АСТРОФИЗИКА

TOM 47

ФЕВРАЛЬ, 2004

ВЫПУСК 1

УДК: 524.333

АБСОЛЮТНАЯ КАЛИБРОВКА PL-СООТНОШЕНИЙ КЛАССИЧЕСКИХ ЦЕФЕИД НА ОСНОВЕ ПАРАЛЛАКСОВ HIPPARCOS И РАССТОЯНИЯ МАГЕЛЛАНОВЫХ ОБЛАКОВ

Г.В.АБРАМЯН Поступила 21 мая 2003 Принята к печати 12 ноября 2003

На основе HIPPARCOS параллаксов классических цефеид произведена калибровка нульпунктов соотношений период-светимость для этих звезд. С помощью полученных калибровок определены модулк расстояний БМО и ММО - $DM_{LMC} = 18^{\circ}.569 \pm 0^{\circ}.117$ и $DM_{SMC} = 19^{\circ}.070 \pm 0^{\circ}.119$, соответственно. Выявлено, что калибровки PL-соотношений, выполненные на основе расстояний 25 FU КЦ Галактики Джерена и др., приводят к шкале расстояний короче примерно на 0°.20 по сравнению с калибровками, полученными на основе НIPPARCOS параллаксов.

1. Введение. Калибровка соотношений период-светимость (PL) на основе результатов измерений тригонометрических параллаксов классических цефеид (КЦ) эксперимента HIPPARCOS [1] интересна тем, что данный эксперимент является единственным, с помощью которого расстояния довольно большого количества КЦ измерены геометрическим способом. Но из-за сравнительно больших расстояний КЦ эти параллаксы измерены с большими ошибками. По этой причине, почти половина полученных параллаксов имеют отрицательные значения. Для получения надежных результатов придется применить специальную, так называемую, методику "релуцированных параллаксов", предложенную Тароном и Крези [2]. Эта методика позволяет свести к минимуму влияние смещения Луца и Келькера [3] на окончательные результаты. Данную методику для КЦ эксперимента HIPPARCOS впервые успешно применили Фист и Катчпол [4]. В дальнейшем ряд авторов [5-10] также исследовали вопрос калибровки расстояний КЦ с применением HIPPARCOS параллаксов, результаты которых показывают определенный разброс, хотя и были получены на основе одних и тех же наблюдательных данных. Последняя детальная работа в этом направлении выполнена Гроневегеном и Оудмежером [11]. Предложенная ими формула расчетов весов положена в основу наших лальнейших анализов нуль-пунктов PL-соотношений.

В работе [12] нами получен ряд новых результатов, относящихся к межзвездному поглощению света КЦ. Кроме того, основываясь на этих результатах, в работе [13] нами были получены PL-соотношения для наиболее популярных в настоящее время выборок КЦ. Используя основные результаты этих двух работ, и принимая в основу формулу расчетов весов Гроневегена и Оудмежера [11], в данной работе производится калибровка PL-соотношений для пульсирующих в фундаментальной моде (FU) КЦ и на основе этих калибровок определены модули расстояний БМО и MMO - 18^m.569 ± 0^m.117 и 19^m.070 ± 0^m.119, соответственно.

2. Методика калибровки PL-соотношений. Как известно, соотношение PL выражается формулой $M_{\lambda} = \alpha_{\lambda} + \delta_{\lambda} \log P$, где M_{λ} абсолютная звездная величина КЦ для полосы λ , а P - фундаментальный период пульсаций КЦ в днях. Тогда, согласно [4], связь параллаксов с фундаментальными периодами пульсаций КЦ можно выразить с помощью следующего соотношения:

$$10^{0.2a_{\lambda}} = 0.1\pi 10^{0.2((m_{\lambda}) - R_{\lambda} \mathcal{E}((m_{\lambda_{1}}) - (m_{\lambda})) - \delta_{\lambda} \log P)}$$
(1)

где π - измеренный HIPPARCOS-ом параллакс в миллисекундах дуги, $\langle m_{\lambda} \rangle$ - средная по интенсивности видимая звездная величина в полосе λ , R_{λ} - отношение общего поглощения к селективному, а $E(\langle m_{\lambda_1} \rangle - \langle m_{\lambda} \rangle)$ - избыток цвета. Даннная формула позволяет свободное использование отрицательных параллаксов. Окончательный результат в этом случае получается весовым усреднением полученных значений левой части формулы (1). При этом, следуя авторам работы [11], принимаем, что вес величин $10^{0.2n_1}$ определяется как $1/\sigma^2$, где σ - ошибка значения правой части формулы (2) и выглядит следующим образом:

$$\sigma^2 = (\sigma_{\pi} K)^2 + (0.2 \ln(10) \pi \sigma_M K)^2, \qquad (2)$$

где $K = 0.1 \cdot 10^{0.2((m_{\lambda}) - R_{\lambda}E((m_{\lambda_{1}}) - (m_{\lambda})) - \delta_{\lambda}\log P)}$. В формуле (2) σ_{\star} - среднеквадратичная ошибка измерения параллакса КЦ в эксперименте HIPPARCOS в миллисекундах дуги, а σ_{M} - среднеквадратичная дисперсия соответствующего PL-соотношения в звездных величинах. Согласно [13], в дальнейшем для соотношений M_{ν} - log P принимается $\sigma_{M} = 0.1$. В [11] авторы для зависимостей M_{I} - log P принимали $\sigma_{M} = 0.15$, что нам кажется необоснованным, так как обычно дисперсия PL-соотношений для полосы I значительно ниже, чем для V. Исходя из сказанного и согласно [13], далее для полосы I также будем принимать $\sigma_{M} = 0.1$.

В случае применения *W*-функций выражение (1) принимает следующий вид:

$$0^{-0.2A_{m_{\lambda}}} = 0.1\pi 10^{0.2((m_{\lambda}) + (R_{\lambda_{1}}/(R_{\lambda_{1}} - R_{\lambda_{1}}))((m_{\lambda_{1}}) - (m_{\lambda})) + B_{m_{\lambda}} \log P)}$$
(3)

В этом случае в (2) $K = 0.1 \cdot 10^{0.2 ((m_{\lambda}) + R_{\lambda} ((m_{\lambda_{1}}) - (m_{\lambda})) + B_{m_{\lambda}} \log P)}$, где $R_{\lambda} = (R_{\lambda_{1}} / (R_{\lambda_{1}} - R_{\lambda}))$ и для данной полосы λ вычисляется с помощью

C Marriel I

АБСОЛЮТНАЯ КАЛИБРОВКА PL-COOTHOШЕНИЙ

27

полученного нами в [12] закона межзвездного поглощения для КЦ:

 $R_{B}: R_{V}: R_{I}: R_{I}: R_{H}: R_{K} = 4.190(\pm 0.054): 3.190(\pm 0.054):$ $1.884(\pm 0.055): 0.851(\pm 0.078) + 0.501(\pm 0.084): 0.303(\pm 0.087).$ (4)

Вкратце остановимся на процедуре оценки ошибок полученных нульпунктов соотношений PL на примере случая применения формулы (1). Как уже было отмечено выше, с помощью формулы (1) для каждой КЦ получается величина $10^{0.2\alpha_1}$. После весового усреднения этих величин, для данной выборки КЦ, с применением того же веса, вычисляется среднеквадратичная ошибка этого среднего. Затем определяется среднеквадратичная ошибка нуль-пункта α_{λ} как функционально зависящая величина от среднего $10^{0.2\alpha_1}$. Данный метод расчета ошибок справедлив и в случае применения формулы (3).

3. Результаты калибровок PL-соотношений. В [12] нами была составлена выборка КЦ Галактики, состоящая из 422 наиболее исследованных объектов. Для определения нуль-пунктов соотношений РL. из числа КЦ этой выборки, нами составлена подвыборка 260 КЦ (для краткости назовем ее HIP260), члены которой имеют измеренные с помощью HIPPARCOS параллаксы. HIP260 перекрывается с ранее составленными аналогичными выборками, а именно: с выборкой 220 КШ Фиста и Катчпола [4] (общих объектов с НІР260-214), с выборкой 238 КЦ Ланоикса и др. [9] (о.о.-236) и с выборкой 236 КЦ Гроневегена и Оудмежера [11] (о.о.-236). Составляя свою выборку, последние авторы особое внимание уделяли отбору объектов, тщательно отсекая объекты с точки зрения их пекулярности по тем или иным параметрам, и оставляя в ней всего 236 КЦ из первоначально отобранных 280 объектов. Учитывая данное обстоятельство, при составлении HIP260 мы полностью включили в нее выборку 236 КЦ Гроневегена и Оудмежера [11], добавляя к ней еще 24 КЦ с уверенно установленными типами DCEP или DCEPS, согласно [14].

Основные характеристики HIP260 следующие: 260 КЦ имеют усредненные по интенсивности величины в полосах *B* и *V*, 231 - в *I*, 102 - в *J*, 97 - в *H*, 100 - в *K*. Фотометрические данные для всех полос *BVIJHK* одновременно имеют только 94 КЦ, а VI фотометрию - 231 КЦ.

В работе [13] для четырех выборок FU KЦ Галактики и обеих MO нами были получены в общей сложности 36 решений обычных PLсоотношений и 12 решений для PL-соотношений с применением Wфункций. Из них окончательными принимались 25 решений, для которых и были рассчитаны нуль-пункты с использованием соответствующего соотношения (1) или (3). В основе всех этих расчетов лежит полученный нами в [12], и выражающийся формулой (4) закон межзвездного поглощения. В расчетах с помощью формулы (1) в качестве E(B - V)принимались: a) E(B - V) из работы Ферни и др. [13], b) E(B - V),

Г.В.АБРАМЯН

согласно полученной нами в [12] формулы: $E(\langle B \rangle - \langle V \rangle) = -0.382(\pm 0.020) - 0.168(\pm 0.017)\log P + 0.766(\langle V \rangle - \langle I \rangle),$ (5)

Таблица 1

НУЛЬ-ПУНКТЫ PL-СООТНОШЕНИЙ M_λ=α_λ+δ_λlog P ДЛЯ FU KЦ ГАЛАКТИКИ, БМО И ММО

Ne	M	α,	δ _λ [13]	α, сл. а)	N	α _λ сл. b)	N	α _λ сл. с)	N	а, по схеме	N	
ния		[1.5]	[10]	HIP260		HIP260	-	HIP260			1000	
1	2	3	4	5	6	7	8	9	10	11	12	
FU КЦ Галактики												
1.1	B	-0.590	-2.703	-0.979	247	-0.825	234	-0.916	26	-0.857	236	
		0.096	0.081	0.113	11	0.115	1	0.113	0	0.110	226	
1.2	V	-1.003	-2.996	-1.358	247	-1.224	234	-1.306	26	-1.26/	230	
		0.108	0.092	0.114		0.115		0.113	0	0.110	100	
1.3	I	-1.502	-3.216	-1.788	229	-1.724	234	-1.753	23	-1./08	100	
		0.117	0.099	0.115		0.115		0.115	4	0.121	100	
1.4	J	-1.799	-3.405	-2.018	100	-2.007	102	-2.013	10	-	1007	
		0.119	0.101	0.181		0.180		0.179	2			
1.5	H	-2.062	-3.516	-2.281	95	-2.268	97.	-2.208	07	-	1.00	
1	17:5	0.124	0.106	0.191		0.191	100	0.190	3/	2 427	62	
1.6	K	-2.100	-3.555	-2.224	98	-2.334	100	-2.32/	10	0 228	02	
510	127	0.126	0.107	0.180		0.189	10	0.180	0	0.220		
i i in	8.0	lo a	10-11	FU I	КЦ М	имо	100	are since	1 m V	000	100	
2.4	B	17.892	-2.410	-1.194	247	-1.052	234	-1.153	26	-1.088	236	
A. 10-10-10	01.07	0.024	0.031	0.119		0.121	101-12	0.120	0	0.123	1000	
2.5	V	17.626	-2.731	-1.536	247	-1.437	234	-1.518	26	-1.475	236	
110.00		0.019	0.025	0.119		0.121		0.120	0	0.123		
2.6	I	17.137	-2.947	-1.995	229	-1.936	234	-1.968	23	-1.979	188	
1100		0.019	0.025	0.121	-	0.121		0.121	4	0.121	100	
in a		1-5-	- 2003	FU	КЦ І	5MO				2.2		
3.4	B	17.441	-2.384	-1.217	247	-1.073	234	-1.172	26	-1.109	236	
	100	0.022	0.032	0.119		0.121		0.120	0	0.123	276	
3.5	V	17.133	-2.754	-1.523	247	-1.416	234	-1.501	26	-1.458	236	
	30.	0.010	0.015	0.119		0.121	1.0	0.119	0	0.123		
3.6	Ι	16.645	-2.971	-1.973	229	-1.915	234	-1.947	23	-1.957	188	
		0.010	0.015	0.122		0.121	100X	0.121	4	0.121	17.0	
4.4	J	16.352	-3.161	-2.217	102	-2.205	100	-2.217	10	The pro-	-	
-		0.053	0.041	0.179	. 3	0.180	Cath	0.179	2	a and	1. 10	
4.5	H	16.086	-3.270	-2.497	97	-2.471	95	-2.479	. 700	- under	-	
		0.051	0.040	0.188		0.190		0.188	97	1		
4.6	K	16.032	-3.282	-2.536	100	-2.544	98	-2.544	10	-2.636	62	
100		0.050	0.039	0.186		0.188		0.187	0	0.228	110	

АБСОЛЮТНАЯ КАЛИБРОВКА PL-СООТНОШЕНИЙ

и с) E(B-V), вычисленных на основе полученной нами в [12] следующей формулы:

$$((B) - (V))_0 = 0.365(\pm 0.011) + 0.328(\pm 0.012)\log P$$
. (6)

Результаты расчетов, полученные с применением формул (1) и (3), приведены в табл.1 и 2, соответственно. Так как *JHK* величины известны примерно для 100 КЦ из числа членов выборки HIP260, то не исключено возникновение смещения полученных нуль-пунктов PL-соотношений для этих полос. Изучение этого вопроса с помощью данных для V полосы показало, что на самом деле полученные нуль-пункты обычных *JHK* PLсоотношений смещены на 0^m.10, а нуль-пункты соответствующих W PLсоотношений - на 0^m.12. Указанные коррекции нами были учтены в конечных значениях нуль-пунктов PL-соотношений для *JHK* полос.

С целью контроля точности наших расчетов, а также для сравнения с полученными результатами, нами были повторены расчеты Гроневегена и Оудмежера [11] для наших PL-решений, при этом строго придерживаясь принятой ими схемы расчетов и ограничиваясь только КЦ - членами их выборки. Результаты этих расчетов также приведены в табл.1 и 2. 1-й столбец табл.1 - номер решения в [13]; 2 - полоса, для которой получено данное решение; 3 - полученные нами в [13] нуль-пункты; 4 - наклон PLсоотношений соответствующего решения; 5, 7, 9 - полученные в данной работе на основе выборки HIP260 для вышеупомянутых трех случаев (а, b. c) нуль-пункты вместе с их среднеквадратичными ошибками; 11 полученные по схеме расчетов из [11] нуль-пункты вместе с среднеквадратичными ошибками; 6, 8, 10, 12 - количество КЦ в каждой группе. В табл.2 приведены: 1 - номер решения в [13]; 2 - комбинации полос. для которых получены PL-соотношения: 3, 4 - нуль-пункт и наклон из [13]; 5 - полученные нами на основе параллаксов HIPPARCOS нуль-пункты; 6, 8 - количество КЦ в данной группе; 7 - полученные согласно схеме расчетов из [11] нуль-пункты.

4. Обсуждение полученных результатов. Анализ приведенных в табл.1 и 2 калибровок показывает, что точность нуль-пунктов, полученных на основе HIPPARCOS параллаксов, не превышает $\pm 0^m$.11. Данный вывод подтверждает ранние результаты Фиста и Катчпола [4], а также Гроневегена и Оудмежера [11]. Надо отметить, что в зависимости от применяемой выборки, точность нуль-пунктов существенно не меняется. Хотя и наша выборка HIP260 включает на 40 КЦ больше, чем выборка Фиста и Катчпола, тем не менее, по точности определения нуль-пунктов обе выборки оказались равносильными. Такая же картина наблюдается и при сравнении нашей выборки с выборками из работ [9] и [11].

Точность нуль-пунктов не зависит также и от выбора полосы. Достоверно установлено, что максимальная дисперсия PL-соотношений

Г.В.АБРАМЯН

Таблица 2

ДЛЯ FU КЦ ГАЛАКТИКИ, БМО И ММО												
№ решения	Mw	A [13]	B [13]	A_ HIP260	N	A., [11]	N					
1	2	3	4	5	6	7	8					
		NUT OF STREET	FU KI	Ц Галактики								
5.1	VVI	-2.222 0.138	-3.533 0.117	-2.441 0.114	234	-2.600 0.113	188					
5.2	VVJ	-2.089 0.124	-3.554 · 0.106	-2.261 0.180	102	a forever	2					
5.3	VVH	-2.260 0.128	-3.617 0.108	-2.444 0.191	97		-193					
5.4	VVK	-2.215 0.128	-3.614 0.109	-2.396 0.237	100	TI STORE						
S PARA	FU КЦ ММО											
6.1	INN	16.433 0.019	-3.260 0.025	-2.538 0.115	234	-2.741 0.112	188					
J	4-2-5	1 - Store	FU KU	БМО	CC CYT -		all and house					
6.2	VVI	15.941 0.010	-3.284 0.015	-2.636 0.114	234	-2.718 0.114	188					
7.1	VVI	16.117 0.053	-3.430 0.045	-2.522 0.114	234	-2.607 0.113	188					
7.2	VVJ	16.259 0.129	-3.419 0.093	-2.368 0.179	102	No. Treest	a la					
7.3	VVH	16.018 0.132	-3.443 0.095	-2.576 0.190	97							
7.4	VVK	16.102 0.129	-3.460 0.093	-2.538 0.188	100							

НУЛЬ-ПУНКТЫ PL-СООТНОШЕНИЙ $M_{W(m_{\lambda}} = A_{m_{\lambda}} + B_{m_{\lambda}} \log P$ ДЛЯ FU КЦ ГАЛАКТИКИ, БМО И ММО

наблюдается для полосы *В*. Несмотря на это, точность нуль-пункта для этой полосы получилась такой же величины, что и для полосы *I*. Понижение точности наблюдается только для нуль-пунктов полос *JHK* (примерно $\pm 0^{m}.15 \pm 0^{m}.20$), что обусловлено, с одной стороны, малочисленностью КЦ с известными *JHK* величинами (примерно 100 объектов) и, с другой - сравнительно низкой точностью измерения *JHK* величин.

Сравнение полученных точностей нуль-пунктов для рассмотренных выше случаев a), b) и c) показывает, что не наблюдается изменение точности и в зависимости от принятых избытков цвета. К такому заключению можно прийти также и в результате сравнения точностей нуль-пунктов, полученных для обычных PL-соотношений и для PLсоотношений с применением W-функций. В обоих этих случаях также получаются примерно одинаковые точности.

Основываясь на вышесказанном, можно сделать окончательный вывод, что измеренные HIPPARCOS-ом параллаксы КЦ позволяют получить нуль-пункты с точностью не выше $\pm 0^m$.11. Ограничение точности обусловлено, в основном, ошибками измерений HIPPARCOS параллаксов. Отметим, что примерно такую же точность нуль-пунктов нам удалось получить в работе [13] на основе всего 25 FU KЦ из выборки Джерена и др. [15] с применением метода сглаживания избытков цвета с помощью *W*-функций.

Таким образом, можно заключить, что достигнутая на основе современных наблюдательных данных максимальная точность нуль-пункта PLсоотношений не превышает ±0^m.11.

Перейдя к рассмотрению численных значений нуль-пунктов PLсоотношений, отметим, что для полос JHK (решения 1.4-1.6 и 4.4-4.6) не наблюдаются значительные изменения этих величин в зависимости от типа принятого закона межзвездного поглощения и от принятых избытков цветов. Данный факт не является неожиданностью, так как влияние межзвездного поглощения на величины КЦ в JHK по сравнению с BVI гораздо ниже.

Как следует из сравнения данных столбцов 5,7,9 и 11 табл.1, численные значения нуль-пунктов *BV1* PL-соотношений значительно меняются в зависимости от принятых для галактических КЦ избытков цвета. Чтобы сделать обоснованный выбор, напомним, что приведенные в столбцах 5, 9 и 11 табл.1 значения нуль-пунктов получены с помощью избытков цвета, вычисленных на основе собственного цвета $(B - V)_0$, который, в свою очередь, коррелирует с металличностью КЦ. Как было показано в нашей работе [12], собственные цвета $(V - I)_0$ не показывают такую корреляцию и поэтому нам кажется обоснованным отдавать предпочтение значениям нуль-пунктов, полученным на основе цвета (V - I) (столбец 7 табл.1). Эти значения нуль-пунктов и прнимаются нами как окончательные, и наши дальнейшие анализы основаны на них.

В табл.1 и 2 часть PL-соотношений, относящихся к 25 FU КЦ Галактики, приводится в калиброванном виде (столбец 3). Эти калибровки нами были получены в работе [13] на основе расстояний 25 КЦ из работы Джерена и др. [15]. Сравнение этих калибровок с аналогичными величинами, полученными на основе HIPPARCOS параллаксов, показывает, что существует разница нуль-пунктов этих двух калибровок. В случае обычных PL-соотношений разности нуль-пунктов составляют: $\alpha_{[14]} - \alpha_{HIP} = 0^m.235$, $0^m.221$, $0^m.222$, $0^m.208$, $0^m.206$ и $0^m.234$ для *BVIJHK*, соответственно. В случае W_{WI} , W_{WI} , W_{WI} и W_{WX} PL-соотношений разности нуль-пунктов составляют: $\alpha_{[14]} - \alpha_{HIP} = 0^m.215$, $0^m.172$, $0^m.184$ и $0^m.201$, соответственно.

Г.В.АБРАМЯН

Учитывая данный факт, и исходя из того, что HIPPARCOS параллаксы КЦ в настоящее время являются единственными геометрическим способом измеренными величинами, мы отдали предпочтение полученным на основе этих параллаксов калибровкам (в табл.1 и 2 выделены жирным шрифтом) и считаем, что истинными PL-соотношениями являются построенные именно на основе этих нуль-пунктов выражения. К этому вопросу еще вернемся после расчета модулей расстояний MO.

5. Определение расстояний МО. Теперь, имея в виду полученные выше калибровки PL-соотношений, рассмотрим вопрос расстояний БМО и ММО. Оценки этих величин нами получены на основе закона межзвездного поглощения (4). Избытки цветов FU KЦ обеих МО вычислены с помощью полученной нами в работе [12] формулы:

$$E(\langle B \rangle - \langle V \rangle) = -0.374 - 0.166 \log P + 0.766(\langle V \rangle - \langle I \rangle). \tag{7}$$

Таблица 3

модули расстояний бмо и ммо

_											
F	0	N	DM,	σ	Решение	DM	σ	Решение	DM,	σ	Решение
	G	1	18.476	0.115	1.1	18.516	0.115	1.2	18.530	0.115	1.3
Б	L	2	18.511	0.121	2.4	18.555	0.121	2.5	18.583	0.121	2.6
	E	3	18.514	0.121	3.4	18.549	0.121	3.5	18.560	0.121	3.6
1			DM	σ	Решение	DMm	σ	Решение	DM	σ	Решение
		4	18.546	0.114	5.1	18.583	0.115	6.1	18.577	0.114	6.2
	Д		DM,	σ	Решение	DMv	σ	Решсние	DM,	σ	Решение
	ж	5	18.519	0.116	1.1	18.562	0.117	1.2	18.607	0.117	1.3
M	E	6	18.508	0.123	2.4	18.550	0.122	2.5	18.560	0.122	2.6
-	P	7	18.499	0.123	3.4	18.555	0.122	3.5	18.566	0.122	3.6
	E	11	DM,	σ	Решение	DM _H	σ	Решение	DMK	σ	Решение
	H	8	18.658	0.181	1.4	18.655	0.192	1.5	18.701	0.191	1.6
	И	9	18.558	0.181	4.4	18.556	0.191	4.5	18.577	0.191	4.6
	172		DM	σ	Решение	DM	σ	Решение	DM _{VVI}	σ	Решение
0	Д	10	18.666	0.115	5.1	18.578	0.116	6.1	18.582	0.115	6.2
	P.		DM	σ	Решение	DM	σ	Решение	DM	σ	Решение
	[15]	11	18.602	0.180	7.2	18.594	0.191	7.3	18.642	0.189	7.4
	~		DM,	σ	Решение	DMy	σ	Решение	DM,	σ	Решение
Μ	0	12	18.927	0.115	1.1	19.040	0.115	1.2	19.054	0.115	1.3
М	9	13	18.944	0.121	2.4	19.063	0.121	2.4	19.092	0.121	2.5
-	E I	14	18.946	0.121	3.4	19.058	0.121	3.4	19.069	0.121	3.5
0	E		DMm	σ	Решение	DMm	σ	Решение	DMW	σ	Решение
		15	19.085	0.114	5.1	19.091	0.135	6.1	19.086	0.115	6.2

Оценки расстояния БМО получены на основе выборки 83 FU КЦ Цжерена и др. [15] и - 673 FU КЦ с log P>0.4 OGLE [16], а ММОна основе 464 FU КЦ с log P>0.4 выборки OGLE. Полученные в результате этих расчетов значения расстояний собраны в табл.3, где под символом о приведены среднеквадратичные ошибки среднего для данной выборки с учетом среднеквадратичных ошибок нуль-пунктов соответствующих PL-соотношений (табл.1 и 2).

Анализ табл.3 показывает, что точность определения модулей расстояний МО на основе HIPPARCOS параллаксов не превышает ±0^m.11 даже в случае OGLE выборок, для которых внутренняя точность определения расстояний достигает рекордных - ±0^m.003 - ±0^m.007 значений. Кроме этого, интересно отметить, что обычные PL-соотношения и PL-соотношения на основе *W*-функций обеспечивают почти одинаковую точность определения расстояний МО.

Внимательное рассмотрение табл.3 показывает, что в среднем, с увеличением длины волны (от полосы $B \ltimes K$) примерно на 0^m.05 - 0^m.10 увеличивается модуль расстояния БМО. Аналогичное явление наблюдается и для ММО при переходе от $B \ltimes I$. Данный результат находится в противоречии с более ранним выводом Мадора и Фридмана [8], основанным на рассмотрении примерно полторы дюжины КЦ с HIPPARCOS параллаксами. Согласно результатам работ этих авторов, модуль расстояния БМО почти плавно возрастает от 18^m.60 до 18^m.85 при переходе от полосы $K \ltimes B$ (см. рис.4 в [8]). Причиной данного расхождения может служить неточный учет авторами работы [8] межзвездного поглощения для коротковолновой части спектра, так как определенные ими модули расстояния БМО для полос *JHK* почти совпадают с нашими (они короче наших всего на 0^m.02).

Теперь попробуем с помощью полученных оценок расстояний МО, сделать отбор окончательных PL-соотношений из чисел (отмеченных жирным шрифтом), приведенных в табл.1 и 2. Напомним, что определенные выше, на основе HIPPARCOS параллаксов, нуль-пункты PL-соотношений для *BVI* полос, с точностью примерно в 1.5 раза превосходят соответствующие величины для *JHK*. Исходя из этого, кажется обоснованным отдавать предпочтение полученным на основе *BVI* данных расстояниям МО (табл.3, строки 1-7, 10 для БМО и 12-15 для ММО). Но согласно этим данным, наблюдается систематическая разность (примерно 0^m.05 для БМО и 0^m.10 для ММО) между модулями расстояний, определенных на основе *B* величин с одной стороны, и с величинами *V* и *I*, с другой, что, по-видимому, обусловлено значительным воздействием металличности на *B* величины FU КЦ. Исходя из этого, окончательное предпочтение мы отдали оценкам расстояний, полученных на основе результатов *V* и *I* фотометрии FU КЦ.

Усреднением значений только этих оценок, для модуля расстояния БМО получаем: $DM = 18^{m}.569 \pm 0^{m}.117$ и для ММО - $DM = 19^{m}.070 \pm 0^{m}.119$. При отборе PL-соотношений будем отдавать предпочтение тем из них, на основе которых получаются наиболее близкие к последним числам модули расстояний МО. Отобранные таким способом из табл.1 и 2 PL-соотношения и их дисперсии приведены в табл.4.

Таблица 4

ПОЛУЧЕННЫЕ В ДАННОЙ РАБОТЕ НА ОСНОВЕ HIPPARCOS ПАРАЛЛАКСОВ PL-COOTHOШЕНИЯ ДЛЯ FU КЦ

Полоса	α,	σ.	δ,	σ	σ	α	σα	δ	σ	σ	
	1	2	3	4	5	6	7	8	9	10	
-		FU	Ј КЦ Галактики			FU КЦ БМО					
B	-0.825	0.115	-2.703	0.081	0.114	-1.073	0.121	-2.383	0.032	0.105	
V	-1.224	0.115	-2.996	0.092	0.129	-1.416	0.121	-2.754	0.015	0.080	
I	-1.724	0.115	-3.216	0.099	0.139	-1.915	0.121	-2.971	0.015	0.080	
J	-2.007	0.180	-3.405	0.101	0.142	-2.205	0.180	-3.161	0.041	0.113	
H	-2.268	0.191	-3.516	0.106	0.148	-2.471	0.190	-3.270	0.040	0.110	
K	-2.334	0.189	-3.555	0.107	0.150	-2.544	0.188	-3.282	0.039	0.107	
Www	-2.441	0.114	-3.533	0.117	0.164	-2.636	0.114	-3.284	0.015	0.080	
Www	-2.261	0.180	-3.554	0.106	0.148	-2.368	0.179	-3.419	0.093	0.120	
W	-2.444	0.191	-3.617	0.108	0.152	-2.576	0.190	-3.443	0.095	0.123	
Wmx	-2.396	0.237	-3.614	0.109	0.152	-2.538	0.188	-3.460	0.093	0.120	

Сравнение полученных нами значений модулей расстояний МО с аналогичными результатами других авторов показывает, что наши результаты в пределах точности 1 согласуются с результатами Гроневегена и Оудмежера [11] (18.60 +/- 0.11 (W) и 18.55 +/- 0.17 (K) для БМО и 19.11 +/- 0.11 (W) для ММО), несмотря на отличие наших с ними исходных данных относительно закона межзвездного поглощения и избытков цвета FU КЦ Галактики.

Полученное нами расстояние БМО практически совпадает с аналогичным результатом Ди Беннедетто [10] (18^{т.}.59 +/- 0.04), также полученным на основе рассмотрения HIPPARCOS параллаксов КЦ.

В пользу полученного нами значения расстояния БМО говорит также и выведенный недавно на основе рассмотрения звезд типа RR Lyrae результат Сендиджа и др. [17] (18.56). Принятое нами расстояние БМО очень хорошо согласуется также и с последними результатами Бенедикта и др. [18] (18.5 +/- 0.13 или 18.58 +/- 0.15), полученными на основе измерения параллакса КЦ § Сер с помощью космического телескопа Хаббла.

Наша оценка расстояния БМО сильно отличается от полученного Патурелем и др. [19] значения 18.37 +/- 0.00. Данное расхождение легко объясняется, если учесть, что последний результат был получен на

АБСОЛЮТНАЯ КАЛИБРОВКА PL-СООТНОШЕНИЙ 35

основе *W* PL-соотношения, построенного на основе калибровок $M_V = -2.77\log P - 1.44$ и $M_I = -3.05\log P - 1.81$, которые значительно отличаются от наших аналогичных соотношений (см. табл.4).

Примерно на 0^m.13 наблюдается расхождение и с полученным Фистом и Катчпол [4] расстоянием БМО (18^m.70 +/- 0.10). Как нам кажется, причинами данного расхождения являются как малочисленность используемой ими выборки КЦ БМО, так и чуть завышенное значение (2.81) принятого наклона PL-соотношения для полосы V. Интересно отметить, что если применить полученное в [4] $M_V = -2.81\log P - 1.436$ PL-соотношение к 673 FU КЦ БМО с $\log P > 0.4$ выборки OGLE [16], то модуль расстояния БМО получается $18^m.57$.

6. Заключение. Произведена калибровка PL-соотношений на основе НІРРАЯСОЅ параллаксов КЦ с использованием закона межзвездного поглощения (4) и полученных нами в работе [12] новых значений избытков цвета КЦ Галактики. Соответствующие окончательные результаты собраны в табл.4.

Выявлено, что калибровки PL-соотношений, выполненные на основе расстояний 25 FU KЦ Галактики Джерена и др. [15], приводят к короткой, примерно на 0^m.20, шкале расстояний по сравнению с калибровками выполненными нами на основе HIPPARCOS параллаксов.

На основе полученных калибровок определены модули расстояний БМО и ММО - $DM_{LMC} = 18^{m}.569 \pm 0^{m}.117$ и $DM_{SMC} = 19^{m}.070 \pm 0^{m}.119$, соответственно.

Автор выражает благодарность К.С.Гигояну за оказанную помощь в ходе выполнения данной работы.

Бюраканская астрофизическая обсерватория им. В.А.Амбарцумяна, Армения, e-mail: habrahamyan@web.am

ABSOLUTE CALLIBRATION OF THE PL RELATIONS OF CLASSICAL CEPHEIDS ON THE BASIS OF HIPPARCOS PARALLAXES AND THE DISTANCES OF THE MAGELLANIC CLOUDS

H.V.ABRAHAMYAN

On the basis of HIPPARCOS parallaxes of Classical Cepheids, the zero point callibrations of period-luminosity relations of these stars were obtained.

The calibration we obtained is used to determine the distance moduli of LMC and SMC, which are found to be $DM_{LMC} = 18^{\text{m}}.569 \pm 0^{\text{m}}.117$ and $DM_{SMC} = 19^{\text{m}}.070 \pm 0^{\text{m}}.119$, respectively. It is found that calibration of the PL relations developed on the basis of distances of 25 FU Classical Cepheids of our Galaxy, found by Gieren et al., gives a distance scale shorter by $0^{\text{m}}.20$, compared with the results obtained on the basis of HIPPARCOS parallaxes.

Key words: (stars:variables:) Cepheids - Galaxies:LMC and SMC:distances

ЛИТЕРАТУРА

- 1. M.A.C.Perryman, E.Hog et al., The Hipparcos and Tycho Catalogues, European Space Agency, SP-1200, 1997.
- 2. L.C. Turon, M. Creze, Astron. Astrophys., 56, 273, 1977.
- 3. T.E.Lutz, D.H.Kelker, Publ. Astron. Soc. Pacif., 85, 573,1973.
- 4. M.W.Feast, R.M.Catchpole, Mon. Notic. Roy. Astron. Soc., 286, L1, 1997.
- 5. A.Sandage, G.A.Tammann, Mon. Notic. Roy. Astron. Soc., 293, L23, 1998.
- M.W.Feast, F.Pont, P.Whitelock, Mon. Notic. Roy. Astron. Soc., 298, L43, 1998.
- 7. M.W.Feast, Mon. Notic. Roy. Astron. Soc., 293, L27-L28, 1998.
- 8. B.F.Madore, W.L.Freedman, Astrophys. J., 492, 110, 1998.
- 9. P.Lanoix, G.Paturel, R.Garnier, Mon. Notic. Roy. Astron. Soc., 308, 969, 1999.
- 10. G.P.Di Benedetto, Astron. J., 124, 1213, 2002.
- 11. M.A.T.Groenewegen, R.D.Oudmaijer, Astron. Astrophys., 356, 849, 2000.
- 12. Г.В.Абрамян, Астрофизика, 46, 381, 2003.
- 13. Г.В.Абрамян, Астрофизика, 46, 557, 2003.
- 14. J.D.Fernie, B.Beattie, N.R.Evans, S.Seager, IBVS №4148, 1995.
- 15. W.P. Gieren, P.Fouque, M. Gomez, Astrophys. J., 496, 17, 1998.
- 16. A. Udalski, M. Szumanski, M. Kubiak et al., Acta Astron, 49, 201, 1999.
- 17. A.Sandage, R.A.Bell, M.J.Tripicco, Astrophys. J., 522, 250, 1999.
- 18. G.F.Benedict, B.E.McArthur, L.W.Fredrick et al., Astron. J., 124, 1695, 2002.
- 19. G.Paturel, P.Teerikorpi, G.Theureau et al., Astron. Astrophys., 389, 19, 2002.