2 U 8 U U S U U F 9 F S ∩ F Ø 8 ∩ F U U F U P U 8 F U U 4 U 7 E U F U

 Н А Ц И О Н А Л Б Н А Я АКАДЕМИЯ НА УК АРМЕНИИ

 N А T I O N A L А С А D Е М У О F S C I E N C E S O F A R M E N I A

 Д О К Л А Д Ы
 26 4 ∩ F 8 8 U 6 F

^{Հшилпр} Том 118 Volume

2018

ЭЛЕКТРОМЕХАНИКА

<u>№</u> 4

УДК 621.313

Член-корреспондент НАН РА Г. С. Караян¹, С. В. Гандилян², А. А. Макарян¹

Вопросы обобщенного электрофизического моделирования и расчета оптимальных энергетических характеристик электродинамических ускорителей масс

(Представлено 17/ІХ 2018)

Ключевые слова: специальные электромеханические системы, индуктивные и емкостные накопители энергии, униполярные ударные генераторы, рельсотронный электродинамический ускоритель масс, индукционный электродинамический ускоритель масс, низко- и высокотемпературная сверхпроводимость.

Введение. Среди современных комплексов электромеханических преобразователей энергии специального назначения особое место занимают электродинамические ускорители масс (ЭДУМ) разной модификации и предназначения, преобразующие электромагнитную энергию в механическую энергию ускоряемого тела (твердая электропроводящая или магнитопроводящая масса, плазма) [1, 2].

В 1970-1980-х гг., развивая физико-технические и технологические основы плазменных электрореактивных двигателей космического назначения, положили начало развитию плазменных ускорителей масс и начертили области их дальнейшего применения в различных направлениях науки и техники [3]. Системный анализ фундаментальных исследований в области электрофизического и математического моделирования, автоматизированного проектирования и технологического изготовления ЭДУМ разного предназначения приведен в многочисленных зарубежных и российских научных публикациях, например, в работах [4-9].

1. Классификация ЭДУМ по принципу действия. К настоящему времени сформировались два больших класса ЭДУМ, отличительной особенностью которых является принцип действия:

а) рельсотронные электродинамические ускорители масс – РЭДУМ;

б) индукционные (коаксиальные) электродинамические ускорители масс – ИЭДУМ.

Простейшая структурная схема РЭДУМ представлена на рис.1.

Рис. 1. Структурная схема рельсотронного ЭДУМ: 1 – источник питания; 2 – направляющие электроды (рельсы); 3 – токопроводящий плазменный якорь; 4 – ускоряемое тело (снаряд).

К токопроводящим рельсам подключается источник питания электромагнитной энергии, в котором используются индуктивные и емкостные накопители, униполярные ударные генераторы, характерные для сильноточной электротехники и ускорительной техники, обеспечивающей **мощный** импульсивный ток возбуждения цепи.

В РЭДУМ ускоряющая сила, выталкивающая якорь (снаряд), действует по всей длине канала ускорения (ствола). В практике конструкция РЭДУМ может быть усложнена введением дополнительных рельсов подмагнитывания, усложнением формы якоря, каскадным объединением нескольких ЭДУМ в один многорельсовый.

Одно из возможных применений таких систем – реализация на базе РЭДУМ стратегического кинетического оружия в модификации электромагнитных пушек, обеспечивающие скорость метания снарядов до 6÷6.5 км/с (вместе 1.3÷1.6 км/с – для снарядов обычных артиллерийских установок и ракетного оружия).

Из известных результатов по достижению рекордных скоростей разгона массивных тел наиболее значительным является полученный в США в 2015 г. эксперимент на установке ЭДУМ, где снаряд массой порядка 2.8 кг развил скорость 9000 км/ч. При этом в качестве энергетической системы возбуждения использовался емкостный накопитель с энергией 10 МДж [10, 11].

Принцип действия индукционных ЭДУМ (рис. 2) основан на взаимодействии магнитного поля, создаваемого соленоидом, с вихревыми токами, индуцируемыми магнитным полем на ускоряемом диамагнитном теле (ускорение якоря происходит под действием давления магнитного поля) [12].

Здесь предложен обобщенный энергетический подход электрофизического моделирования РЭДУМ, позволяющего учитывать большое число конструкционных и динамических взаимосвязанных факторов, определяющих их основные энергетические характеристики. Представленная модель позволяет оценивать основные параметры обобщенной ускорительной системы, такие как: величина токов в контурах и величина магнитной индукции в объеме ускоряемого объекта, ускоряющая сила, действующая на якорь (снаряд) и его скорость, температуры токопроводящих частей, их сопротивление и индуктивность, общая эффективность системы ЭДУМ.

Рис. 2. Принцип индукционного (коаксиального) ускорения макротел.

2. Обобщенная электрофизическая модель электромеханических ЭДУМ. Физические процессы, происходящие в ЭДУМ, можно описать с помощью следующих фундаментальных уравнений.

 Исследование динамических режимов и энергетических характеристик ЭДУМ можно осуществить универсальной энергетической функцией на базе принципа наименьшего действия электродинамики и электромеханики в лагранж-максвелловском пространстве обобщенных переменных:

$$\Im(t)\delta t = \sum_{i}^{N} \delta\left(\oint m_{i} V_{l} dl_{l} + \iint d\psi_{i} dq_{i}\right),$$
(1)

где N – число материальных контуров тока; m_i – масса, V_i – скорость движения, q_i – электрический заряд, ψ_i – магнитное потокосцепление *i*-го контура тока [13, 14]. Энергетическая функция $\mathfrak{I}(t)$ характеризует интенсивность взаимодействия электромеханической энергии с внешним источником энергии.

2) Процессы преобразования электромагнитных полей в ЭДУМ можно описать на основе системы уравнений Фарадея – Максвелла. При этом следует отметить, что, так как электрическая проводимость рельсов и якоря в РЭДУМ достаточно высока, в них можно использовать магнитогидродинамическое приближение этих уравнений [15]. В этом приближении током смещения $\frac{\partial D}{\partial t}$ в РЭДУМ можно пренебречь по сравнению с током проводимости *J*, и, соответственно, в рабочем объеме ЭДУМ уравнения электромагнитного поля выражаются в форме

$$rotE(r,t) = -\frac{\partial B(r,t)}{\partial t} - rot \Big[B(r,t) \times U(r,t) \Big],$$

$$rotH(r,t) = 4\pi j(r,t), divD(r,t) = \rho_e(r,t),$$

$$j(r,t) = \sigma E(r,t), B(r,t) = \beta(r,t) H(r,t), divB(r,t) = 0,$$

$$G \in (r,t), t \in [0,\tau].$$
(3)

где U(r,t) – скорость деформации контура электрического тока, r(x, y, z) – радиус-вектор якоря G(r,t) – пространство-временная область действия элекромагнитного поля в рабочем объеме ЭДУМ при единичном цикле

метания макротел. В РЭДУМ это скорость движения якоря (снаряда) – U = V.

Если в РЭДУМ рабочий ток разряда течет не через ускоряемое тело (твердотельный снаряд), а через плазменный поршень, создаваемый за тыльной стороной ускоряемого тела, то относительно системы отсчета, связанной с источником возбуждения, в уравнении (1) масса *m* определяется как суммарная ускоряемая масса и выражается в форме

$$m=m_1+m_2,$$

где *m*₁ – масса твердотельного снаряда, *m*₂ – масса плазменного поршня, толкающего снаряд.

При этом поведение плазменного поршня в первом приближении можно описать на основе системы уравнений гидродинамики [16, 17], включающей в себя уравнение непрерывности и уравнение движения центра масс плазменного поршня

$$div(\eta V) + \frac{\partial \eta}{\partial t} = 0, \ \frac{\partial V}{\partial t} + (V * grad) V = F - \frac{1}{\eta} grad(p),$$
(4)

где η – плотность плазменной струи, p – давление, F – электромагнитная сила, действующая на единицу массы плазменного поршня.

В данном случае можно полагать, что давление плазменной струи связано с температурой *T* следующим известным соотношением (*K* – постоянная Больцмана) [17]:

$$P = \frac{K\eta}{m_1} * T \,. \tag{5}$$

Величина суммарной силы сопротивления в РЭДУМ можно выразить в форме

$$F_c = F_1 + F_2 = N_1 V^2 + N_2 V^2, (6)$$

где F_1 – сила сопротивления, N_1 – суммарный коэффициент сопротивления движению твердотельного якоря; F_2 – сила, N_2 – коэффициент турбулентного трения плазменного поршня.

В [18, 19] для N_2 и N_2 определены следующие выражения:

$$N_1 = C_x \rho_0 S_1 \left(1 + f_1 \frac{S_2}{S_1} \right), N_2 = \frac{f_2 m_2}{2d},$$
(7)

где C_x – коэффициент сопротивления воздуха (x – текущая координация на оси, направленной вдоль электродов рельсотрона), ρ_0 – плотность невозмущенного воздуха ($\rho_0 \approx 1,206$ кг/м³), S_1 – эффективная площадь сечения метаемого тела (снаряда), S_2 – площадь боковой поверхности, f_1 - безразмерный коэффициент трения боковой поверхности снаряда и внутренней поверхности канала ЭДУМ, f_2 – безразмерный коэффициент трения плазменного поршня, d – межэлектродный зазор канала ЭДУМ. Отметим одно важное обстоятельство. Из (1) и (2) следует, что электромагнитную силу (силу магнитного давления), действующую на метаемое тело, в РЭДУМ можно выразить в следующих эквивалентных формах:

• на базе теории цепей с нестационарными параметрами

$$F_{\mathfrak{z}} = \frac{1}{2} \left[\frac{\partial}{\partial x} L(x,t) \right] i^2(t), \qquad (8)$$

где L(x,t) – индуктивность рабочего канала рельсотрона, i(t) – импульсный ток возбуждения;

• на базе теории электромагнитного поля

$$F_{3} = \frac{1}{2} \frac{d}{dx} \left[\frac{\partial}{\partial \tau} \int_{0}^{V_{0}} \rho(r, t) dV_{0} \right], \qquad (9)$$
$$\rho(r, t) = \frac{1}{2} A(r, t) * D(r, t) ,$$

где p(r,t) – плотность действия в рабочем объеме V_0 рельсотрона, τ – длительность импульса тока возбуждения.

Совместное применение уравнений (1) - (9) позволяет выработать более комбинированный подход при изучении динамических процессов в РЭДУМ, их физико-математического моделирования и автоматизированного проектирования. Появляется возможность учитывать большое количество внешних и внутренних взаимосвязанных факторов, определяющих их основные динамические и энергетические характеристики.

Для исследования динамических и энергетических характеристик РЭДУМ конкретной конструкции необходимо в этих уравнениях учесть их конструкционные особенности, сочетая в одной программе уравнения электрических цепей с уравнениями электромагнитных и тепловых полей.

3. Расчет динамических и энергетических характеристик однокаскадных РЭДУМ. На базе (1) и (9) можно установить исходные уравнения моделирования процессов и расчета динамических и энергетических характеристик однокаскадного ЭДУМ базовой конструкции (рис. 1), в контуре которого протекает импульсный ток i(t), создаваемый разрядом первичного источника электрической энергии с напряжением U_0 в следующей форме:

уравнения баланса мощностей в замкнутой системе (в контуре тока) ЭДУМ и электромеханического движения ускоряемого тела

$$U_{0}(t)i(t) = i^{2}(t)R(x) + \frac{d}{dt}W_{m} + V(t)F_{3}, \qquad (10)$$

$$m\frac{d}{dt}V(t) = \frac{1}{2}\frac{d}{dx}L(x)i^2 - NV^2(t), \qquad (11)$$

где W_m – энергия рабочего магнитного поля, $V(t) = \frac{dx}{dt}$ – скорость движения ускоряемого тела вдоль координаты x, $N = (N_1 + N_2)$ – суммарный коэффициент сопротивления движению тела.

Автоматизированное проектирование и технологическое изготовление РЭДУМ являются многопараметрической оптимизационной задачей получения заданной максимальной выходной скорости ускоряемого тела при минимальной мощности источника питания, которое обеспечивается как решением материаловедческих задач (выбор электротехнических материалов функциональных элементов с предельно высокими значениями электрофизической, теплофизической и механической прочности), так и оптимизацией их геометрических параметров [20, 21].

Как для любых технических систем, способность РЭДУМ в процессе эксплуатации сохранять предельные значения параметров устойчивости оценивается параметром «живучести» их функциональных (структурных) элементов.

Определяющие «живучесть» функциональных элементов РЭДУМ узловые принципы могут быть сформированы следующим образом:

максимальное магнитное давление и температура в канале ускорения не должны превышать пределы теплофизической и механической прочности материалов ускоряемого тела;

живучесть канала ускорения (ствола рельсотрона) обеспечивается, если при эксплуатации ЭДУМ протекающий рабочий ток возбуждения не приводит к эрозии контактной поверхности направляющих рельсов (электродов).

Первый принцип определяет ограничение, накладываемое на величину предельно допустимого тока возбуждения пределом динамической прочности материала ускоряемого тела, которое разрушается при ускорении

$$\alpha_m = \frac{\sigma}{\rho l},\tag{12}$$

где σ – предел прочности материала тела на сжатие; ρ – плотность; l – длина ускоряемого тела в направлении движения. Для диэлектрических материалов метаемого тела (например, поликарбонаты) $\sigma = 9 \div 10 \text{ кг/мм}^2$, а для изолированного от рельсов металлического тела (например, тело из алюминиевого сплава с объемной плотностью $\rho = 3 \text{ г/см}^3$) максимальное давление прочности $P_D \approx 80 \div 450 \text{ Мпа}$ [22].

Из (11) и (12) определяется предельное значение силы сжатия ускоряемого тела

$$\frac{L_x i^2(t)}{2m} + \frac{N}{m} V^2(t) \le \frac{\sigma}{\rho l}, \ L_x = \frac{d}{dx} L(x),$$
(13)

и, соответственно, предельное значение тока возбуждения определяется по формуле

$$i(t) = \sqrt{\frac{2}{L_x} \left[\sigma d^2 - NV^2(t) \right]}, \qquad (14)$$

где *d* – ширина канала ускорения рельсотрона.

Из (11) - (14) определяется выражение движения тела без разрушения с предельной скоростью, если начальная скорость V(0) = 0, в форме

$$V(t) = \alpha * \frac{1 - e^{\frac{-4N\alpha}{m}t}}{1 + e^{\frac{-4N\alpha}{m}t}},$$
(15)

где $\alpha = d \sqrt{\frac{\sigma}{2N}}$ – параметр, характеризующий предельную скорость.

Интегрируя (15), можно определить длину ускорителя, при которой достигается заданная скорость в условиях устойчивости метаемого тела:

$$S(t) = \frac{m}{2N} \ln \left[\alpha \left(1 + e^{\frac{4N\alpha}{m}t} \right) \right] + \alpha t .$$
 (16)

Для приблизительного (оценочного) анализа электродинамических режимов РЭДУМ (например, графоаналитическими методами) и расчета энергетических характеристик в уравнениях (10) - (16) можно сделать следующие приемлемые допущения:

- пренебречь силами трения и полагать, что ускоряемое тело с массой m двжется в вакууме, при котором N = 0;

- считать, что индуктивность и сопротивление РЭДУМ приближенно линейно зависят от координаты *x* ускоряемого тела

$$L(x) = L_0 * x(t), R(x) = R_0 * x(t),$$

$$\frac{d}{dx} L(x) = L_0, \quad \frac{d}{dx} R(x) = R_0, \quad (17)$$

где L_0, R_0 – индуктивность и сопротивление РЭДУМ на единицу длины. Импульсный ток возбуждения i(t) с длительностью τ и амплитудой J_m на интервале времени $0 \le t \le \tau$ можно аппроксимировать функциональной последовательностью, образованной следующей исходной функцией:

$$i(t) = J_m \left(\frac{t}{\tau}\right)^n, n = 0, 1, 2...$$
 (18)

Более глубокий анализ разработанных в статье теоретических принципов и полученных результатов для задач обобщенного физико-математического моделирования и расчета оптимальных энергетических и массогабаритных характеристик РЭДУМ разной модификации на базе новейших достижений нанотехнологии в областях наноструктурного материаловедения электротехнического назначения и наноэлектроники будут приведены авторами в дальнейшем.

¹Ереванский государственный университет

e.mail: hkarayan@ysu.am, a.makaryan@ysu.am

²Московский энергетический институт

e.mail: angastroi@mail.ru

Член-корреспондент НАН РА Г. С. Караян, С. В. Гандилян, А. А.Макарян

Вопросы обобщенного электрофизического моделирования и расчета оптимальных энергетических характеристик электродинамических ускорителей масс

Предложен новый обобщенный подход электрофизического моделирования рельсотронных электродинамических ускорителей масс (ЭДУМ), позволяющего учитывать большое число взаимосвязанных (конструкционных, динамических, энергетических, массо-габаритных и др.) характеристик в задачах оптимального проектирования ЭДУМ разной модификации и различного предназначения.

ՀՀ ԳԱԱ թղթակից անդամ Հ. Ս.Կարայան, Ս. Վ.Ղանդիլյան, Ա. Հ. Մակարյան

Զանգվածի էլեկտրադինամիկ արագացուցիչների ընդհանրացված էլեկտրաֆիզիկական մոդելավորման և օպտիմալ էներգետիկ բնութագրիչների հաշվարկման որոշ հարցեր

Դիտարկվում է մասիվ էլեմենտների ռելսային կառուցվածքով էլեկտրադինամիկական արագացուցիչների էլեկտրաֆիզիկական մոդելավորման նոր ընդհանրացված մեթոդ, որը հնարավորություն է տալիս տարբեր ֆունկցիոնալ կառուցվածքով և տարբեր խնդիրներ կատարող արագացուցիչների օպտիմալ նախագծման խնդիրներում հաշվի առնելու մեծ թվով փոխկապակցված (կառուցվածքային, դինամիկ, էներգետիկ և այլն) պարամետրեր։

Corresponding member of NAS RA G. S. Karayan, S. V. Gandilyan, A. H. Makaryan

Some Issues Concerning the Generalized Electro Physical Modelling and Calculation of Optimal Energy Characteristics of Electrodynamic Mass Accelerators

In this paper, a new generalized approach to the electro physical acceleration of mass motion (EDUM) is proposed, which allows for a large number of interrelated (structural, dynamical, energy, mass-gabaritic, etc.) characteristics to be considered in the problems of optimal design of EDUM with various modifications and different destinations.

Литература

- 1. Бут Д. А. Электричество. 1995. Вып. 1. С. 2-11; Вып. 2. С. 2-10.
- 2. *Ким В. П.* Журнал технической физики. 2015. Т. 85. Вып. 3. С. 45-59.
- 3. *Арцимович Л. А., Андронов И. М. (Иосифян А. Г.)* Космические исследования. 1974. Т. 12. Вып. 3. С. 45-58.

- 4. *Palmer M. R., Lenard R. X.* IEEETrans. on Magnetics. 1991. V. 27. № 1. P. 38-49.
- 5. Faiz H. D. IEEETrans.on Magnetics. 1993. V. 29. № 1. P. 71-83.
- 6. Witt W., Loffler M. Military Technology. 1998. № 5. P. 80-86.
- 7. Jerome T. IEEETrans. on Magnetics. 2007. V. 43. № 1. P. 207-213.
- 8. Носов Г. В. Изв. Томского политехн. ун-та. 2007. Т. 310. № 2. С. 70-73.
- Жуков Б. Г., Резников Б. И., Розов С. И. Журнал технической физики. 2007. Т. 77. Вып. 7. С. 43-49.
- 10. Жуков Б. Г., Курякин Р. О., Розов С. И. Письма в Журнал технической физики. 2013. Т. 39. № 12. С. 63-70.
- 11. Fair H. D. IEEETrans.on Magnetics. 2005. V. 41. № 1. P. 158-164.
- 12. Воронин А. В., Гусев В. К., Кобясов С. В. Журнал технической физики. 2011. Т. 81. Вып. 7. С. 63-68.
- 13. Иосифян А. Г. Электричество. 1987. № 12. С. 18-27, 1988, № 1. С. 24-31.
- Копылов И. П., Гандилян С. В., Гандилян В. В. Электротехника. 1998. № 9. С. 25-40.
- 15. Галанин М. П., Сорокин Д. Л. Расчет квазистационарных электромагнитных полей в областях, содержащих несвязные проводящие подобласти. Препринт ИПМ им. М.В. Келдыша. М. 2017. 27 с.
- 16. Самарский А. А., Попов Ю. П. Резонансные методы решения задач газовой динамики. М. УРСС. 2004. 424 с.
- Клеммоу Ф. Доуэрти Дж. Электродинамика частиц и плазмы. Пер. с англ. М. Мир. 1996. 207 с.
- 18. Галанин М. Г., Логоцкий А. П., Попов Ю. П. Математическое моделирование. 1999. Т. 11. № 8. С. 3-22.
- 19. Азизов А. Э., Алексеев Ю. А., Бревнов Н. Н. Атомная энергия. 1982. Т. 52. С. 108-112.
- Сухачев К. И. Вестн. Самарского гос. аэрокосмического ун-та. 2015. Т. 14. №1. С. 177-188.
- Галагин М. П., Уразов С. С. Математическое моделирование эрозии металлических контактов в рельсотронном ускорителе. М. ИПМ им. М. В. Келдыша. 2003. 23 с.
- 22. Tumonis L., Kacianauskas R. Mechanica. 2007. № 1(63). P. 58-63.