ZUBUUSUUF AFSNF@BNFUUEFF UQQUBFU UYUAEUFUHAЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК АРМЕНИИNATIONAL ACADEMY OF SCIENCES OF ARMENIAДОКЛАДЫQEYNF385EFREPORTS

≺шипп Том Volume

119

2019

№ 1

MATHEMATICS

УДК 517.9

H. A. Asatryan¹, A. H. Kamalyan², M. I. Karakhanyan²

On *L*-convolution Type Operators with Semi-Almost Periodic Symbols

(Submitted by academician A. B. Nersessian 6/II 2019)

Keywords: semi-almost periodic functions, \mathcal{L} -Wiener-Hopf operator, Fredholm operator.

1. Introduction. The semi-Fredholm theory of Wiener-Hopf operators with semi-almost periodic symbols was developed in works [1] and [2] (see also [3]).

In works [4] and [5] the concept of the \mathcal{L} -convolution type operator is introduced by replacing the Fourier transform in the definition of the convolution operator by the operator which transforms the Sturm-Liouville operator on the whole axis into the operator of multiplication by an independent variable. The concept of the \mathcal{L} -Wiener-Hopf operator is also introduced in a natural way. In the case of zero potential these two notions coincide with classical convolution operators and Wiener-Hopf operators, respectively. The precise definitions of \mathcal{L} -convolution type and \mathcal{L} -Wiener-Hopf operators in the case of reflectionless potentials will be given in the next section. In this work we extend the results of [1, 2] to the case of \mathcal{L} -Wiener-Hopf operator with a reflectionless potential.

2. The \mathcal{L} -Wiener-Hopf operator. Let $c: \mathbb{R} \to \mathbb{R}$ be a Lebesgue measurable function satisfying the condition $\int_{-\infty}^{\infty} (1+|x|)c(x) dx < \infty$. An important role in the spectral theory of the Sturm-Liouville equation

$$-y''(x) + c(x)y(x) = \lambda^2 y(x), \quad x \in \mathbb{R}, \lambda \in \mathbb{C}$$

is played by the Jost solutions $e_+(x,\lambda)$ $(x \in \mathbb{R}, \operatorname{Im} \lambda \ge 0)$ and $e_-(x,\lambda)$ $(x \in \mathbb{R}, \operatorname{Im} \lambda \le 0)$ defined by boundary conditions

$$\lim_{x \to \pm \infty} e^{-i\lambda x} e_{\pm}(x, \lambda) = 1, \quad \lim_{x \to \pm \infty} e^{-i\lambda x} e'_{\pm}(x, \lambda) = i\lambda$$

(see, e.g., [6]). For $\lambda \in \mathbb{R} \setminus \{0\}$ the pairs of functions $e_+(x,\lambda)$, $e_+(x,-\lambda)$ and $e_-(x,\lambda)$, $e_-(x,-\lambda)$ form fundamental systems of solutions of the Sturm-Liouville equation (see [6]) and hence $e_+(x,\lambda)$ can be represented as

$$e_+(x,\lambda) = b(\lambda)e_-(x,-\lambda) + b_0(\lambda)e_-(x,\lambda).$$

If the reflection coefficients $r_{\pm}(\lambda) := \mp b(\mp \lambda)/b_0(\lambda)$ vanish identically, the potential c is called reflectionless (see, e. g., [7], [8]).

It is known (see [7]-[9]) that every reflectionless potential has a representation of the form

$$c(x) = -2\frac{d^2}{dx^2}(\ln \Delta(x)) \tag{2.1}$$

where

$$\Delta(x) = \det \left[\delta_{ij} + \frac{m_j \exp(-(\mu_i + \mu_j)x)}{\mu_i + \mu_i} \right] \quad i, j = 1, ..., N,$$
 (2.2)

 δ_{ij} is the Kronecker delta, μ_k , m_k (k=1,...,N) are positive numbers such that $\mu_k \neq \mu_j$ for $k \neq j$. Reflectionless potentials are connected with a family of explicit solutions of the Korteweg-de Vries equation, the so-called \mathcal{N} -soliton solutions (see [8], [9]). Let the potential c be given by (2.1), (2.2). The operators \mathcal{L} and \mathcal{L}_0 , defined on the Sobolev space $\mathcal{W}_2^2(\mathbb{R})$ by the formulas $\mathcal{L}y = -y'' + cy$, $\mathcal{L}_0y = -y''$, are self-adjoint (see [10]). Let H_d be the direct sum of all eigenspaces of the operator \mathcal{L} , and let $\varphi_1, \ldots, \varphi_N$ be the orthonormal basis of H_d , uniquely determined by the system of linear equations

$$\varphi_k(x) + \sum_{s=1}^N \frac{m_k m_s e^{-(\mu_k + \mu_s)x}}{\mu_k + \mu_s} \varphi_s(x) = m_k e^{-\mu_k x}, \qquad k = 1, ..., N$$

(see [7]-[9]). Consider the functions

$$u^{-}(x,\lambda) \coloneqq t(\lambda)e^{i\lambda x} \left(1 - \sum_{k=1}^{N} \frac{m_k e^{-\mu_k x}}{\mu_k - i\lambda} \varphi_k(x)\right),$$

$$u^{+}(x,\lambda) := e^{-i\lambda x} \left(1 - \sum_{k=1}^{N} \frac{m_k e^{-\mu_k x}}{\mu_k + i\lambda} \varphi_k(x) \right),$$

where the transmission coefficient $t(\lambda)$ is defined by

$$t(\lambda) = b_0^{-1}(\lambda) := \prod_{k=1}^{N} \frac{\lambda + i\mu_k}{\lambda - i\mu_k}.$$

Note that in the case of the zero potential the subspace H_d coincides with the zero subspace, $t(\lambda) \equiv 1$ and hence $u^{\mp}(x,\lambda) = e^{\pm i\lambda x}$.

Further, m(g) will denote the operator of multiplication by a function (or a matrix-function) g, i.e., (m(g)y)(x) = g(x)y(x). The operators $J: L_p(\mathbb{R}) \to L_p(\mathbb{R}), \ \pi_{\pm}: L_p(\mathbb{R}) \to L_p(\mathbb{R}_{\pm}), \ \pi_{\pm}^0: L_p(\mathbb{R}_{\pm}) \to L_p(\mathbb{R})$ ($1 \le p \le \infty, \mathbb{R}_+ = (0, \infty), \mathbb{R}_- = \mathbb{R} \setminus \mathbb{R}_+$) are given by the formulas

$$(Jy)(x) = y(-x), \qquad (\pi_{\pm}y)(x) = y(x),$$

$$(\pi_{+}^{0}y)(x) = \begin{cases} y(x), & x \in \mathbb{R}_{+} \\ 0, & x \in \mathbb{R}_{-}, \end{cases} \qquad (\pi_{-}^{0}y)(x) = \begin{cases} 0, & x \in \mathbb{R}_{+} \\ y(x), & x \in \mathbb{R}_{-}. \end{cases}$$

Consider the space $L_2(\Delta, \delta)$ where $\Delta = \{1, ..., N\}$ and δ is the Dirac measure on Δ . The unitary operator $\widetilde{U} \colon H_d \to L_2(\Delta, \delta)$ is defined by the formula $\widetilde{U}\varphi_k = \xi_k$ where $\xi_k(j) = \delta_{kj}$. Consider also the operators U_{\mp} , $U \colon L_2(\mathbb{R}) \to L_2(\mathbb{R})$, $\widehat{U} \colon H_c \oplus H_d \to L_2(\mathbb{R}) \oplus L_2(\Delta, \delta)$ defined by the formulas

$$(U_{\mp}y)(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u^{\mp}(x,\lambda)y(x)dx \quad (\lambda \in \mathbb{R}),$$

$$U = m(\chi_{+})U_{-} + m(\chi_{-})JU_{+},$$

$$\widehat{U} = \begin{pmatrix} U|_{H_{c}} & 0\\ 0 & \widetilde{U} \end{pmatrix},$$

where $H_c = L_2(\mathbb{R}) \ominus H_d$, χ_{\pm} is the characteristic function of the set \mathbb{R}_{\pm} , and the integrals converge in the norm of the space $L_2(\mathbb{R})$.

Note that in the case c=0 the equalities $U_-=U=\widehat{U}=F$, $U_+=F^{-1}$ hold, where F denotes the Fourier transform:

$$(Fy)(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{i\lambda x} y(x) dx, \quad y \in L_2(\mathbb{R}).$$

The following statement is true:

Theorem 2.1. The operators U_{\mp} , U are bounded, the operator \widehat{U} is unitary and on a dense subspace of $L_2(\mathbb{R})$ the equality $\widehat{U}\widehat{\mathcal{L}}\widehat{U}^* = m(\lambda^2)$ holds.

Let $d = (d_1, ..., d_N)^T \in \mathbb{C}^N$. Define the operator $\widehat{m}(d): L_2(\Delta, \delta) \to L_2(\Delta, \delta)$ by the formula $\widehat{m}(d)(\xi) = (d_1\xi_1, ..., d_N\xi_N)^T$.

Let $\mathcal{M}_{p,\mathcal{L}}$ $(1 \leq p < \infty)$ denote the set of all functions $a \in L_{\infty}(\mathbb{R})$ such that the operator

$$\widehat{U}^* \begin{pmatrix} m(a) & 0 \\ 0 & \widehat{m}(d) \end{pmatrix} \widehat{U}$$

is $L_p(\mathbb{R})$ -bounded on the subspace $L_p(\mathbb{R}) \cap L_2(\mathbb{R})$. The continuous extension of this operator to $L_p(\mathbb{R})$ will be denoted by $W_{\mathcal{L}}^0(a,d)$ and will be called the \mathcal{L} -convolution type operator with an \mathcal{L} -symbol (a,d) on the space $L_p(\mathbb{R})$.

The operator $W_{\mathcal{L}}(a,d) = \pi_+ W_{\mathcal{L}}^0(a,d) \pi_+^0$ will be called the \mathcal{L} -Wiener-Hopf operator. In the case $\mathcal{L} = \mathcal{L}_0$ we will use the notations \mathcal{M}_p , $W^0(a)$,

W(a) instead of $\mathcal{M}_{p,\mathcal{L}_0}$, $W^0_{\mathcal{L}_0}(a,d)$, $W_{\mathcal{L}_0}(a,d)$. Obviously, $W^0(a)$ and W(a) are the convolution integral operator and the Wiener-Hopf operator, respectively, and \mathcal{M}_p is the set of all Fourier multipliers (see [11], [3]). It is known (see [11]) that \mathcal{M}_p is a Banach algebra with the norm $\|a\|_{\mu_p} = \|W^0(a)\|_{B(L_p(\mathbb{R}))}$. In particular, \mathcal{M}_2 coincides with $L_\infty(\mathbb{R})$.

Theorem 2.2. The inclusion $\mathcal{M}_p \subset \mathcal{M}_{p,\mathcal{L}}$ $(1 \leq p < \infty)$ holds.

3. Main results. The closure of the algebra of all piecewise constant functions in \mathcal{M}_p $(1 \le p < \infty)$ will be denoted by PC_p . It is well known (see [11]) that $PC_p = PC_2 = PC$, where PC is the class of functions having finite one-sided limits $a(x \pm 0)$ at each point $x \in \mathbb{R}$ and also at $x = \pm \infty$. Further, it is known that $PC_p = \mathcal{M}_p \cap PC$ (see [3]).

Let $\overline{\mathbb{R}} \coloneqq [-\infty, \infty]$, and let $C_p(\overline{\mathbb{R}}) \coloneqq PC \cap C(\mathbb{R})$ with $C(\mathbb{R})$ being the set of all continuous complex-valued functions on \mathbb{R} . In particular, $C(\overline{\mathbb{R}}) \coloneqq C_2(\overline{\mathbb{R}}) = PC \cap C(\mathbb{R})$. $C_0(\mathbb{R})$ will denote the subalgebra of $C(\overline{\mathbb{R}})$, consisting of all $a \in C(\overline{\mathbb{R}})$ with $a(\pm \infty) = 0$.

Further, let AP^0 be the algebra of all almost periodic polynomials, i.e., the algebra of all functions $p: \mathbb{R} \to \mathbb{C}$ which can be written as a finite sum

$$p(x) = \sum \alpha_j e^{i\lambda_j x}, \quad \alpha_j \in \mathbb{C}, \ \lambda_j \in \mathbb{R}.$$

Let AP_p denote the smallest closed subalgebra of \mathcal{M}_p $(1 containing <math>AP^0$, and let SAP_p denote the smallest closed subalgebra of \mathcal{M}_p containing $\mathbb{C}_p(\mathbb{R})$ and AP_p . The algebra AP_p (SAP_p) lies in AP_2 (SAP_2) which itself coincides with the algebra AP (SAP) of all Bohr almost periodic functions (semi-almost periodic functions). Every function $a \in SAP_p$ has a representation of the form

$$a = (1 - u)a_{\ell} + ua_{r} + a_{0} \tag{3.1}$$

where $a_{\ell}, a_r \in AP_p$, $a_0 \in \mathcal{M}_p \cap C_0(\mathbb{R})$ and $u \in C(\overline{\mathbb{R}})$ is a fixed increasing function satisfying conditions $u(-\infty) = 0$, $u(+\infty) = 1$ (see [2], [3]). The functions a_{ℓ} , a_r do not depend on the choice of u and are uniquely determined by the function a (see [1]-[3]).

The group of all invertible elements of an algebra A will be denoted by GA.

It is well known that a function $a \in SAP_p$ $(a \in AP_p)$ belongs to $GSAP_p$ (GAP_p) whenever $a \in GL_{\infty}(\mathbb{R})$, i.e.,

$$\inf |a(\lambda)| > 0, \quad \lambda \in \mathbb{R}.$$
 (3.2)

According to the Bohr theorem on the argument of an almost periodic function (see [12]), for $a \in GAP$ there exist a real number $\varkappa(a)$ and a function $\psi \in AP$ such that

$$a(x) = e^{ix(a)x}e^{\psi(x)}$$
 for all $x \in \mathbb{R}$.

The uniquely determinable number $\varkappa(a)$ is called the *mean motion* of the function a and can be computed by the formula

$$\kappa(a) = \lim_{\ell \to \infty} \frac{1}{2\ell} [(\arg a)(\ell) - (\arg a)(-\ell)].$$

Here $\arg a$ is to be understood as an arbitrary fixed function from $\mathcal{C}(\mathbb{R})$, satisfying the equality $a = |a|e^{i \arg a}$.

Let $M(\psi) \coloneqq \lim_{\ell \to \infty} \frac{1}{2\ell} \int_{-\ell}^{\ell} \psi(x) dx$ be the Bohr mean value of the function ψ . The number $\xi(a) \coloneqq e^{M(\psi)}$ is uniquely determined by the function $a \in GAP$; it is called the *geometric mean value* of the function a. For any $a \in GSAP_p$, the functions a_ℓ and a_r , determined from (3.1), belong to GAP_p (see [2, 3]). Furthermore, the following equalities hold (see [3]):

$$\xi(a_r) = \exp \lim_{\ell \to \infty} \frac{1}{\ell} \int_0^\ell [\log|a(x)| + i(\arg a)(x) - i \, \varkappa(a_r)x] \, dx,$$

$$\xi(a_{\ell}) = \exp \lim_{\ell \to \infty} \frac{1}{\ell} \int_{-\ell}^{0} \left[\log|a(x)| + i(\arg a)(x) - i \, \varkappa(a_{\ell})x \right] dx.$$

The following two theorems describe the semi-Fredholm properties of the operator $W_L(a, d)$.

Theorem 3.1. Let $a \in SAP_p \setminus \{0\}$ with $1 . Condition (3.2) is necessary for the normal solvability of the operator <math>W_L(a,d)$ in the space $L_p(\mathbb{R}_+)$. In order that the operator $W_L(a,d)$ be normally solvable, it is necessary and sufficient that along (3.2) one of these two conditions hold:

- 1. $\kappa(a_{\ell}) \kappa(a_r) \ge 0$ and $\kappa(a_{\ell}) + \kappa(a_r) \ne 0$.
- 2. $\kappa(a_{\ell}) = \kappa(a_r) = 0$ and

$$\inf_{x \in \mathbb{R}_+} \left| \frac{1}{2} \left(\xi(a_r) + \xi(a_\ell) \right) - \frac{1}{2} \left(\xi(a_r) - \xi(a_\ell) \right) \operatorname{cth} \pi \left(\frac{i}{p} + x \right) \right| > 0$$
 (3.3)

Theorem 3.2. Let the operator $W_{\mathcal{L}}(a,d)$ be normally solvable in the space $L_p(\mathbb{R}_+)$ with 1 . Then the following assertions are true:

- 1) If $u(a_{\ell}) + u(a_r) > 0$, then $\dim \ker W_{\mathcal{L}}(a, d) < \infty$, $\dim \operatorname{Coker} W_{\mathcal{L}}(a, d) = \infty$ and $\dim \ker W_{\mathcal{L}}(a, 0) = 0$. In the case p = 2 the operator $W_{\mathcal{L}}(a, 0)$ is left invertible.
- 2) If $\varkappa(a_{\ell}) + \varkappa(a_r) < 0$, then $\dim \ker W_{\mathcal{L}}(a,d) = \infty$, $\dim \operatorname{Coker} W_{\mathcal{L}}(a,d) < \infty$ and $\dim \operatorname{Coker} W_{\mathcal{L}}(a,0) = 0$. In the case p=2 the operator $W_{\mathcal{L}}(a,0)$ is right invertible.

3) If $\varkappa(a_\ell)=\varkappa(a_r)=0$ and condition (3.3) is satisfied, then the $W_{\mathcal{L}}(a,d)$ is an Fredholm operator and

Ind
$$W_{\mathcal{L}}(a,d) = -\frac{1}{2\pi} [(\arg a)(+\infty) - (\arg a)(-\infty)] + \frac{1}{p}$$
$$-\left\{ \frac{1}{p} + \frac{1}{2\pi} \left(\arg \frac{\xi(a_{\ell})}{\xi(a_r)} \right) \right\}$$

where $\{s\}$ denotes the fractional part of the real number s.

- ¹ FernUniversität in Hagen, Germany
- e-mail: hayk.asatryan@fernuni-hagen.de, asatrianh@gmail.com
- ² Yerevan State University;
- e-mail: armen.kamalyan@ysu.am, kamalyan_armen@yahoo.com
- m karakhanyan@ysu.am, m karakhanyan@yahoo.com

H. A. Asatryan, A. H. Kamalyan, M. I. Karakhanyan

On *L*-convolution Type Operators with Semi-Almost Periodic Symbols

The notions of the \mathcal{L} -convolution operator and the \mathcal{L} -Wiener-Hopf operator are introduced by replacing the Fourier transform in the definition of the convolution operator by a unitary operator which transforms the Sturm-Liouville operator \mathcal{L} on the whole axis to the operator of multiplication by an independent variable. It is considered the case when the potential of the operator is reflectionless and the symbol of the \mathcal{L} -Wiener-Hopf operator is a semi-almost periodic function. Criteria for semi-Fredholm and Fredholm properties of the \mathcal{L} -Wiener-Hopf operator are revealed. In the Fredholm case a formula for the index is obtained.

Հ. Ա. Ասատրյան, Ա. Հ. Քամալյան, Մ. Ի. Կարախանյան

Կիսա-համարյա պարբերական սիմվոլներով Հ-փաթեթի տիպի օպերատորների մասին

Փաթեթի օպերատորի սահմանման մեջ Ֆուրիեի ձևափոխությունը փոխարինելով առանցքի վրա սահմանված Շտուրմ-Լիուվիլի օպերատորը անկախ փոփոխականով բազմապատկման օպերատորին բերող ունիտար օպերատորով ներմուծվել են \mathcal{L} -փաթեթի և \mathcal{L} -Վիներ-Հոպֆի օպերատորները։ Դիտարկվել է այն դեպքը, երբ \mathcal{L} օպերատորի պոտենցիալը չանդրադարձնող է, իսկ \mathcal{L} -Վիներ-Հոպֆի օպերատորի սիմվոլը կիսա-համարյա պարբերական ֆունկցիա է։ Բացահայտվել են \mathcal{L} -Վիներ-Հոպֆի օպերատորի կիսա-ֆրեդհոլմյան և ֆրեդհոլմյան լինելու պայմանները։ Ֆրեդհոլմյան դեպ-ջում ստացվել է ինդեջսի բանաձև։

А. А. Асатрян, А. Г. Камалян, М. И. Караханян

Об операторах типа -свертки с полу-почти периодическими символами

Заменой в определении оператора свертки преобразования Фурье на унитарный оператор, приводящий оператор $\mathcal L$ Штурма — Лиувилля на оси к оператору умножения на независимую переменную, введены понятия оператора $\mathcal L$ -свертки и оператора $\mathcal L$ -Винера—Хопфа. Рассмотрен случай, когда потенциал оператора является безотражательным, а символ оператора $\mathcal L$ -Винера—Хопфа — полу-почти периодической функцией. Выявлены условия полу-фредгольмовости и фредгольмовости оператора $\mathcal L$ -Винера—Хопфа. В фредгольмовом случае получена формула для индекса.

References

- 1. *Sarason D.* Duke. Math. J. 1977. V. 44. № 2. P. 356-364. <u>DOI:10.</u> 1215/S0012-7094-77-04415-5.
- 2. Duduchava R.V., Saginashvili A.I. Differ. Uravn. 1981. V. 17. № 2. P. 301-312
- 3. Böttcher A., Karlovich Yu.I., Spitkosky I.M. Convolution Operators and Factorization of Almost Periodic Matrix Functions. Basel; Boston; Berlin: Birkhäuser. 2002.
- 4. *Kamalyan A.H., Spitkovsky I.M.* Math Notes. 2018. V. 104. № 3. P. 404-416. DOI: 10.1134/S0001434618090080.
- 5. Kamalyan A. H., Karakhanyan M. I., Hovhannisyan A. H. Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences). 2018. V. 53. № 3. P. 134-138. DOI: 10.3103/S1068362318030032.
- 6. *Marchenko V.A.* Sturm-Liouville Operators and Applications. Basel; Boston; Stuttgart. Birkhäuser. 1986.
- 7. *Yurko V.A.* Introduction to the Theory of Inverse Spectral Problems [in Russian]. Fizmatlit. M. 2007.
- 8. Novikov S., Manakov S.V., Pitaevskii L.P., Zakharov V.E. Theory of Solitons: The Inverse Scattering Method. New York; London. Consultants Bureau. 1984.
- 9. *Bhatnagar P.L.* Nonlinear Waves in One-dimensional Dispersive Systems. Clarendon Press. Oxford. 1979.
- 10. *Faddeev L.D.* Journal of Soviet Mathematics. 1976. V. 5. № 3. P. 334–396. DOI: 10.1007/BF01083780.
- 11. Duduchava R.V. Convolution Integral Equations with Discontinuous Presymbols, Singular Integral Equations with Fixed Singularities and Their Applications to Problems of Mechanics [in Russian]. Metsniereba. Tbilisi. 1973.
- 12. Levitan B.M. Almost Periodic Functions [in Russian]. Fizmatlit. Moscow. 1953.