2U8UUSUULEl @PSAPE3SAPLLELP UQQ2USPL UUUTGURU
HAIONMUMUOHAJOJBHAA AKAJAEMMUA HAYK APMEHMUWUHU
NATIONAL ACADEMY OF SCIENCES OF ARMENIA

JOKJAIBI 26uNph38uvEr REPORTS
<Lunnn
T 119 2019 Ne 2
Volume

MATHEMATICS
VIIK 510.64

MSC2010: 03F03; 03F05; 03F50

H. R. Bolibekyan, A. R. Baghdasaryan

On Some Systems of Propositional Minimal Logic
with Loop Detection

(Submitted by corresponding member of NAS RA 1. D. Zaslavsky 7/IV 2019)
Keywords: minimal logic, proof theory; cut elimination; loop.

Introduction. Backwards proof search and theorem proving with a
standard cut-free system for the propositional fragment of minimal logic is
inefficient because of three problems. Firstly, the proof search is not in general
terminating caused by the possibility of looping. Secondly, it might generate
proofs which are permutations of each other and represent the same natural
deduction. Finally, during the proof some choice should be made to decide
which rules to apply and where to use them.

The sequent system GM™ for minimal logic was introduced in [1]. GM™ is
a permutation-free sequent system; it avoids the problems of permutations in the
cut-free sequent system of Gentzen. This removes the second of the problems.
But notice that permutations are avoided in GM ™~ by a focusing method — seve-
ral choice points are removed. That is, GM ™ partly addresses the third problem
and hence is advantageous as a system for theorem proving. However, the naive
implementation of GM ™~ will lead to the possibility of looping.

Some looping mechanisms have been considered earlier in [2-4].

In this paper following [2] the history mechanism is developed in two ways
and applied to GM~. Each of the constructed systems has advantages and
disadvantages.

2. Systems with history mechanism. Further in the text we follow well
known definitions of a formula, sequent, proof, context, stoup, equivalence of
the systems as in [2, 5].

One way to prevent loops is to add a history to each sequent. The history is
the set of all sequents that have occurred so far in a proof tree. After each
backwards inference the new sequent (without its history) is checked to see
whether it is a member of this set. If it is we have looping and we backtrack. If

110



not the new history is the union of the new sequent (without its history) and the
old history, and we try to prove the new sequent, and so on.

A, lT'=>B: ¢ » I'=>B;H »
_— (DRI),tjAéf _ (JR,),nger
I'=>ADB:H I'=>ADB:H -
Al=> L e I's1.H
- (—-Rl),ifAEF — (—-RJ,:}"AEF
Fr'=-A:H I'=s>-A.H -
B
I'=A;(C,H) TI'—CH .
(oL),if C¢H
ADB
I'—C:H
'=A;(C,H) .
— (=L),if C¢H
r—C.H
A B
Ir—C: H I r—co.H I
AAB (A 1) AAB (A ")
r C: H r—«C H
I'=>A:H TI=B:H
(AR)
I'=>AAB.H
A, Il’'=>C;e B.I'=>C;¢ )
(vL),if A BgrI'
Av B
I'r—C;H
I'=AH I'=>B:H
S (v A (v
I'=>AvB,H I'=>AvB,H -
A
A, r'—B;H I'sA: (AH)
— (0) — (1) — (ax)
A.I'>B;H r—sa-H r=aH

* B is either a propositional variable, L or a disjunction .
A, B, Care formulae. I', H are sets of formulae.

B. I is shorthand for {BYu T .

Fig. 1. The propositional system SwMin.

111



A.I'=B; |B} _ Al=1:{L1} .
————— (oR,),if AgT —————— (-R,).if Agr
I'sADB.H I's-ATH
I'=B; (B.H)
————— (oR,).if Ael, BgH
I'=A>B;H -
I'=>1:;(L1L.,H
I=1:1.0) (—|R,,), if Ael', L ¢H
I'=-A:H -
B
I'sA; (ALH) TI'—CH
(DL),if A¢H
ADB
r——«C H
I'sA, (AH) .
— (~L),if A¢H
r—C, H
A B
r—C, H L r—C,H I
ANB (A l) ANB (A 2)
—(C:H I'—C H
I'=A; (AH) I'=B;,(B,H) "
(AR),if AB&H
I'=sAAB,H
A, I'=C;{C} B.Ir'=C;{C} o
- (vL),if A\BgrI
AV
I'—C.H
I'sA: (AH I'=B;, (B,H
#(VRI)-I:){A&H #(VR,),U'Bﬁﬂ
I'=>AvB.H I'>AvB.:H -
A
A, '—B; H . I'=sA. (AH)
—— (O) — (1) —— ()
A, =B, H r l>A;H I—A: H

* B is either a propositional variable, L or a disjunction .
A, B, Care formulae. I', H are sets of formulae.

B, I' is shorthand for {BYUT .

Fig. 2. The propositional system ScMin.

The approach requires lots of sequents to be stored and on every step the
list should be used for specific checkings. All that is quite inefficient as the
sequents being stored contain much more information than actually needed to
proceed. To prevent looping we can keep few information and satisfy the
requirements.

The main idea behind to reduce the history and check the loops is the fact
that only goal formulae need to be stored. The rules of GM™ are such that the

112



context cannot decrease; once a formula is in the context it will remain in the
context of all sequents above it in the proof tree. For two sequents to be the
same they obviously need to have the same context. We may empty the history
every time the context is extended, since we will never get any of the sequents
below the extended one again. Goal formulae are the only ones to be stored in
the history. If we come across a goal already in the history we have the same
goal and the same context as another sequent, that is, a loop.

There are two slightly different approaches to doing this. There is the
straightforward extension and modification of the system which we shall call a
SwMin, and there is an approach which involves storing more formulae in the
history, but that detects loops more quickly. This we will call as ScMin, and the
implementation is in some cases more efficient than the SwMin.

In scope of considered systems sequent I' = C; H has context I', goal C,

history H and no stoup, and sequent I —’C H has context I', goal C, history H
and stoup A. When the history has been extended we have parenthesised (C, H)
for emphasis, while by € we denote empty history. The SwMin system is
displayed in Figure 1, and the ScMin system in Figure 2.

The proof of introduced systems equivalence is done in two stages.

Theorem 2.1. A sequent Sis provable in GM~™ if and only if S;¢ is
provable in SWMin/ScMin (without *).

Proof. The <direction is straightforward.

To prove the =direction we take an GM™ proof tree and use it to build a
SwMin/ScMin proof tree.

We start at the root, ' = A in GM~ and we have root I' = A4; {4} in
SwMin/ScMin.

Given a fragment of GM~ proof tree with corresponding fragment of
SwMin/ScMin proof tree, we look at the next inference in the GM™ tree. We
have a recipe which we can use to build a fragment of SwMin/ScMin proof
tree corresponding to a strictly larger fragment of the GM ™ proof tree.

As proof trees are finite, this process must be terminating.

Theorem 2.2. The system SwMin/ScMin with condition = placed on rule
(C) isequivalent to SwMin/ScMin without the extra condition.

Proof. The «<direction is trivial.

To prove the = direction, we first prove that GM~ and GM~ with (*)
condition on the weakening rule are equivalent. This is done by a simple
induction on the depth of the proof and on complexity of formulae.

For any SwMin/ScMin (without *) proof that doesn’t satisfy *, we can
consider it as an GM~ proof. Then we can find an GM™ proof satisfying *.
Using the procedure in the proof of theorem 2.1, we can build an SwMin/
ScMin (with *) proof tree.

Theorem 2.3. The system SwMin/ScMin and GM ™~ are equivalent.

Proof. The proof immediately follows from theorem 2.1 and 2.2.

3. Conclusion. Two systems for propositional fragment of minimal logic
(SwMin and ScMin) which are slightly different are introduced. Both systems
are based on the idea of adding context to the sequents. In one system, SwMin,

113



the history is kept smaller, but ScMin detects loops more quickly. The heart of
the difference between the two systems is that in the SwMin loop checking is
done when a formula leaves the goal, whereas in the ScMin it is done when it
becomes the goal.

Yerevan State University
e-mail: bolibekhov@ysu.am, baghdasaryana95@gmail.com

H. R. Bolibekyan, A. R. Baghdasaryan

On Some Systems of Propositional Minimal Logic
with Loop Detection

There exists different systems of I. Johansson's minimal logic. Looping is the main
issue in one of the Gentzen style system. One way to detect loops is adding history to
each sequent though it is insufficient. We have illustrated the use of the two history
mechanisms for minimal propositional logic. The two systems both have their good
points. The SwWMin system is efficient in terms of storage and checkings required by its
history mechanism. The SctMin system is efficient in that it detects loops as they occur,
avoiding unnecessary computations.

Z. [r. Pojhphljjul, U [} Punnuuwupub

8hYyjnh huynuwpkpnuing dhthdwy npudwpwimipjui
wunypuyht npny hwdwljupgph dwuht

8nhwtiunth dhthuw] wpwdwpwinipyut hwdwp gnmipinit nitkt wwppbp hw-
dwlupgbp: Zkughlywi wihwyh npny hwdwlwpgbpnud hhdtwlwh fjungpugnn & ghyp:
8hhitph hwjntwpbpdwt nwwppbpuljubphg b «quundnipyuiy wkjugnidp jnpupui-
sinip uklykuuht, npp jutinph (hwupdtp nwsnud sh wnwjhu: Uhthdw) npudwpwuinipjut
Epynt wunypuyhtt hwdwljwupg «guundnipjuiy Ukjuwithquny ghunnwplws L, npnughg
mipupwiyniplt nith hp wnwybnipnibubpp: SwAZin-p wpynibwybwn £ hhonnnipjut
oquiuugnpsdw b uwpynn unnignidubph wbkuwblynihg, hull SeMin-p hwynbwpk-
poud £ ghljjtpp wth Jun thoynud:

O. P. boauoOeksin, A. P. bBarnacapsn

O HEKOTOPBIX cUCTEMAX MUHUMAJILHON MPONO3UIIHOHATbHOMI
JIOTMKM C BbISIBJIEHHEM HIMKJIOB

CyIIeCTBYIOT pasIMYHble CHCTEMBI MHHHMANBHO# Jornku Moranccona. B Hexo-
TOPBIX I'CHIEHOBCKUX CHUCTEMax LIMKIIBI SIBISIOTCS OJHOW M3 OCHOBHBIX Ipobiem. [lo-
0aBJIeHHE «MCTOPUM» — OJIUH U3 TTOIX0/I0B 00OHApY)KeHHs IMKia. PaccmarpuBatoTes e
CUCTEMbl MHUHUMAaJbHOW MPONO3UIHOHAIBHON JIOTHKH C JOOABJICHUEM «UCTOPHI.
Kaxxnas u3 paccMaTpuBaeMbIX CHCTEM HMEET CBOM MpenMyinectBa. SVMin addextrBHa

114



C TOYKHU 3PCHHUA HUCIIOJBb30BAHUA MAMATH U JOMOJHUTCIbHBIX ITPOBEPOK. XMin BeIsB-
JIACT UKJIbI Ha Ooitee PaHHUX CTaausAX 0e3 JOIIOJITHUTCIIbHBIX BBIYKCIICHUH.

References

1. Bolibekyan H. R, Chubaryan A. A. In: Proceedings of the Logic Colloquium
2003. P. 56.

2. HoweJ. M. — Springer Lecture Notes in Artificial Intelligence. 1997. V. 1227. P.
188-200.

3. Gabbay D. — Springer Lecture Notes in Computer Science. 1991. V. 1. P. 156-
173.

4. Bolibekyan H., Muradyan T. In: Proceedings of the Logic Colloquium 2011. P.
45-46.

5. Kleene S. C. Introduction to metamathematics. D. Van Nostrand Comp., Inc.
New York—Toronto. 1952.

115



