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1. Introduction. The semi-Fredholm theory of Wiener-Hopf operators
with semi-almost periodic symbols was developed in works [1] and [2] (see also
[3D.

In works [4] and [5] the concept of the L-convolution type operator is
introduced by replacing the Fourier transform in the definition of the convo-
lution operator by the operator which transforms the Sturm-Liouville operator
on the whole axis into the operator of multiplication by an independent variable.
The concept of the L-Wiener-Hopf operator is also introduced in a natural way.
In the case of zero potential these two notions coincide with classical convo-
lution operators and Wiener-Hopf operators, respectively. The precise defini-
tions of L-convolution type and L£-Wiener-Hopf operators in the case of reflec-
tionless potentials will be given in the next section. In this work we extend the
results of [1, 2] to the case of L-Wiener-Hopf operator with a reflectionless
potential.

2. The L-Wiener-Hopf operator. Let c:R > R be a Lebesgue

measurable function satisfying the condition f_oooo(l + |x[)c(x) dx < o0. An
important role in the spectral theory of the Sturm-Liouville equation
—y"(x) + c(x)y(x) = 2%y(x), x€R,AEC
is played by the Jost solutions e, (x,4) (x ER, ImA = 0) and e_(x, 1)
(x € R, Im A < 0) defined by boundary conditions
xgrpwe‘ilxei(x, D=1, xl_l)r;nw e"Mel (x,1) = iA
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(see, e.g., [6]). For A € R\ {0} the pairs of functions e, (x, 1), e, (x, —A) and
e_(x,4), e_(x,—A) form fundamental systems of solutions of the Sturm-
Liouville equation (see [6]) and hence e, (x, A) can be represented as
e (x,2) =be_(x,—1) + by(D)e_(x, ).
If the reflection coefficients 1. (4): = Fb(F1)/by(A) vanish identically,

the potential ¢ is called reflectionless (see, . g., [7], [8]).
It is known (see [7]-[9]) that every reflectionless potential has a
representation of the form

c(x) = —2 (ln A(x)) (2.1)
where
m; exp(—(u; + p;)x)

Hi + [
8;j is the Kronecker delta, uy, m, (k =1,...,N) are positive numbers

A(X) = det 61] +

i,j=1,..N, (2.2)

such that uy # p; for k # j. Reflectionless potentials are connected with a
family of explicit solutions of the Korteweg—de Vries equation, the so-called
IV -soliton solutions (see [8], [9]). Let the potential ¢ be given by (2.1), (2.2).
The operators £ and L, defined on the Sobolev space WZ (R) by the formulas
Ly =—y" +cy, Lyy = —y", are self-adjoint (see [10]). Let H,; be the direct
sum of all eigenspaces of the operator £, and let ¢, ..., @ be the orthonormal
basis of H,;, uniquely determined by the system of linear equations

mkmse_(l'lk-l—us)x

Uy +.us

Pr(x) + os(x) = mpe M*,  k=1,..,N

s=1

(see [7]-[9]). Consider the functions

N X
u(x, 1) = t(L)e* (1 — Z % o (x ))
k=1

N
. mye HkX
+ 1) = —iAx 1— k
w2 = e ( ey gok<x)>,

where the transmission coefficient t(4) is defined by

_ A+iu
(@ =b' W= [7=7—
ool Hk

Note that in the case of the zero potential the subspace H,; coincides with
the zero subspace, t(1) = 1 and hence u¥ (x,1) = eti4*,
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Further, m(g) will denote the operator of multiplication by a function (or
a matrix-function) g, ie., (Mm(g)y)(x) = g(x)y(x). The operators
J:L,(R) = L,(R), m4:Ly(R) = Ly(Ry), m2:Ly(Ry) = Ly(R) (1<
p < oo, R, =(0,0), R_ =R\ R,) are given by the formulas
U =y(=x),  (@y)(x) =y©),

@@ =P ECR w@w={0 Ter.

Consider the space L,(A,8) where A ={1,...,N} and & is the Dirac
measure on A. The unitary operator U: H; — L,(A,8) is defined by the
formula U@, = & where &.(j) = O);j. Consider also the operators Uz,
U:L,(R) » L,(R), U:H,@® Hy; = L,(R) @ L,(A,8) defined by the
formulas

1 [ _
W = 7= [o WFDy@dx (€ R),

U=m()U_ +m(x-)JU,,

~ (U 0
0-( %)
0 U

where H, = L,(R) © Hy, x4 is the characteristic function of the set R,
and the integrals converge in the norm of the space L, (R).

Note that in the case ¢ = 0 the equalities U_ = U =0 =F, U, = F!
hold, where F denotes the Fourier transform:

(Fy)(A) = Hy(x)dx,  y€Ly(R).

=
e e
oz )
The following statement is true:
Theorem 2.1. The operators Uz, U are bounded, the operator U is unitary
and on a dense subspace of L, (R) the equality TLT* = m(4?) holds.
Let d = (dy,...,dy)T € CN. Define the operator m(d):L,(A,8) —
L, (A, 8) by the formula M(d) (&) = (d &y, ..., dyén)T.
Let My, ; (1 < p < o) denote the set of all functions @ € L (R) such

that the operator

~. (m(a) 0 ) ~

v ( o @)Y
is L, (R)-bounded on the subspace L, (R) N L, (R). The continuous extension
of this operator to L, (R) will be denoted by W2 (a,d) and will be called the
L-convolution type operator with an L-symbol (a, d) on the space L, (R).

The operator W, (a,d) = m, W2 (a,d)r? will be called the L-Wiener-

Hopf operator. In the case £ = Ly we will use the notations M,, W°(a),
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W(a) instead of M, ., WLOO (a,d), W, (a,d). Obviously, W°a) and
W (a) are the convolution integral operator and the Wiener-Hopf operator,
respectively, and M, is the set of all Fourier multipliers (see [11], [3]). It is
known (see [11]) that M, is a Banach algebra with the norm |[a]| by =
IW°(a) ”B(L,,(]R{))- In particular, M, coincides with L, (R).

Theorem 2.2. Theinclusion M, € M, » (1 < p < ) holds.

3. Main results. The closure of the algebra of all piecewise constant
functions in M3, (1 < p < o) will be denoted by PCp,. It is well known (see
[11]) that PC,, = PC, = PC, where PC is the class of functions having finite
one-sided limits a(x £ 0) at each point x € R and also at x = F-00. Further, it
is known that PC, = M, N PC (see [3]).

Let R := [—00, 0], and let C,(R) == PC N C(R) with C(R) being the
set of all continuous complex-valued functions on R. In particular, C(R) :=
C,(R) = PC n C(R). Cy(R) will denote the subalgebra of C(R), consisting
ofall a € C(R) with a(+) = 0.

Further, let AP? be the algebra of all almost periodic polynomials, i.e., the
algebra of all functions p: R — C which can be written as a finite sum

p(x) = Zajemix, a; €C, 4 ER
Let AP, denote the smallest closed subalgebra of M, (1 <p < )
containing AP, and let SAP, denote the smallest closed subalgebra of M,
containing C, (R) and AP,. The algebra AP, (SAF,) lies in AP, (§AP,) which
itself coincides with the algebra AP (SAP) of all Bohr almost periodic

functions (semi-almost periodic functions). Every function a € SAF, has a
representation of the form

3.1)

a=1-wa,+ua,+aq

where a,,a, € AP,, ay € M, N Co(R) and u € C(R) is a fixed
increasing function satisfying conditions u(—o0) = 0, u(+o) = 1 (see [2],
[3]). The functions a,, a,, do not depend on the choice of u and are uniquely
determined by the function a (see [1]-[3]).

The group of all invertible elements of an algebra A will be denoted by
GA.

It is well known that a function a € SAP, (a € AF,) belongs to GSAP,
(GAP,) whenever a € GLy(R), i.e.,

infla(1)| >0, 21€R. (3.2)

According to the Bohr theorem on the argument of an almost periodic
function (see [12]), for @ € GAP there exist a real number x#(a) and a function
1 € AP such that
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a(x) = e @Dxe¥(X) for ]l x € R.
The uniquely determinable number »(a) is called the mean motion of the
function a and can be computed by the formula

(@) = lim o [(arg a)(¢) ~ (arg a)(~0)].
Here arga is to be understood as an arbitrary fixed function from C(R),
satisfying the equality a = |a|e"?"8%,
Let M(Y) = limgﬁwifi,ll)(x)dx be the Bohr mean value of the

function 1. The number & (a) = eM W) is uniquely determined by the function
a € GAP; it is called the geometric mean value of the function a. For any
a € GSAP,, the functions a, and @,., determined from (3.1), belong to GAP,
(see [2, 3]). Furthermore, the following equalities hold (see [3]):

£

£(er) = exp im [ llogla(o)| + i(arg @) (o) — i x(a)x] i,

0
(e = exp lim 7 [ logla()] + i(arga)(e) — i (@] dx.
e

The following two theorems describe the semi-Fredholm properties of the
operator W, (a, d).

Theorem 3.1. Let a € SAP, \ {0} with 1 < p < o. Condition (3.2) is
necessary for the normal solvability of the operator W;(a,d) in the
space L, (R,). In order that the operator W, (a, d) be normally solvable,
it is necessary and sufficient that along (3.2) one of these two conditions
hold:

1. x(a,)x(a,) = 0and x(a,) + x(a,) # 0.

2. u(a,;) =x(a,) =0and

1 1 [
nf 5 (@) +£@p) =5 (@) ~f@p) ethe (o +x)| >0 O

Theorem 3.2. Let the operator W (a,d) be normally solvable in the
space L, (R, ) with1 < p < oo. Then the following assertions are true:

1) If u(ap) + x(a,) >0, then dimker W; (a,d) < oo,
dim Coker W;(a,d) = o and dimker W, (a,0) = 0. In the case p = 2
the operator W, (a, 0) isleft invertible.

2) If u(a,) + #(a,) <0, then dimker W, (a,d) = oo,
dim Coker W;(a,d) < oo and dim Coker W, (a,0) = 0. Inthecasep = 2
the operator W, (a, 0) isright invertible.
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3) If #(ay) =x(a,) =0 and condition (3.3) is satisfied, then the
W, (a, d) isan Fredholm operator and

1 1
Ind Wy (a,d) = ———[(arga)(+) — (arga)(—o0)] + >

-Gtz

where {s} denotes the fractional part of the real number s.
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On L-convolution Type Operators with Semi-Almost
Periodic Symbols

The notions of the L-convolution operator and the £-Wiener-Hopf operator are
introduced by replacing the Fourier transform in the definition of the convolution
operator by a unitary operator which transforms the Sturm-Liouville operator £ on the
whole axis to the operator of multiplication by an independent variable. It is considered
the case when the potential of the operator is reflectionless and the symbol of the £L-
Wiener-Hopf operator is a semi-almost periodic function. Criteria for semi-Fredholm
and Fredholm properties of the £L-Wiener-Hopf operator are revealed. In the Fredholm
case a formula for the index is obtained.

Z. U. Uuunnpyuiy, U. 2. Ludwjui, U. b, Ywpuwhwbywbh

Yhuw-hwdwpyu wyuppkpuljwi updynjitkpng
L-twptph mhwh oykpuwnnputph dwuhb

Qupkph owkpwwnph uwhdwidwt Uk dniphth Alwihnpunipmniip thnpwph-
utkny wnwugph Ypuw vwhdwbdws Sunnipd-Lhnidhih oybpuwwnnpp wijwe thnthnjuw-
Juuny puquuuyuunljdut oybkpwwnnpht pipnn nithwnwp owbpwnnpny thpunidyt) tu
L-pwplph b L-dhubp-Znwdh owbpwwnnpubpp: Yhnwpyyky b uwy nypp, tpp £ owk-
punnph wnunkughwp swinpunupdunng E huy £-4hubp-Znydh owkpuinnph updnp
Jhuw-hwdwpw wupphpuljui $niighw b Puguhuyngty tu L-dhubp-Znygdh owyb-
nuwwnph Jhuw-pptnhnpdjut b $ptinhnjdjut (hubnt gquydwhbpp: Spbnhnpdjut nhiy-
pnud unnwgyty k hugbpuh putwdl:
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A. A. Acarpsn, A. I'. Kamansu, M. . Kapaxansin

00 onepaTopax TUNA -CBEPTKH C MOJIY-IIOYTH
nepuoANYEeCKMMH CUMBOJIaMH

3aMeHOW B ONpeNeNIeHnH OIeparopa CBEpTKH IpeobpasoBanus Pypbe Ha yHH-
TapHbIN oniepaTop, npusoAsuii onepatop L IItypma — JInyBUIUIsl HA OCH K OllepaTopy
YMHOKCHHUS Ha HE3aBHCUMYIO TIEPEMEHHYI0, BBE/ICHBI TIOHATHUS oniepaTtopa L-CBEPTKU U
onepatopa L-Bunepa—Xonda. PaccmoTpen ciydail, korza IMOTEHLMal OIepaTopa
SIBJISIETCSl Oe30TpaXkaTesIbHbIM, a CUMBOJI oneparopa L-Bunepa—Xorga — mony-nodru
nepuoandeckoi GpyHkuuer. BolsBiieHs! yciaoBus nomy-hpearoiabMoBocTd U ppearois-
MoBocTH oneparopa L-Bunepa—Xornga. B ¢ppenronsmoBoM ciryyae nonmydena dpopmyia
JUIS MHAEKCA.
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