклады АН СССР, 1956, 109, 2, стр. 407.

2. Галстян А. А. Педиатрия, 1962, 7, стр. 49.

- 3. Долабчян З. Л. Синтетическая электрокардиология, Ереван, 1963.
- 4. Карпман В. Л. Физиология и патология сердца. М., 1963, стр. 240.
- 5. Кипшидзе Н. Н., Чумбуридзе И. Т., Твилдиани Д. Д., Думбадзе З. Г. Кардиология. 1963, 3, стр. 27.
- 6. Михайлов А. А., Моисеев В. С. Кардиология, 1964, І, стр. 61.
- 7. Осколкова М. К. Педиатрия, 1964, 6, стр. 45.
- 8. Савицкий Н. Н. Некоторые методы исследования и функциональной оценки системы кровообращения. Л., 1956.
- 9. Унггерс К. Динамика кровообращения. М., 1957.
- 10. Bazett H. Heart 7, 353, 1918-1920.
- 11. Blumberger K. Klinik der Gogenward, 6, 1, 1958.
- 12. Hegglin R. S. Karger, Basel New York 1947.
- 13. Hockerts Th. Z. Kinderheilk. 71, 3, 216, 1952.
- 14. Holldack K., Wolf D. Einfürung in die mechanocardiographie. Stuttgard, 1962.
- 15. Keuth U. Z. Kinderheilk. 8, 295, 1957.
- 16. Taran M., Szilagy N. Brit. Heart J. 13, 10, 1951.