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1. Introduction. The statement of the recognition problem is given in [1].
Let M= Uﬁ=1 Ki € M; X My X ... XxM,,n>1, where M; is a metric space
with a metric d;,i = 1,2, ..., n, be the set of admissible objects. Subsets K; are
called classes and K; #Q,i = 1,2, ..., L.

For an admissible object S classification is done by calculating estimates
[;(S) to the class K;. Each algorithm in a model is determined by choosing a
system of supporting sets, a proximity function, weights of the admissible
objects, weights of the attributes, and a decision rule. The system of supporting
sets Q, of an algorithm A is a nonempty set of subsets of {1,2,...,n}. Each
element Q € Qy can be described by its characteristic vector wgq =
(wq, w3, ..., w,), where w}'l =1 if and only if i€ Q. Denote Wy, =
{(J)Q | (NS QA}

In each algorithm A integers q1,q, = 0 and &; = 0,i = 1,2, ..., n are fixed.
For admissible objects S = (51,52, --.,Sp), S’ = (51,53, ---, Sp,), and a supporting
set Q the proximity function B(£, S,S") is defined as

B(Q,S,S,) — {1, (6 . (JJQ) = qq, (6 ' (UQ) < q
0, otherwise

where § = §(S,S") = (84, 82, ..., 8,) such that

5 = {1, di(si,si') < &;
b0, di(sisi) > g

Let y(S) be the weight of an admissible object S. Denote the weight of the
attribute i € {1,2,...,n} by u; = 0. The weight of a supporting set Q =
{i1, iz, ., i} is defined as u(wg) = py, + py, + -+ + w;,. The estimate T;(S) is
defined as
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where F is a normalizing factor. Formula (1) is practically inefficient because
the number of terms in the inner sum may be exponentially large. The following
formula is proposed for the calculation of the estimates [2]:

n
1
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where Q;(S,S)=1Qe€eQy|i€Q, B(Q,S,S")=1|. Now the number of
summations in (2) is not greater than n. If the number of distinct values of
Q;(S,S8") is small, then the calculation of the inner sum almost disappears.
Hence (2) is an effective formula for the estimates calculation.

By ||a|| we denote the number of ones in a binary vector a. For binary
vectors a and 8, a + f denotes the logical XOR operation.

Suppose §; = 1 if and only if i € A= {jy, 2, veer jin b J1 < J2 < *** < jim. For
a=(ay,ay ...,an) denote a'=(aj,a;,..,a, ) and a®= (ay,,a,, -
ay, ), where {ki,ky, . ky_m}={12,..,n}\A4 ki <k, < <ky_p.
Then

B(Q,S’S’) = B(Ql6lAlqllq2) ={

[;(S) =

1, ||6* + wh|| < 18] — g4, ||6% + @3] < g2
0, otherwise

The latter defines B(L, 5,4, q1,q,) even when § and A are not related,
i.e. B(Q),8,A,q4,q3) is defined for V6 € E™,VQ,A € {1,2,...,n}, Vq4,q, = 0.
Unless otherwise stated, we assume that § and A are not related.

Define Qi(6l A' q1 qZ) = I‘Q € ‘QA | i € 'Q': B(‘Q' 6! A' q1, qZ) = ll, i(‘QA) =
{Qe, i€ Q}land Q;(8,4,q1,92) = [U(Q)| — Qi(5,4,q1, q2).

Definition 1.1. A system 2, of supporting sets is said to have rank k, if
{Q;(6,4,q1,92)} =1l <k, for V6 € E"vAC{1,2,..,n},Vq,q, =0, and
|{Q:(8°,4°, a7, a)}=1 | = k for some (6°,4°, 47, q2).

Definition 1.2. A system 02, of supporting setsis said to have 4-rank k, if
|{Qi(51A' q1, qZ)}?=1| < k’ for vé € En;A = {l | 6i = 1}' vqlr qz = 0' and
[{Q:(6°,4° 7, gD}, | = k for some (6°,4°,49,¢9), A° = {i | 6 = 1}.

The rank and the A-rank of the system (), are denoted by R({,) and
RA(Qy) respectivally. Clearly Ry(4) < R(Qy,).

Definition 1.3. A system (2, of supporting sets is called absolutely re-
ducibleif [1(2,)| < 1,Vi € {1,2,..,n}or |[i(2)| =n—1,Vi € {1,2,..,n}.

Definition 1.4. A system ), of supporting sets is called absolutely sym-
metric if for each 2 € ,, it follows that E1“2!l ¢ W,

Definition 1.5. A system £, of supporting setsis called internal if @ & 2,4
and {1,2,...,n} & Q,.

Clearly, when considering the rank and the A-rank of a system ()4, without
loss of generality we may assume that ), is internal. The following theorem is
due to [3]:




Theorem 1.6. Given an internal system (2, of supporting sets, R,(2,) < 2
if and only if £, iseither absolutely reducible or absolutely symmetric.

For the rest of the paper we will assume that (), is internal. If Qg4 is
absolutely symmetric then R(Q4) < 4 [2]. Thus, for absolutely reducible and
absolutely symmetric supporting sets we only have upper bounds for R({),) and
RA(£24). In section 2 we calculate the exact values of R(Q,) and Rp(Q,) for
these supporting sets. Finally, in section 3 we suggest a general method for
constructing effective algorithms.

2. Ranks of absolutely reducible and absolutely symmetric supporting
sets. Proposition 2.1. If 2, is absolutely symmetric, then R,(2,) = 2.

Proof. Let § = (0,1,1,...,1), A={2,3,...,n}, g; = g, = 0. Then
Q:1(6,4,91,92) = 0and Q;(6,4,q1,92) # 0,i # 1 and Ry(£24) = 2.

Proposition 2.2. If 2, isabsolutely reducible, then R(£24) = R,(2,) = 2.

Proof. If |1(Qy)| # |j(Qy4)] for some i,j € {1,2,...,n},i # j, then taking
V8 € E™,q; = 0,9, = nwe have Rp(Q,) = 2. Otherwise, we take the same
approach as in the proof of proposition 2.1.

It is easy to see that R(Q,) < 2. Thus we also have R(Q,) = 2.

To calculate the ranks of absolutely symmetric supporting sets we need a
few lemmas. To avoid considering various trivial cases we will assume that n >
5.

Lemma 2.3. For W, , = E; we have R(1,) = 4.

Proof. Let § = (0,0,0,1,1, ...,1),A = {2,3,...,n — 1},q; = 1,q, = 1. Then
51 =(0,01,...,1),6% = (0,1) and

B(0,6,0 g1, q,) = {1, |5t + a)})” <n-3,|6%+ ] <1
0, otherwise
Since 61 € E"2, ||61 + (l)é” > n — 3 means wh = 81 =(1,1,0,...,0). As
wgq € E2, the latter implies wq = (0,1,1,0, ...,0). Now
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{oeql1eq, 52+w6||>1}|:(n1 >=n—2

and
{oeq,|1eq ||t +wh|>n-3|62+wi| <1} =0
Hence Q,(8,4,q4,q,) = n— 2. For Q,(8,A, q4,9,) we have
{oeq2eq|6%+wd|>1} =1
and
{oeq,|2eq |6t +wh|| >n-3|62+wi| <1} =1
Therefore, Q,(8,4,q4,q,) = 2. Similarly, we get Q,(5,A,q1,9,) =1 and
Qn(5_: A q1,q2) = 0. From _ _
Q1(3,4,4q1,92) > Q2(8,4,41,92) > Q4(8,4,91,q2) > 0r(8,4,q1,92)
it follows that
Q1(8,4,91,92) < Q2(8,4,41,92) < Q4(6,4,91,492) < Qn(6,4,41,92)
and R(Qy) = 4.
Lemma 2.4. For W, , = E; we have R(12,) = 4.



Proof. Let 6§ =(0,0,0,1,1,..,1),A={23,..,.n—-1},q; =1, =1. In
the same way as in lemma 2.3, we can show that

— n —
01(6.A,q1.qz)=( 2 >'Q2(5'A'CI1:612):71_2

Q4(5; A' q1, qZ) =n- 3! Qn(5' A, q1, QZ) =1
Hence Q1(8,4,q1,q2) < Q2(8,4,91,92) < Q4(8,4,91,92) < Qn(6,4,91,92)
and R(Q,) = 4.
Corollary 2.5. If Wo, = E2 or Wo, = E3 then for 6 = (0,0,0,1,1,...,1)
:A = {2,3, ey — 1}, q1 = q = 1 we have Ql((SJA' q1, qZ) < Q2(6,A, q1, qZ)
< Q4(8,A, q1, qZ) < Qn(61A» q1, qZ)
Lemma 2.6. For W,,, = Ef,3 <k <n—1wehaveR(12,) = 4.

Proof. Let 6 =(0,0,0,1,1,..,1),A={23,..,n—1},q; =k —3,q, = 1.

Then 6* = (0,0,1, ...,1),6% = (0,1) and
B(Q,6, A q1,,) = {1, |6t + w(l)“ <n—-k+1,]|
0, otherwise

The value of (T), where | < 0, is considered to be zero.

Again, by considering |{Q EQ,|i€Q,]6%+ a)é“ > 1}| and
{oeqlieq|6'+wy||>n—k+1,]6%+wd| <1} =0fori=124,
n, we get

Q:1(8,4,41,02) = (n } 2) + (n } 4>'Qz(5'Ar q1,92) = (n ) 3) + (n ] 4).

52+ wi| <1

k—1 k—4 k—2 k—4
5.(5,A )_(n—3> (n—5> 5 (5.4 )_(n—4)
Q4(0,4,q1,92) = Kk —2 + k—5 ,Qn(9,4,91,q2) = K — 4
Hence,

Ql (6l Al q1, qZ) < QZ (61 Al q1, qZ) < Q4~ (6r Ar q1, qZ) < QTL(6' Al q1, QZ)
and R(Q,) = 4.

Corollary 2.7. Let Wy, = EX,6 = (0,0,0,1,1,..,1),4 = {2,3,...,n — 1},
q1 = k —3,q, = 1. The following assertions hold:
() If5 < k < n — 2, then
QZ (61 A, q1, qZ) - Q1(6' A' q1, qZ) > 2: Q4(6' A' q1, qZ) - QZ (5, A' q1, qZ) > 2'

Qn(6lA' q1, qZ) - Q4(6,A, q1, qZ) > 2.
(i) If5<k =n-—2then
Ql(dl Al q1, qZ) < QZ (51 Ar q1, qZ) < Q4(6l Ar q1, qZ) < Qn(5r Al q1, QZ) - L

(iii) If 4 = k < n — 1 then

Ql (61 A' q1 qZ) < QZ (6' A' q1, qZ) < Q4(6' A' qi1, qZ) < Qn(6; A' q1 qZ)
Proof. From the proof of lemma 2.6 we have

-3
QZ (6'A' q1, qZ) - Ql (5, A' q1, qZ) = (n )

k—1
n—>5
Q4(8,4,q1,92) — Q2(6,4,41,q2) = (k _ 4)
n—>5 n—4
Qn(5r Al qll QZ) - Q4(6' A' ql' qZ) = (k — 3) + (k - 2)

The statement of the corollary immediately follows.
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Lemma 2.8. If W,, = Ef,4 <k <n—1, then for § = (0,0,0,1,1, ...,1),
A=1{23,..,n—1},1<q, <k—-3,q, =1wehave Q,(5,4,q1,92) <
Q2(8,4,41,92) < Q4(8,4,q1,42) < Qn(8, 4,91, q2).

Proof. By definition,

B(0,5, A g1, qy) = {1, |6 + a)}1|| <n—-2-q,|6*+wi| <1

0, otherwise
From 1 < g; < k — 3 it follows that
{Qeq,lieq|6'+wh|>n-2-q,|6%+wj| <1}

<[{faeqlieq|d'+wh|>n-—k+2|6%+wi|<1}|=0
foreachi =1,2,..,n.
Hence, we only consider |{Q EQ|ieq, ||62 + wé” > 1}| for i =1,2,4,n,
and

5.(5,A )_(n—Z
Q1(6,4,491,92) = k—1

_ n—
Q4(6l Ar q1, QZ) - (k )

— n—3
>,Q2(5,A. q1,.92) = (k _ 2>,
) ,Qn(8,4,q1,92) = 0.
Thus,
Q1(6,4,91,92) < Q2(8,4,91,q2) < Q4(6,4,91,92) < Qn(6,4,91,92) and the
proof is completed.
The following lemmas can be proven similarly.

Lemma 2.9. If W,,, = Ey or Wy, = Ef~%, thenfor 6 = (0,0,0,1,1, ...,1),
A={23,..,n—1},q, = q, = 1 we have Q1(6,4,91,92) < Q2(8,4,q1,q2) <
Q4(6,4,q1,q2) < Qn(6,4,q1, ).

Lemma 2.10. Let 6§ =(0,00,11,..,1),4={23,..,n—1},q; =n—
5¢=1Ln>6. If W, = Ey then Q1(8,4,q1,92) < Q2(8,4,91,q2) <
Q4(8,4,01,92),10,(5,4,41,q2) — Q4(8,4,q1,92)| < 1. If Wa, = Ex~* then
Q:1(6,4,41,92) = Q2(6,4,91,92) = Q4(8,4,41,92) =n —2,

Qn(6,4,91,92) =n—1.
Proposition 2.11. If 2, isabsolutely symmetric then
2, if Wo, = Eqgor Wy, = ER~"
R =43,  ifW,, =EfUER™?
4, otherwise

Proof. The first case follows from proposition 2.2. Fix (6,4, q4,q,) and
consider the second case. Note that if {Q;(8, 4, q;,92)}{=; = {a, b} for W, =
ER~1 then |a — b| = 1. Since [{Q;(6,4, q1,92)}=,| = 2 for Wq, = E} implies
that {Q;(8,4,q1,q2)}=; = {0,1}, we have [{Q;(6,4,q1,q2)}=1] <4 for
Wq, = Ey UER™!. Again taking & =(0,0,0,1,1,..,1),A={23,..,n—1},
q1 = q = 1yields R(Qy) = 3.

For the third case, first suppose that W, N (EF U E3 U Ey) =Q@.
Let § =(0,0,0,1,1,..,1), A=1{23,..,n—1}, ¢, = min{|Q| |Q € Q,, |Q| £
1, [0l #n—-1}-3, q; = 1.If Wy, N (Ex U E}™") =@ then

Q1(8,4,q1,92) < Q2(8,4,41,q2) < Q4(8,4,91,92) < Qn(8,4,91,2),
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and therefore R(€,) = 4, follows straight from corollary 2.7 and lemma 2.8.
Now if Wy, N (EL UER1) #@ then from corollary 2.7, lemma 2.8, and
lemma 2.10 follows that we again have

Q1(6,4,91,92) < Q2(8,4,q1,92) < Q4(6,4,41,92) < Qn(6,4,41,42)
and R(Q,) = 4.

Finally, if W, N (Ef U E; U Ep) #@, we choose § = (0,0,0,1,1, ...,1),
A={23,..,n—1},q, =q,; =1 and R(Q4) =4 follows at once from
corollary 2.5, corollary 2.7, lemma 2.8, and lemma 2.9.

3. A General Method for Constructing Effective Algorithms. Let (4 be
a supporting set, M € N = {1,2,...,n}, and G be a subgroup of the symmetric
group Sy. For 0 €G and wg = (w1, Wy, ..., w,) € Wy, define owqg =
(vq,vq, ..., Uy) as

Wi, ifieM
L= {w(,_l(i), ifieM

Definition 3.1. G(12,) = {0 € Sy | ow,, € Wy, } is the invariant group of
0.

For o € Sy, define ¢ € Sy as

—. i, ifieM
a(i) = {a(i), ifieM

For G < S), denote G = {G | 0 € G}.

Definition 3.2. Let G < Sy,. We say (2, is invariant under G over M, if
G < G(2y).

Definition 3.3.We say that 4-rank of 2, over M is equal to k and write
RY(Qu) =k, if 1{Q;(6,4,q1,92) |i eM}| <k, for V6 €E™"A={i|d; =
1},Vq1,q, 2 0, and [{Q;(8°,4° q7,q9) | i eM}| = k for some (8°,4°¢7,
q9), 4% ={i| & =1}.

Theorem 3.4. Suppose N; UN, U ...UN, = N,N;NN; =Q,i # j, G; X
G, X ..X G, < G(,), so that 0, is invariant under G; over N;, and
RN (2,) < k;. Then Ry(82,) < XX, k;.

The case G; = Sy, is considered in [2]. Thus, this is a natural gene-
ralization of [2]. It is proven that for G; = Sy, we have R]Avi(QA) < 2. Let us
consider another example. Suppose M = {ig, i1, ..., im—1} S N,ip <i; <+ <
im—1 and 1y, is the cyclic permutation my = (iyiy ... L,—1) defined over M.
Denote Cyy =< 1y >= {n}, | t € Z} and
Wé’; = {(wio,wil, ""wim—l) | (wq, w5, ..., wy,) € WQA}.

Definition 3.5. A system (2, of supporting sets is circulant on M if Wé"/’l =
{ow®|o € Cy}, where w°=(11,..,1,00,..,00 € E™ ||| =k 1<k <
m — 1. The weight of M is denoted by (M) and is equal to k.

Clearly, if Q4 is circulant on M then ()4 is invariant under Cy; over M. Let
Q4 be circulant on M and Y(M) =k. For j€{0,1,..,m—1} and § =
(61,905, ..., 8,) define
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i(M,8,) = (8 )8

i(j—k+1) modm’ 6i(j—k+2) modm’ i(j+k—1) mod m)

=, Ly, oy Lyg—1).

For example if n=10,M = {1,2,...,10},k = 3,1(M, §,5) = (84, b5, b6,
87,0g) and (M, 6,9) = (8g,89,810,01,02).  For x = (x1,%x3, ..., %21_1) €
E?k=1 denote y; = (Xj, Xi41, » Xizk—1), 1 < i < k and consider the multiset
W(x) = {lly.1l, ly21l, .., 1y |I}. The following proposition follows from the
definition of B(Q, S, S'):

Proposition 3.6. If W(I(M,6,))) =W (I(M,5,k)) for some j ke
{0,1,..,m—1}, then for A={i|6; =1} and gq1,q, =0 we have
Qij(6» 4, q1, qZ) = Qik (8' 4, a1, qZ)

Define an equivalence relation on vectors of length 2k — 1: x ~ y if and
only W(x) = W(y). Denote the number of equivalence classes by cy.

Proposition 3.7. If 2, iscirculant on M, then RY (12,) < c4.

Thus, finding the number of equivalence classes gives an upper bound on
the number of distinct values of Q; (5, A, q4,q,) on M.

Proposition 3.8. ¢, = (k + 3)2k~2.

Proof. Say Hy, H,, ..., H, are the equivalence classes: W (x) = W(y) for
x,y € H;,j =1,2,..,c,. Consider sequences a,a,..ay that satisfy the
following conditions:

0<aq; <ki=12..,k
{ai <agu1<aq+1i=12 ok —1 (31)
Let us show that for each sequence that satisfies (3.1) there is a class Hj, such
that a; = |[(x;, Xj41, ooos Xj4k—1)I, i = 1,2, ..., k for some x € H;.
We apply induction on k. For k = 1 the assertion holds. Now let k > 1 and
assume the assertion is true for smaller values. There are the following two
cases to consider:
Casel:a;_q < k.

By the induction hypothesis there is x € such that a; =
N(xiy Xip1s eos XD, i = 1,2, ...,k — 1. Then for X = (xq,X3, ., Xk—2,
0, Xj—1) weer Xog—3, A — Ag—q1) = (Xq, Xy, ..., Xoi—1) We have
a; = 1(&y, Xiggs oo XDl 0 = 1,2, . k.

Case2:ay_1 =k.

Now we have a,_; = a; = k. Consider X = (¥, X, ..., X2 _1) Where
N_l—(ai+1—ai), lflSlSk—z
x"_{l, ifk—1<i<2k-1

Note that a; = ”(fi,fi_}_l, ""fi+k—1)”9 i=12,.., k.

Thus, there is one to one correspondence between the equivalence classes
and the set of sequences satisfying (3.1). Hence, it all comes down to counting
the number of sequences satisfying (3.1).

Let S, denote the set of all sequences that suffice (3.1). We consider two
cases similar to what we just have considered. If a4, a,,...,a; € Si, then
sequences aq,dy, ..., g, A and aq,as,, ..., g, a; + 1 belong to Si.,4. Thus, in

EZk—3
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Si+1 it Temains to count the number of sequences ending with two k + 1, i.e.
the number of sequences satisfying
0<ag;<k+1i=12,..,k+1
a; < a1 <a+1i=12 k=1 (32)
Ay =ape1 =k +1

For each such sequence there is x = (x, Xy, ..., X2x4+1) € E2**1 for which
a; = |1(x;, Xiz1, - Xig)l, 1 < i <k + 1. From a; = agyq = k + 1 it follows
that x; =1,i =k, k +1,...,2k + 1. The latter implies that the a; < a;;1 <
a; +1,i =1,2,...,k — 1 condition is met for every value of x;,i = 1,2,...k —
1. Note that for each (xq, x5, ..., Xx—1) wWe get a different sequence. Hence the
number of sequences satisfying (3.2) is 2=, Combining the two cases we get
Crs1 = 2¢x + 2%71. Solving the recurrence relation proves the proposition.

Corollary 3.9. Let Ny UN, U..UN, =N,N;NN; =Q,i #j and 2, be
circulant on Ny, n; = |N;|, with Yp(N;) =k;,i =1,2,...,k. Then R (2,) <

K min(n;, (k; + 3)2ki2).

The upper bound given in corollary 3.9 is only helpful if ¥(N;) are very
small compared to |N;|. For these cases we may even have equality, i.c. the
upper bound in corollary 3.9 is achievable.

Proposition 3.10. The upper bound in corollary 3.9 is exact.

Proof. Letn = 4t,t >3,k =2,N; ={12,..,3}

Ny =24 1242np w) = Lp(N,) = 2.

Choose q; = 0,9, = 1,8 = (64, 65, ..., 6,,), where
1 'f1<i<Eori:E+10rE+3<i<E+E+1

s=17 Y =t=3 2 2Tty

0, otherwise

For example, ifn = 16,6 = (1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0).

Then Q,(5,4,91,93) = % + 2, Q%_l(é‘, A qq,q;) = % -2,
Q%““l(&' A.q1,92) = % Q§+3(5» Aq1,qz) = §+ z

"
Q§+4(5: A q1,92) =1, Q§+%+2(6’ A q1,92) = %: Q§+§+3(5' A q1,92) =0,
and Ry (2,) = (ky + 3)2%172 + (ky 4+ 3)2k2"2 = 7.
Theorem 3.11. Suppose Ny UN, U ..UN, = N,N; N N; =@, i # j, {1, is
invariant under Sy,,i = 1,2, ..., t, and iscirculant on N;, n; = |N;|, with
Y(N;) =kj,j=t+1L,t+2,.., k. ThenRy(2,) < 2t + ¥¥_,,, min(n;, (k; +
3)2ki72),
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D. S. Sargsyan

On Effective Implementation of Recognition Algorithms
for Calculating Estimates

In this paper the exact values of the ranks for some systems of supporting sets are
calculated. A general method for constructing effective algorithms is suggested.

. U. Uupquyuiis

Swtuwsnnuljut wignphpdutph wpyniiwybn hpuljubwgnidp
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Zupyynud ki nwgkph doqphwn wipdtpubpp npny oguing puqunipnibtiph hwdwp:
Unwowpyynud t wpynibwytn wignphpdutph jurnigdwb punhwinip dbpnr:

. C. Caprcsin

06 3¢ pekTUBHON peanu3anny AJITOPUTMOB PACIIO3HABAHUA
JJ151 BLIYMCJIEHHUS OI[€HOK

BbluncieHbl KOHKpPETHBbIE 3HAYCHUSI PAHIOB JIJIsi HEKOTOPHIX CHCTEM OIOPHBIX
MHOXecCTB. [Ipeayaraercst 00miA M0AX0.1 TOCTPOSHUS 3H(HEKTUBHBIX aJTOPUTMOB.
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