ՀԱՅԱՍՏԱՆԻ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԶԳԱՅԻՆ ԱԿԱԴԵՄԻԱ НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК АРМЕНИИ NATIONAL ACADEMY OF SCIENCES OF ARMENIA ՁԵԿՈՒՅՑՆԵՐ

<шипп Том

119

2019

№ 2

MATHEMATICS

УДК 517.9

MSC 2010: 47B35,47A53

H. A. Asatryan¹, A. G. Kamalyan², M. I. Karakhanyan³

On a Class of Integro-Difference Equations

(Submitted by academician A. B. Nersessian 3/III 2019)

Keywords: Wiener–Hopf operator, integro-difference equation, one-sided invertible operator.

1. Statement of the problem. Let μ_k , m_k (k = 1, ..., N) be positive numbers such that $\mu_k \neq \mu_j$ for $k \neq j$. The system of linear equations

$$\varphi_{j}(x) + \sum_{i=1}^{N} \frac{m_{i} m_{j} e^{-(\mu_{i} + \mu_{j})x}}{\mu_{i} + \mu_{j}} \varphi_{i}(x) = m_{j} e^{-\mu_{j}x}, \ j = 1, ..., N$$

uniquely determines infinitely differentiable functions $\varphi_1, ..., \varphi_N$ satisfying the conditions $e^{\mu_k|x|}\varphi_k \in L_{\infty}(\mathbb{R}), k = 1, ..., N$ (see [1-3]). Note that the numbers $-\mu_k^2$ and the functions φ_k (k=1,...,N) form complete systems of eigenvalues and corresponding eigenfunctions of a certain Sturm-Liouville operator with a reflectionless potential. Reflectionless potentials are connected with a family of explicit solutions of the Korteweg-de Vries equation, the so-called \mathcal{N} -soliton solutions (see [2]).

The set of all almost periodic functions of the form

The set of all almost periodic functions of the form
$$b(x) = \sum_{j=-\infty}^{\infty} \beta_j e^{i\nu_j x} \quad (x \in \mathbb{R})$$
 (1.1) where $\nu_j \in \mathbb{R}$, $\beta_j \in \mathbb{C}$ $(j \in \mathbb{Z})$ and $\beta_i \neq \beta_j$ for $i \neq j$, taken with the norm
$$||b||_{\text{APW}} \coloneqq \sum_{j=-\infty}^{\infty} |\beta_j|,$$
 is a Banach algebra which will be denoted by APW (see [4]).

$$||b||_{APW} := \sum_{j=-\infty}^{\infty} |\beta_j|,$$

is a Banach algebra which will be denoted by APW (see [4]). Let

$$\hat{k}(\lambda) = (Fk)(\lambda) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{i\lambda t} k(t) dt$$

be the Fourier transform of a function $k \in L_1(\mathbb{R})$. $W_0(\mathbb{R})$ will denote the Banach algebra $\{Fk \colon k \in L_1(\mathbb{R})\}$ with the norm $\|Fk\|_{W_0(\mathbb{R})} \coloneqq \|k\|_{L_1(\mathbb{R})}$. The set of functions $A \coloneqq \{a = b + \hat{k} \colon b \in \mathsf{APW}, k \in \mathsf{L}_1(\mathbb{R})\}$, taken with the norm $\|a\|_A \coloneqq \|b\|_{\mathsf{APW}} + \|\hat{k}\|_{W_0(\mathbb{R})}$, is a Banach algebra and coincides with the direct sum of the algebras APW and $W_0(\mathbb{R})$.

Let $a = b + \hat{k} \in A$, $k \in L_1(\mathbb{R})$, and let $b \in APW$ be given by (1.1). We define the operators $T_0(a), T_1(a), T(a): L_p(\mathbb{R}_+) \to L_p(\mathbb{R}_+)$ ($\mathbb{R}_+ = (0, \infty), 1 \le p \le \infty$) by the formulas

$$(T_{0}(a)y)(x) := \sum_{k=-\infty}^{\infty} \beta_{k} y(x - \nu_{k}) + \int_{0}^{\infty} k(x - t)y(t)dt,$$

$$(T_{1}(a)y)(x) := \sum_{j=1}^{N} \varphi_{j}(x) \int_{0}^{\infty} \left\{ \int_{-\infty}^{\infty} k(\tau) e^{\mu_{j} \tau \operatorname{sgn}(x - \tau - t)} d\tau \right\} \varphi_{j}(t)y(t)dt +$$

$$+ \sum_{k=-\infty}^{\infty} \beta_{k} \sum_{j=1}^{N} e^{\mu_{j} \nu_{k}} \varphi_{j}(x) \int_{x - \nu_{k}}^{\infty} \varphi_{j}(t)y(t) dt +$$

$$+ \sum_{k=-\infty}^{\infty} \beta_{k} \sum_{j=1}^{N} e^{-\mu_{j} \nu_{k}} \varphi_{j}(x) \int_{0}^{\infty} \varphi_{j}(t)y(t) dt,$$

$$T(a) := T_{0}(a) - T_{1}(a),$$

where we assume that y(x) = 0 for x < 0.

 $T_0(a)$ is a Wiener-Hopf operator with a symbol a. This fact makes it possible to find criteria for invertibility and one-sided invertibility of the operator $T_0(a)$ and to describe its kernel and cokernel. In this work we will present analogous results for the operator T(a) which is not a Wiener-Hopf operator, but has properties close to those of $T_0(a)$. The function a will be also called the symbol of the operator T(a).

2. Factorization of the symbol. The mean value

$$M(e^{-\lambda x}b) := \lim_{\ell \to \infty} \frac{1}{2\ell} \int_{-\ell}^{\ell} e^{-\lambda x} b(x) dx$$

of the function $e^{-\lambda x}b$, where $b \in APW$ is given by (1.1), equals β_j if $\lambda = \nu_j$ and vanishes if $\lambda \neq \{\nu_j : j \in \mathbb{Z}\}$. Therefore the Bohr-Fourier spectrum $\Omega(b) \coloneqq \{\lambda \in \mathbb{R} : M(e^{-\lambda x}b) \neq 0\}$ of the function b coincides with the set $\{\nu_j : j \in \mathbb{Z}\}$. Let APW^+ (APW^-) denote the subalgebra of all functions $b \in APW$ satisfying the inclusion $\Omega(b) \subset [0, \infty)$ ($\Omega(b) \subset (-\infty, 0]$).

Every function $b \in APW$ satisfying the condition

$$\inf_{\lambda \in \mathbb{R}} |b(\lambda)| > 0 \tag{2.1}$$

has a right APW factorization

$$b(\lambda) = b_{-}(\lambda)e^{i\lambda\kappa_b}b_{+}(\lambda) \tag{2.2}$$

where $u_b \in \mathbb{R}, \ b_-^{\pm 1} \in \text{APW}_-$, $b_+^{\pm 1} \in \text{APW}_+$ (see [4], [7]). The number u_b is called the mean motion or the almost periodic index of the function b and can be computed by the formula

$$\varkappa_b = \lim_{\ell \to \infty} \frac{1}{2\ell} \left[(\arg b)(\ell) - (\arg b)(-\ell) \right],\tag{2.3}$$

where $\arg b$ is to be understood as an arbitrary continuous function on \mathbb{R} , satisfying the equality $b = |b| \exp(i \operatorname{arg} b)$.

The function $e^{-i\lambda x_b}b(\lambda)$ has a representation of the form $e^{-i\lambda x_b}b(\lambda) = e^{\psi(\lambda)}$ $(\lambda \in \mathbb{R})$

$$e^{-i\lambda \kappa_b}b(\lambda) = e^{\psi(\lambda)} \ (\lambda \in \mathbb{R})$$

with $\psi \in APW$, i.e., the logarithm $\psi(\lambda) = \log(e^{-i\kappa_b \lambda}b(\lambda))$ exists and can be written as

$$\psi(x) = \sum_{k=-\infty}^{\infty} \psi_k e^{i\lambda_k x} \quad (x \in \mathbb{R})$$

where λ_k $(k \in \mathbb{Z})$ are distinct real numbers and ψ_k $(k \in \mathbb{Z})$ are nonzero complex numbers satisfying the condition

$$\sum_{k=-\infty}^{\infty} |\psi_k| < \infty.$$

The functions b_+ in (2.2) can be chosen in the following way:

$$b_{-}(x) = \exp\left(\sum_{\lambda_k < 0} \psi_k e^{i\lambda_k x}\right), \qquad b_{+}(x) = \exp\left(\sum_{\lambda_k \ge 0} \psi_k e^{i\lambda_k x}\right).$$

Let $S: L_2(\mathbb{R}) \to L_2(\mathbb{R})$ be the singular integral operator defined by the formula

$$(Sy)(t) := \frac{1}{\pi i} \int_{-\infty}^{\infty} \frac{y(s)}{s-t} ds$$

where the integral is to be understood in the Cauchy principal value sense, and let $P_{\pm} = \frac{1}{2}(I \pm S)$. Then

$$(x+i)P_{+}\left(\frac{1}{x+i}\psi\right) = \sum_{\lambda_{k}\geq 0} \psi_{k}e^{i\lambda_{k}x} + \sum_{\lambda_{k}<0} \psi_{k}e^{\lambda_{k}},$$
$$(x+i)P_{-}\left(\frac{1}{x+i}\psi\right) = \sum_{\lambda_{k}<0} \psi_{k}e^{i\lambda_{k}x} - \sum_{\lambda_{k}<0} \psi_{k}e^{\lambda_{k}}$$

(see [4]). Since the functions b_{\pm} are determined up to a constant multiple, we may choose

$$b_{\pm}(x) = \exp\left((x+i)P_{\pm}\left(\frac{1}{x+i}\psi\right)\right).$$

Let

$$W(\mathbb{R}) \coloneqq \mathbb{C} + W_0(\mathbb{R}) = \{c + Fk \colon c \in \mathbb{C}, k \in L_1(\mathbb{R})\}$$

be the Wiener algebra on \mathbb{R} . $W(\mathbb{R})$ is a Banach algebra with the norm $||c + Fk|| := |c| + ||k||_{L_1(\mathbb{R})}$ (see [4]).

Consider also the algebras

$$W^{\pm}(\mathbb{R}) = \{c + Fk : c \in \mathbb{C}, k \in L_1(\mathbb{R}), k(x) = 0 \text{ for } \pm x < 0\}.$$

Every function $d \in W(\mathbb{R})$ satisfying the condition

$$\inf_{\lambda \in \mathbb{R}} |d(t)| > 0 \tag{2.4}$$

has a Wiener-Hopf factorization in the algebra $W(\mathbb{R})$, i.e., it has a representation of the form

$$d(x) = d_{-}(x)(r(x))^{\varkappa_{d}}d_{+}(x), \tag{2.5}$$

 $d(x) = d_{-}(x)(r(x))^{\varkappa_{d}}d_{+}(x), \qquad (2.5)$ where $d_{-}^{\pm 1} \in W^{-}(\mathbb{R}), \quad d_{+}^{\pm 1} \in W^{+}(\mathbb{R}), \quad \varkappa_{d} \in \mathbb{Z}$ and $r(x) \coloneqq (x-i)/(x+i)$. The integer \varkappa_{d} is unique and can be computed by the formula

$$\varkappa_d = \frac{1}{2\pi} (\arg d(+\infty) - \arg d(-\infty)). \tag{2.6}$$

The function $r^{-\kappa_d}d$ has a logarithm in $W(\mathbb{R})$, i.e., there exist $c_0 \in \mathbb{R}$ and $g \in L_1(\mathbb{R})$ such that $r^{-\kappa_d}d = \exp(c_0 + \hat{g})$.

The functions d_{-} and d_{+} in (2.5) can be determined by the formulas

$$d_{\pm} = \exp\left((x+i)P_{\pm}\left(\frac{1}{x+i}(c_0 + \hat{g}(x))\right)\right).$$

$$(x+i)P_{+}\left(\frac{1}{x+i}\left(c_{0}+\hat{g}(x)\right)\right) = c_{0} + \int_{-\infty}^{0} e^{s}k(s)ds + F(\chi_{+}g)(x),$$
$$(x+i)P_{-}\left(\frac{1}{x-i}\left(c_{0}+\hat{g}(x)\right)\right) = -\int_{-\infty}^{0} e^{s}k(s)ds + F(\chi_{-}g)(x)$$

hold, where χ_+ (χ_-) is the characteristic function of the set \mathbb{R}_+ ($\mathbb{R}_ := (-\infty, 0)$) (see [4]). The last two formulas, together with the fact, that d_{\pm} are determined up to a constant multiple, show that the functions d_{\pm} can also be determined by the equalities

$$d_{+} = \exp[c + F(\chi_{+}q)], \qquad d_{-} = \exp[F(\chi_{-}g)].$$

Consider the subalgebras $A_{\pm} := APW^{\pm} + W^{\pm}(\mathbb{R})$ of the algebra A. It is known that every function $a \in A$ satisfying the condition

$$\inf_{\gamma \in \mathbb{R}} |a(\lambda)| > 0 \tag{2.8}$$

 $\inf_{x \in \mathbb{R}} |a(\lambda)| > 0$ has a factorization of the form

$$a(x) = a_{-}(x)e^{i\varkappa_{b}x}(r(x))^{\varkappa_{d}}a_{+}(x)$$
 (2.9)

with $\kappa_b \in \mathbb{R}$, $\kappa_d \in \mathbb{Z}$, $\alpha_+^{\pm 1} \in A_+$ and $\alpha_-^{\pm 1} \in A_-$ (see [7]).

Assume that the condition (2.8) is satisfied for the function $a = b + \hat{k}$ where $b \in APW$ and $k \in L_1(\mathbb{R})$. Since (2.8) implies (2.1) (see [7]), hence the function b is invertible in APW. Decompose a into the product a = bd where $d=1+b^{-1}\hat{k}$. Since $W_0(\mathbb{R})$ is an ideal of the algebra A, hence $d\in W(\mathbb{R})$.

(2.8) implies the condition (2.4), too. It follows that the numbers \varkappa_b and \varkappa_d in (2.9) are uniquely determined by the formulas (2.3) and (2.6); the functions a_\pm are uniquely determined by the formulas $a_\pm = b_\pm d_\pm$, (2.2) and (2.5).

The next theorem reveals the fundamental importance of the condition (2.8) in the behavior of the operator T(a).

Theorem 2.1. Let $a \in A$. The operator T(a) is normally solvable if and only if the condition (2.8) is satisfied.

3. Main results. Define the operators $\mathcal{K}_1, \mathcal{K}_2 : L_p(\mathbb{R}_+) \to L_p(\mathbb{R}_+)$, $1 \le p < \infty$ by the formulas

$$(\mathcal{K}_1 y)(x) = y(x) + \sum_{k=1}^N m_k e^{-\mu_k x} \int_{x}^{\infty} \varphi_k(\tau) y(\tau) d\tau$$

$$(\mathcal{K}_2 y)(x) = y(x) + \sum_{k=1}^N m_k \varphi_k(x) \int_x^\infty e^{-\mu_k \tau} y(\tau) d\tau.$$

From now on, the condition (2.8) is assumed to be satisfied; the numbers \varkappa_b , \varkappa_d and the functions a_\pm are assumed to be determined by (2.9). Note that $r \in W(\mathbb{R}) \subset A$ and the operator $T_0(r^k)$ ($k \in \mathbb{Z}$) coincides with the Wiener-Hopf operator with a symbol r^k (see [7]). Furthermore it is assumed that the operator T(a) acts in the space $L_p(\mathbb{R}_+)$, $1 \le p < \infty$ and the equation

$$T(a)y = f (3.1)$$

is considered in the same space.

Theorem 3.1. If $\varkappa_b > 0$, then the operator $T(\alpha)$ is left invertible. In order that the equation (3.1) be solvable, it is necessary and sufficient that the following conditions be satisfied:

a) The function $T_0(a_-^{-1})\mathcal{K}_1 f$ vanishes on the interval $[0, \varkappa_b]$ for $\varkappa_d \ge 0$. Moreover, if $\varkappa_d > 0$, then

$$\int_{0}^{\infty} t^{k} e^{-t} (T(a_{-}^{-1}) \mathcal{K}_{1} f)(t) dt = 0, \qquad k = 0, \dots, \kappa_{d} - 1.$$
 (3.2)

b) For $\varkappa_d < 0$, the restriction of the function $e^t(T_0(r^{-\varkappa_d})T_0(a_-^{-1})\mathcal{K}_1f)(t)$ to $[0,\varkappa_d]$ is a polynomial of degree $-\varkappa_d - 1$.

Theorem 3.2. If $\varkappa_b < 0$, then the operator T(a) is left invertible. For $\varkappa_d \geq 0$, the kernel of T(a) consists of all functions of the form

$$\mathcal{K}_{2}T_{0}(a_{+}^{-1})T_{0}(r^{-\varkappa_{d}})g$$
 ,

where g is an arbitrary function in $L_p(\mathbb{R}_+)$, vanishing on the interval $(-\varkappa_b, \infty)$ and satisfying the additional conditions

$$\int_{0}^{\infty} g(t) t^{j} e^{-t} dt = 0, \quad j = 0, ..., \varkappa_{d} - 1$$

for
$$\kappa_d > 0$$
.

For $\varkappa_d < 0$, the kernel of T(a) consists of all functions of the form $\mathcal{K}_2 T_0(a_+^{-1})(g+q)$,

where g is an arbitrary function in $L_p(\mathbb{R}_+)$, vanishing on the interval $(-\varkappa_b, \infty)$, and q is a polynomial of degree at most $-\varkappa_d - 1$.

Theorem 3.3. Let $\varkappa_h = 0$.

a) The operator T(a) is invertible for $\varkappa_d=0$ and

$$(T(a))^{-1} = \mathcal{K}_2 T_0(a_+^{-1}) T_0(a_-^{-1}) \mathcal{K}_1.$$

- b) For $\varkappa_d > 0$, the operator $\mathcal{K}_2 T_0(a_+^{-1}) T_0(r^{-\varkappa_d}) T_0(a_-^{-1}) \mathcal{K}_1$ is a left inverse of T(a), and equation (3.1) is solvable if and only if conditions (3.2) are satisfied.
- c) For $\varkappa_d < 0$, the operator $\mathcal{K}_2 T_0(\alpha_+^{-1}) T_0(r^{-\varkappa_d}) T_0(\alpha_-^{-1}) \mathcal{K}_1$ is a right inverse of T(a), and the kernel of T(a) consists of all functions of the form $\mathcal{K}_2 T_0(\alpha_+^{-1}) q$, where q is a polynomial of degree at most $-\varkappa_d 1$.

Acknowledgements. This work was supported by Science Committee, Ministry of Education and Science of Armenia within the framework of the joint research given to YSU-SFU-16/1.

- ¹ FernUniversität in Hagen, Germany e.mail: hayk.asatryan@fernuni-hagen.de, asatrianh@gmail.com
- ² Yerevan State University; Institute of Mathematics of NAS RA e.mail: armen.kamalyan@ysu.am, kamalyan armen@yahoo.com
- ³ Yerevan State University

e.mail: m karakhanyan@ysu.am, m karakhanyan@yahoo.com

H. A. Asatryan, A. G. Kamalyan, M. I. Karakhanyan

On a Class of Integro-Difference Equations

We consider a class of integro-difference equations which, by their solvability properties, are close to the Wiener-Hopf equation with the symbol given as the sum of an almost periodic function expanding in an absolutely convergent Fourier series and a Fourier transform of the function summable on the whole axis.

Հ. Ա. Ասատրյան, Ա. Հ. Քամալյան, Մ. Ի. Կարախանյան

Ինտեգրալատարբերակային հավասարումների մի դասի մասին

Դիտարկվում է ինտեգրալատարբերակային հավասարումների դաս, որոնք լուծելիության հատկություններով մոտ են Վիներ-Հոպֆի հավասարմանը, որի սիմվոլը ներկայացվում է Ֆուրիեի բացարձակ զուգամետ շարքով, համարյա պարբերական ֆունկցիայի և առանցքի վրա հանրագումարելի ֆունկցիայի Ֆուրիեի ձևափոխության գումարի տեսքով։

А. А. Асатрян, А. Г. Камалян, М. И. Караханян

Об одном классе интегрально-разностных уравнений

Рассматривается класс интегрально-разностных уравнений, близких по свойствам разрешимости к уравнению Винера — Хопфа, символ которого представляется в виде суммы почти периодической функции, разлагающейся в абсолютно сходящийся ряд Фурье и преобразования Фурье суммируемой на оси функции.

References

- 1. Kay I., Moses H. E. J. Appl. Phys. 1956. V. 27. P. 1503-1508.
- 2. Bhatnagar P. L. Nonlinear Waves in One-dimensional Dispersive Systems. Oxford. Clarendon Press. 1979.
- 3. *Yurko V. A.* Introduction to the Theory of Inverse Spectral Problems [in Russian]. M. Fizmatlit. 2007.
- 4. Böttcher A., Karlovich Yu. I., Spitkosky I. M. Convolution Operators and Factorization of Almost Periodic Matrix Functions. Basel; Boston; Berlin: Birkhäuser. 2002.
- Gohberg I. Ts., Fel'dman I. A. Dokl. Akad. Nauk SSSR. 1968. V. 183. N. 1. P. 25-28.
- 6. Gohberg I. C., Fel'dman I. A. Acta Sci. Math. (Szeged). 1969. V. 30. N. 3-4. P. 199-224.
- Gohberg I. C., Fel'dman I. A. Convolution Equations and Projection Methods for their Solution. AMS. 1974.