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1. Derivatives of an evolution matrix with respect to parameters. We
consider a nonlinear dynamical system

x=f(x,p,t), x(t,)=x, (1.1)
where f is a smooth vector-function of the phase vector x € R", the vector of
parameters p e R"and the time t, x, is a given vector of initial conditions, and

the dot means derivative with respect to time. We consider a point p in para-
meter space and take a small increment Ap, t0 ] -th component of the vector of

parameters. Then the phase vector takes an increment Ax which in the first
approximation is described by the differential equation with initial conditions

(AX) :g(x,p,t)AX-Fﬁ(X,p,t)Apj ) AX(tO) =0 (12)
1).¢ 6pj
where notation for the matrix

of _| of (1.3)
OX | OX,
is used. Dividing both sides of equation (1.2) by Apj and taking the limit we
obtain a differential equation with respect to the vector z = ox /0p, [1]
of of
i =—(x,p,t)z+—(x,p,1), Z(t,)=0. (1.4)
ax( p.D) o (x,p.1) 0

J
Consider now equation (1.1), linearized with respect to X, for the vector

yeR"
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y =g(x,p,t)y (1.5)
15).¢

A fundamental matrix for this equation (matriciant) is described by the
initial value problem

Y=Zi(xapat)Y’ Y(to):I (16)

where I is the unit matrix. The matrix Y(t) is also called the evolution matrix

[1, 2]. With this matrix solution to equation (1.5) with the initial condition
y(t) =y, takes the form yt)=Y()y,, and solution to equation (1.4) with

zero initial condition is given by the integral [1]

; of
zt)=Y®)[Y ' (r)=—(x,p,70)dr (1.7)
ty 6pj

Now we find derivatives of the evolution matrix with respect to parameters
at the point p. Due to the increment Ap, the matrix of evolution takes an incre-

ment Y + AY . Substituting this expression to equation (1.6) and expanding the
right hand side in Taylor series we obtain an equation for the first appro-
Ximation

AY=Zf(x,p,t)AY+CY, AY(t,)=0 (1.8)
X
where the matrix C is given by the expression
o’f o’ f 1.9
C=—(x,p,H)Ax + (x,p,t)Ap, (1.9)
ox oxop,

Since Y(t) is the fundamental matrix, it is non-singular. We multiply both
sides of equation (1.8) by the matrix Y and integrate from to to 1. Using

integration by parts with the initial condition (1.8) we obtain

t t t
[ Y 'AYdr =Y '()AY () - [(Y ') AYdr =] (Yl ngY + chyjdr (1.10)
) t X

f

To find the derivative (Y*I)' we differentiate the identity Y'Y =1 with
respect to time and obtain (Y")’Y +Y'Y=0. Thus, (Y*I)' —_Y'YY" and
with equation (1.6) we find

(Y') __yof (1.11)
0x
We use expression (1.11) in the second equality (1.10) and obtain
t
AY(t) =YY 'CYdr (1.12)
t

We substitute here relation (1.9) for the matrix C and divide both sides of
the equality by Ap, - As a result, we get
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AY() Y()f o Ax O L, (1.13)
Ap

J. i ox’ Ap,  0xdp,
Taking in this equation the limit and using notation z = 9x/ op, we obtain
2 2
vy _Y(t)jY afz + 1 lyde (1.14)
op, ox oxap,

Substituting here the vector Z from (1.7) we finally obtain the expression
for the derivative of the evolution matrix with respect to parameters as

Y (1) f
o Y(t)IY (r )[ axapj (X,P,T)JY(T)df

2

]

(1.15)
Hence, to calculate the evolution matrix Y(t) and its derivatives with respect to

parameters we need to integrate equations (1.1) and (1.6) with the cor-
responding initial conditions and evaluate the integrals (1.15). It is easy to see
that in this case it is necessary to integrate m(1+m) differential equations of

the first order, and in contrast, if we calculate the first order derivatives numeri-
cally it is necessary to integrate at least m(1+ m)(1+ n) equations of the first or-

der. Thus, the difference in the number of equations to be solved is mn(1+m),

and it is as higher as many degrees of freedom and problem parameters are in-
volved. Knowing derivatives of the evolution matrix allows to predict behavior
of a dynamical system in the vicinity of the point p in parameter space.

2. Periodic solutions. We consider the case when equation (1.1) possesses
a periodic solution x(t)=x(t+T) and the matrix of(x(t),p,t)/0x is periodic

with a period T.
Then the evolution matrix F=Y(T) is called the monodromy matrix [2-4].

According to the Floquet theory, eigenvalues of this matrix (multipliers) are
responsible for the stability of the periodic solution x(t): if all the multipliers by

their absolute value are less than unity, then the periodic solution x(t) is

asymptotically stable, and it is unstable if at least one of the multipliers is
greater than unity by its absolute value [2-4].
In particular, if we consider a linear system x =G(p,t)x with the periodic

matrix G(p,t+T)=G(p,t) and study the stability of the trivial solution x(t)=0
, then we have

2 2
f=gx, ML_g, of_, Of _03G @.1)
Ox ox’ oxop;  op,
Therefore, for this case according to (1.15) we get
t
NO _yny [y 96 v s 2.2)
op, % op,
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From this formula at t=T we obtain the derivatives of the monodromy
matrix F=Y(T) with respect to parameters [5]

.
OF _ FlY" 9G v, 2.3)
api b api

Note that to find derivatives (2.2) and (2.3) it is necessary to know only the
matriciant Y(t) and the derivatives of the matrix G with respect to parameters

taken at the point p. Using derivatives (2.3) a variation of the monodromy mat-
rix can be given in the form
- OF
F(p+Ap)=F+) —Ap +... (2.4)
k=1 O Py

Knowing the derivatives of the monodromy matrix we can calculate the
value of this matrix in the vicinity of the initial point p , and therefore estimate

behavior of the multipliers responsible for the stability of the system when the
problem parameters are changed. The second and higher order derivatives of the
monodromy matrix were derived in [5, 6].

As an example in this subsection we consider Hill’s equation with damping

X+ BX+[@ +ep(t)] x=0 (2.5)
where g is the damping coefficient, & is the excitation amplitude, o is the
natural frequency, and ¢(t) is a continuous periodic function of time with the

2
period 2z having zero mean value J‘ pt)dt=0- For the initial point we take

0
t, = 0. Equation (2.5) has been considered by many authors.

Our aim is to find analytically the domains of instability of the trivial
solution X =0 (the domains of parametric resonance) in the case of small exci-
tation amplitude &, damping coefficient g , and arbitrary natural frequency

w = 0. For this purpose we represent equation (2.5) in the form (1.5)

y=G(p,t)y (2.6)

X 0 1
= = 2.7
y (XJ G(t.p) {_wz_w(t) _ﬂ} 2.7)

This system contains three parameters p =(g,8,w). If we substitute in

(2.7) then it is easy to find from (1.6) and (2.6), (2.7) the matriciant and its
inverse as

with
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Y(t):{ cosat @ sina)t} Y :{ cosot - sina)t} 2.9)

—wsinwt  cosot wsin ot cosawt

Fig. 1. The instability domains for Hill’s equation with damping.

So, when ¢ =0, g =0 we have the monodromy matrix in the form

F=Y(2r)= cos‘27za) o 'sin27w 2.9)
—osin2r®  CcoS2m@
The eigenvalues of this matrix (the multipliers) are

P, =c0s2zw isin 27w (2.10)
If w=k/2,k=1,2,.. the multipliers are complex conjugate quantities lying

on the unit circle (stability). We can show that when small periodic excitation
and damping are added (&> 0, #>0) then the multipliers move inside the unit

circle which implies asymptotic stability. Indeed, in this case the multipliers due
to continuity property remain complex conjugate quantities. For the multipliers
we have a quadratic equation

pl+cp+c,=0 (2.11)
According to Vieta’s theorem and Liouville’s formula [1,3] the last

coefficient C, is equal to

C,=p,p,= |,o|2 = exp( ftr (G)dtJ =exp(-2zpB) <1 (2.12)
0

This inequality means that when small periodic excitation and damping are
added to the unperturbed system the complex conjugate multipliers move inside
the unit circle, and the system becomes asymptotically stable.

Therefore, the instability (parametric resonance) can take place only in the
vicinity of the points

Py: €=0,=0, 0=k/2, k=12,. (2.13)
at which the multipliers are double o =p,= (_1)k .
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To find the instability domains we expand the monodromy matrix F in
Taylor’s series in the vicinity of the points p with respect to the parameters
g, f,and Aw=w-k/2

JF JF OF
F(p)=F(p,)+—¢c+—p+—Aw+-- (2.14)
() =F(p,) PR p %o

According to formula (2.3) and with the use of (2.6)-(2.8) we calculate the

derivatives AF /e, oF /0f3, and oF /6w at p=p,. Then, up to the first order

terms (2.14) we get

_ _ 2
F(p) = cos k l+race/k—nf 27xQ2Awk-Dbe)/k (2.15)
—-7(Awk+Db.e/2) l-race/k—np

Here we have introduced notation for the Fourier coefficients of the perio-
dic function @(t)

2z 2z
&= . j p(t)sinktdt, b = 1 '[ o(t)cosktdt, k=12... (2.16)
% 7Ty

The eigenvalues of matrix (2.15) (the multipliers) can be found appro-
ximately as

po=(-D1-zp) 7D . (2.17)
D=(g +)e’ /K —4(Aw)’ (2.18)

The system is unstable if the absolute value of at least one multiplier is
greater than one. This condition is fulfilled for g < 0, and the system becomes

unstable. But if g >0 this instability condition is satisfied only when JD > B.
Hence, using (2.18) we obtain the instability (parametric resonance) domain as

Ho-k/2) + B <& +B)e’ /K, >0 (2.19)
It is half of the cone in three-parameter space joining the half-space g <0,
Fig 1.
Formula (2.19) agrees with those obtained earlier for some specific cases.
For instance, if we put in (2.19) g=0, p(t)=cost we get the Mathieu equa-

tion. In this case for the domain of the first resonance k=1 we get according to
(2.16) a, =0, b =1, and from (2.19) we obtain the well known relation
l-g<2w<1+¢, see [2, 4]. Thus, for periodic systems it is shown how derivati-

ves of the evolution matrix provide the instability domains.
3. The Lyapunov exponents. Consider now an autonomous system (1.1)

x=f(x,p), x(t) =x, (3.1
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The evolution matrix Y(t) is found from a linearized equation
. of
Y= g(X,p)Y 5 Y(to) =1 (3 2)
X

In [7, 8] the Lyapunov exponents are defined by means of an eigenvalue
problem for the matrix V, = Y;'Y,, where cross means transposition, and T is
an upper boundary for the time integration

V. u=xu (3.3)

The matrix V. is symmetric and positive definite. Indeed, (Y;YT )+ Y'Y,
and for an arbitrary vector Yy the inequality y'YY,y=(Y;y)'Y,y=
||YTy||2 >0 is satisfied. The strict inequality takes place since Y, is

fundamental and thus, non-singular matrix. Hence, all the eigenvalues K,
s=1,...,m of the matrix V, are positive. The eigenvalues of the matrix /VT
are called singular values of the matrix Y, -

The Lyapunov exponents are defined as a limit of the ratio [7, §]

A, =lim [m Ks] (3.4)

2T
Let U be an eigenvector, corresponding to a simple eigenvalue K¢ of the

matrix V_. Then, the derivative of the eigenvalue K with respect to para-

meters is

2w O gz | S8 | ¥ S sy G
apj op; apj apj

J

For the Lyapunov exponents we have
6AS_1. Lalnlcs_l. 1 Ok,

= 1m =1m
op; To=2T Jp; To= 2Tk, Op; '

(3.6)
Substituting expression (3.5) in formula (3.6) we finally obtain

OAs _lim ul (aYT] Y, +YT+(8YT] us/(2TK ulu ) (3.7)
0 0

S 7SsTSs
apj Toow i i

This formula relates derivatives of the Lyapunov exponents with respect to
parameters to the derivatives of the evolution matrix derived in (1.15).
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A nonlinear dynamical system dependent on parameters is considered. Formulas
for derivatives of an evolution matrix of the system with respect to parameters are
derived in the form of integrals of a function depending on the phase vector, its
derivatives with respect to parameters and the evolution matrix taken at a given point in
the parameter space. For autonomous systems formulas for derivatives of the Lyapunov
exponents are derived and expressed through the derivatives of the evolution matrix
with respect to parameters. The obtained formulas simplify analysis of behavior of the
dynamical system under change of problem parameters.

22 QUU wpunuuwhdwiyut wingud U. M. Ugpuiyub

bjnpnighuyh dunnphguyh b Lywymungh gnghyubph
wbwugyuubpp pun yupuwdtnpkph

Thunwpyyws b ywpudbnpbphg jujudws ny gduwyhtt ghtwdhly hwdwlwpg: Zw-
dwlwupgh EYnpnighwjh dwwnphgugh hwdwp gonipu B phpqué tpu pun wwpw-
dbunpbph wbwugyujubpp: Unwugus wéwugyujubpp wuwpwdbnpbph nwpwsnigput
npjws Jhnnd tkpjuyugdus tu pun dwdwiwyh htnbgpujutph wkupny, Yipgqus
duquyhti pnitiyghuwygh JEyunnphg, tpu pun wupudtnpiph wswigiuitphg b tng-
mighugh dwwnphguyhg: Unugus ki Lyuwniungh gnighsubph wswugyujubph pubw-
Aukpp huptwqup hwdwlwupgtph hwdwp, npntp wpnnwhwyndus tu tYnpgnighuygh
dwwinphgujh punn wwpuwdbnpbph wswbgyuubkpny: Unwugws puwbwdltpp pny) bu
nwhu wupqgil) hudwlwpgh nhtwdhljugh Jupph Jbpimgmpiniup qwpwdbtnpbph
thnthnpunipjut pipwgpnud:

HNnrocrpannsiii wien HAH PA A. II. Ceiipansn

IIpou3BoaHbIE MATPHIILI IBOJTIONUH U
nokasareJieii JIsimyHoBa Mo mapaMmeTpam

PaccmarpuBaercst HenmuHeWHas IUHAMUYecKas CHUCTEMa, 3aBUCSIIAs OT Mapa-
MeTpoB. BriBeneHsl (opMynbl Aisi IPOW3BOIHBIX MAaTPHIBI 3BOJIIOLHMH CHUCTEMBI IO
rapamerpamM B BHJE HHTETPAJOB MO BpeMeHH OT (GyHKuuu (ha3oBOro BEKTOpa, €ro
MIPOU3BOJAHBIX M0 MapaMeTpaM U MAaTpULbl SBOJIIOLUM CUCTEMbI B 3aJaHHOM TOUYKe
IIPOCTPAHCTBA MapaMeTpoB. [II1 aBTOHOMHBIX CHCTEM HaWIEeHBI ()OPMYJIBI AJISI TPOH3-
BOJHBIX IOKazaTenel JIAmyHoBa, BeIpaKEHHbBIE Yepe3 MPON3BOJHBIC MAaTPHUIBI 3BOJIO-
1y 1o napamerpam. [lomydeHHbIe (OPMyIIBI TO3BOJISIOT YIPOCTHTD AHANU3 JTUHAMH-
YECKOT0 TIOBEICHNSI CUCTEMBI IIPH U3MEHEHHUH I1apaMeTPOB.
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