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1. Introduction. The investigations of the propositional proof complexity
are very important due to their relation to the main problem of the complexity

theory P=NP_ One of the most fundamental problems of the proof complexity
theory is to find an efficient proof system for propositional calculus. According

to the opinion, a truly «effective» system must have a polynomial size P(N)

proof for every tautology of size M. In [1] Cook and Reckhow named such a
system a super system. They showed that if there exists a super system, then
NP = coNP

It is well known that many systems are not super. This question about
Frege systems, the most natural calculi for propositional logic, is still open: the

trivial exponential upper bounds and only Q(I’]2) lower bound of proof sizes

and Q(N) lower bound of proof steps for tautologies with the length n were
known for Frege systems . Resently the super-linear lower bound for proof steps
has been obtained in [2], where some super-quadratic lower bound for proof
sizes has been announced as well. Now we prove that the lower bound for proof

sizes of some sequence of tautologies ¢, is Q ( I, Iog,’( 19, 1)) in every

Frege system.

2. Preliminary. 2.1. Some properties of Frege systems. We shall use the
well known notions of propositional formula, subformula of formula and
tautology.

We shall use also the generally accepted concepts of Frege system [1]. A
Frege system F uses a denumerable set of propositional variables and a finite,
complete set of propositional connectives. F has a finite set of inference rules,

defined by a figure of the form AA Ay (the rules of inference with zero
B
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hypotheses are the axioms schemes); F must be sound and complete, i.e., for
each rule of inference A%--An every truth-value assignment, satisfying
B

AA ...A,, also satisfies B, and F must prove every tautology.

We use also the well-known notions of proof and proof complexities. The
proof in any system F (F -proof) is a finite sequence of such formulas, each
being an axiom of F, or is inferred from earlier formulas by one of the rules of
F. Note that every F -proof has an associated graph with nodes, labeled by
formulas, and edges from A to B if formula B is the result of applying of
some inference rule to A (perhaps with another formulas).

For a proof we define t -complexity to be its length (= the total number of
different proof formulae) and l-complexity to be its size (= the total number of
logical connectives occurences in proof). The minimal t -complexity of a
formula @ (I -complexity of a formula @) in a proof system F we denote by
tf; (li)_

. . : A A

For our consideration the inference rule modus ponens

B
key role. The formula A (ASB) is called small (big) premise of modus ponens.

Let us recall the notion of right-chopping proof, introduced in [3]. For
Intuitionistic and Minimal (Johansson’s) Logic the following statement is
proved:

If the axiom F, 5(F,>(...o(F,>G)..) and the formulas F,F,,...,F,

are used in the minimal (by steps) derivation of formula G by successive
applying of the rule modus ponens, then m<2,

i.e. the length of corresponding graph branch, going from each node,
labeled with the rule modus ponens application result to node, labeled with big
premise, is no more than 2 . Such graph and hence, the corresponding proof are
called 2-right-chopping.

The analogous statement for classical Hilbert style systems is not valid,
but for a Frege system F we can prove some generalization of this statement.

Definitionl. A proof with only modus ponens rule is called m-right-
chopping if the length of corresponding graph branch, going from each node,
labeled with the rule modus ponens application result to node, labeled with big
premise, is no more than m.

Definition 2. If some axioms scheme B of the system F is in the form B;>
(B22 (...(Bx2Bk+1)...)), where each B; (1<i<k+1) is some formula and the main
logical connective of By, is not D, then k is logical depth of B.

Definition 3. Maximum of logical depths of all axioms schemes in the
Frege system F is called logical depth of F and is denoted by 1d(F).

Lemma. For every Frege system F there is some constant r and some
Frege system F’ with only modus ponens rule such that every F-proof of a
formula @ can be transformed into r-right-chopping F-proof of ¢ with no

=F play the
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more than linear increase both of t-complexity and I-complexity of original #-
proof.

Proof. Axioms schemes of F’ are all axioms schemes of F and formulas
A; D (Az > (..(4,, @2 B) )) for every inference rule AufzAm (for modus
ponens also, if it is one of the rules of F) . The inference rule is only modus

ponens. Every F-proof can be transformed into F’-proof as following: each
A1Ay .. Am

application of inference rule replace by sequence of formulas A; D

(A2 o (..(4, 2 B) ...)), (Az > (..(A, @ B) ...)), ..., (A, 2 B) and by
successive applying of the rule modus ponens to formulas A4, A4,, ..., A,, as
small premises and pointed formulas as big premises we prove the formula B in
the system F. So, every group of the formulas A, Ay, ..., A,,, B is permit with
the mnew formulas. If we take r=1d(F"), then it is obvious, that each F'-proof is
r-right-chopping and tzs' < tj; (r+1)and lf;'slg (r+1),

The above described Frege system F is called right-chopping image for
the system F.

Definition 4. The set of formulas A,;,4,,...,4,,B and A; D (A2 )
(..(A,, > B) ...)), (A2 5 (...(4,, 2 B) ...)), ..., (A;, D B) is called the bloc
of right-chopping image F, corresponding to inference rule % of F.

2.2. Essential subformulas. For proving the main results we use also the
notion of essential subformulas, introduced in [4].

Let F be some formula and S (F) be the set of all non-elementary sub-
formulas of formula F .

For every formula F , for every ¢ € S (F) and for every variable P the

result of the replacement of the subformula ¢ everywhere in F by the variable
P is denoted by F”.If p& S (F), then F is F .

4
We denote by Var(F) the set of variables in F

Definition 5. Let P be such a variable that pgVar(F) and ¢ € S (F)
for some tautology F . We say that ¢ is an essential subformulain F iff F )

is non-tautology.
We denote by ESSf(F) the set of essential subformulas in F . If F is

minimal tautology, i.e., F is not a substitution of a shorter tautology, then
Essf(F)=S(F).

It is not difficult to see, that if formula B is modus ponens application
result to formulas A and ASB, then each formula from Essf(B) is essential either
in A or in ASB and therefore the number of essential subformulas of B is no
more, that the sum of essential subformulas numbers both of A and of ASB.

In [4] the following statement is proved.
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Proposition. Let F be a minimal tautology and ¢ € ESSf(F), then in

every F-proof of F subformula @ must be essential either in some axiom,
used in proof, or in the formula A;2(A;D(....(A, DB)...)) for some inference

rule AA Ay
B used in proof.

Remark. It is obvious, that each essential subformula of a formula, proved
in a Frege systems only with modus ponens rule, must be essential at least in
one of axioms, used in proof.

Definition 6. Let M be some set of essential subformulas of tautology F. If
no one formula of M is a subformula of some other formula from M, then M is
called an independent set of essential subformulas of F.

2.3. The main formulas. By |@| we denote the size of a formula ¢,
defined as the number of all logical signs entries. It is obvious that the full size
of a formula, which is understood to be the number of all symbols is bounded
by some linear function in |¢]|.

The main tautologies of our consideration are ¢, = TTM i where

™™, = v &7, Vi, Py

(o) .,an)eE”

It is not difficult to see that | ¢, [=N2*". Let’s denote y) =V p;',

where 0 =(0,,...,0,) and for some assignement of parentheses ¢, will look
like this:

n_ . n_ . n_ .
®n =&?:11 '//;1 V(&?:ll '//;2 V(---V&?:ll V/Jzn)---)
where:
n_ ; n_
&?:11 W;k :(‘//;k & (‘//jk & (.. & l//j_k ..
It is easy to see that the set M of subformulas v, pi(jTi is an independent

set of essential subformulas of @,.

In [2] is proved, that for every Frege system F t, = Q(23™).
3. Main result. The main results of the paper is the following statement.

3
Theorem. For any Frege system F lZ;n: Q (lolg(p;l|l(p |)'
2 n

Proof of the theorem is based on the following auxiliary statements.

Let F be some tautology and F be a Frege system, then

1. if M is an independent set of essential subformulas of F, then the size of
every its F-proof is more, than the sum of sizes for all proof occurences of all
formulas from M;

2. after the first occurence of some formula from Essf(F) in the smallest by
size F-proof it must remain until the end of proof;
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3. the number of essential subformulas of each axioms of F is no more,
than some constant C, and therefore the number of essential subformulas of F in
every bloc from right-chopping image F’ can added with no more, than c;

4. the size of proof can be smaller, if in every step of proof no more, than
one essential subformulas is added.

So, we have

= m23" =2 +n@2¥" -2" - 1) +n(2"-2"-2) + -
+n(22" + 1) + n2?")
=nR"™+ 2"+ 1) + -+ (23" = 2M)))
= (n(1+2++ @ -2"
—(1+2+ -+ (2" - 1))))
= 0(n((2*" -2 - (2")%))
= 0(n(2°" — 2+ 2% + 22 — 2%1)) = G(n2°™)

n224n n22n 2, 3
_ 9< _ ): 9<I¢nl 2I<pnl> _ 9< Iw;ll >
n n n log,”|@nl

Use the rezult of Lemma, we obtain
|(Pn|3
iz o (o)
Pn logz%|@n|
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On Lower Bounds for Proofs Sizes in Frege Systems

The trivial exponential upper bounds and only Q(n’) lower bound of proof sizes
and q(n) lower bound of proof steps for tautologies with the length n were known for

Frege systems. Recently the super-linear lower bound for proof steps has been obtained
by first coauthor (with Armine Chubaryan and Arman Tshitoyan). Now we prove that in
every Frege system for some sequence of tautologies the lower bound for proof sizes is
super-quadratic in the lengths of tautologies.
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U.. U 2nipwpjub, Z. U frudwqub

dntqkh hwdwljwpgbpnd wpunwsmdutph Epljupnipniautph
unnphi quuwhwnwlwiitiph Jepupbpyuy

dntigkh hwdwlupgtpnid n Epupnipjudp tnytwpwinipniuubph hwdwp hwyn-
uh tht Jbphtt gmgswyhtt quwhwwnwliwip b dhuy Q(n’) uwwnnphtt ghwhwnwluip
wpunusdwt kpjupmipyut hwdwp nt ony vnnpht qhwhwnwljuip wpnwsdwh puy-
1Eph hwdwp: dbpobpu wnwghtt hwdwhbtnhtiwlh (Updhtuk 2nipupyuih b Updwt &h-
unnjuith hwdwhbnhtiwlnipjudp) Ynnuhg vnwgyt) kp uniybp-qduyhtt quwhwnwluh
wpuwsdwb puyikiph hwdwp: Uydd dhup wywgnigh) Gup, np tnyhwpwinipnibbph
npnpwljh hwonppuljutinipjutt hwdwp wpunwsmdubph Epwpnipnitubph unnph
quwhwwnwlwip untybp-punwlniuwght £ dpkqbh mupupwsinip hwdwljupgnid:

A. A. Uybapsn, A. A. Tamazsn

O HMKHUX OLIEHKAX JIJIMH BHIBOJ0OB B cuctemax ®dpere

I[J'ISI CHCTEM CDpere OBUIM U3BECTHBI JIUIIL TPUBHUAJIBHBIC SKCIIOHCHIHAJIbHBIC
BCPXHHUC OLICHKH M TOJbBKO ((n) HWKHAA OLCHKA AJIs1 KOJIHMYECTBA IIAaroB M TOJIBKO

Q(n’) HIOKHSSL OLIEHKa ATl JJIMH BBIBOJOB TaBTOJIOTHH JmMHBI N. HemaBHO mepBbIM

coaBTopoM (coBMecTHO ¢ ApmuHe UybapstH 1 ApmanoMm UutosHOM) OBLTA IOTydeHa
cylepiuHeHas OleHKa Ui KOJNMYeCcTBa IIaroB BEIBOJOB. B Hacrosmeir padore mis
HEKOTOPOH TOCIeIOBATEIEHOCTH TaBTOJOTHH TIONyYeHa CYIEPKBAaIpaTUYHAS OICHKA
JUTMHBI BEIBOJIOB B JII000# cucteme Ppere.
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