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1. Introduction. The present paper gives a harmonic, @-weighted, half-
plane analog of Wirtinger’s projection theorem [1] (see also [2], p. 150) and its

(1-r)"-weighted extension by M. M. Djrbashian (see Theorem VII in [3]),
which are for holomorphic in |z| <1 functions with square integrable moduls.

These results are a continuation of the results of [5] in the half-plane. Then, an
orthogonal decomposition is found for some classes of functions subharmonic
in the upper half-plane, which is similar to the result of [4] in the unit disc.
After a useful remark, we shall introduce the spaces of functions which are
to be considered.
Remark 1.1. It is well-known see, eg. [6], Ch. VI) that the Hardy space h”
(IS p<+e) of real, harmonic in the upper half-plane G*:={z:Imz>0}

functions, which is defined by the condition
4o 1/p
"u o= sup{j |u (x+iy)|dx] 1 < +oo
y>0 97

is a Banach space becoming a Hilbert space for p=2. Since [u|’ is

subharmonic in G*, the results of Ch. 7 in [7] on the equivalent definition of the
holomorphic hardy spaces H”in G* have their obvious analogs for A”. In
particular, the space h” (1< p<+e) coincodes with the set of all functions
harmonic in G* and such that
Jel, = tim tim inf [* Ju(x+iy)] dv <40
R—>+00 y—>+000) -R

and for sufficiently small values of p >0
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lim inf ij;_ﬂ‘u (Reig)

R—+oo

"(smMJ dd=0, (1.1)
T-2p8

where = arcsin% :g— x . Note that due to Holder’s inequality, if (1.1) is true

fora p>1, thenitis true also for p=1.

Definition 1.1. Q_(~1<a <+e) is the set of continuous, strictly increasing
in [0,+c), continuously differentiable in (0,+) functions @ such that
®(0)=0and @'(x) =< x*, A<x<+oo, for some A>0.

Definition 1.2. For any we Q, (-1<a<+w), k. (0< p<+w) is the set of

the real, harmonic in the upper half-plane G* functions for which (1.1) is true
along with
I, = {1,

where d, (x+iy)=dxdw(2y).

) du, ( )U”P < oo, (1.2)

2. Some properties of the spaces 7. . First, we prove that the above
introduced classes h2 are Banach spaces.

Proposition 2.1. 7 (1 < p <+, @€E fza, a>-1 ) is a Banach spaces with

the norm (1.2), which forr p =2 becomes a Hilbert space with the inner product

::—'”G+ d,uw( ), u,ve h:).

Proof. Let L (1 < p <+o) be the Banach space of real functions, which is
defined solely by (1.2). Then, it suffices to prove that #? is a closed subspace of
L, for any 1< p<+,i.eif asequence {u,} ch) converges to some ue L),
in the norm of L , then u e L . To this end, observe that

teo . . \|P
. da)(2y).|. |u (x+1y)—u(x+1y)| dx—0 as n—oo.

Hence, by Fatou’s lemma I t)do(t)=0 for

g(2y)= hmlnfj L (x+iy)- (x+iy)|pdx.
As weQ,, there exists a sequence 7, 40 such that w(7,.,)<a(7,).
Introducing the measure v(E)=V, @, we conclude that v([7,,,.7,])>0 for any
k=1 and obviously g(¢)=0 in [7,,,.7,] almost everywhere with respect to the
measure v. On the other hand, u(x+ir)e L’ (—oo,+e0) for almost every >0
with respect to the measure v. Thus, there sequence y, 10 such that

simultaneously g(2y,)=0 and u(x+iy,)e L’ (—,+). Now, we choose a

subsequence of {,}", for which the limit (2.1) is attained for y=y,. From this
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subsequence, we choose another one, for which (2.1) is attained for y=y,, etc
Then, by a diagonal operation we choose a subsequence for which we keep the
same notation {u,}", and over which

g(2y,) —hmj

for all k>1. Then, in virtue of remark 1.1, for any n>1 and p >0 the function

u, (x+iy, ) —u(x+iy, )|pdx=0

u,(z+ip) belongs to h”. Note that in particular this is so for p=y, (k=12,..).
By (2.2), for any fixed k>1 the sequence {un (z+iy, )}i1 is fundamental in 77,

and consenquently u,(z+iy,) >U(z+iy,)eh” as n— oo in the norm of 7’
over G*. Hence, u, uniformly tends to U inside G*, and U e i’ in any half-
plane G, . Thus, we conclude that (1.1) is true for U and, in addition, for any

number A>0

J.J. _”(Z)|pdﬂw(Z)S2"_l J.J )_M(Z)|p du,(2)+

[x|<a |x]<A
1/A<y<A 1/A<y<A
” | dit,(z)p—0as n—oo.
x‘<A
1/A<y<A

The passage A — +eo gives [U—uf, =0

Now, let us prove a theorem on an explict form of the orthogonal
projection of the space I2, to its harmonic subspace h2. Assuming that

we Q,, a>-1, we shall deal with the Cauchy-type kernel
o0 d[ +oo i
1,(z)= jo e do(x),

Go )=, ¢
which is holomorphic function in G*[8]. Note that by Lemma 3.1 of [8] for any

()

we Q, with a>-1, any numbers a>-1, p>0 and any noninteger

Be ([a]—l,a) there exists a constant M, 5 >0 such that

M
|Cw(z)|3|1|%'§, z€ G, ={z:Imz> p}

Under the same assumption, we use the Green type potentials by means of the
elementary Blaschke type factor

ZIm(
by(2.¢) —exp“ (z—§+it)a)(t)dt}, Imz>Im¢ >0

(see formula (23) in [5]), which is a holomorphic function in G*, where it has a
unique, simple zero at z=¢.
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Theorem 2.1. If we Q,(-1<a<+w), then the orthogonal projection of

L% to h} can be written in the form
” (z=w)}du, (w), zeG". (2.4)

Proof. Let ue Li,. Then, applymg the estimate (2.3), where f=a—-¢ with
asmall € >0, and Holder’s inequality, one can be convinced that the integral of
(2.4) is absolutely and uniformly convergent inside G*, and hence it represents
a harmonic function there. Besides, using that estimate (2.3) and Holder’s
inequality one can prove that for any fixed o >0 and & >0 small enough there

exists a constant M,,>0 depending only on p and &, such that

N
|Pwu (Re”9 )| < M/'J,ER_(%Z”’_ZE) (arcsin% < ¥ < 7 —arcsin %j for R>0. Hence,

P,u satisfies (1.1). Thus, it remains to show that P, is a bounded operator
. 2 2 . . . 2
which maps L, to h,, and is identical on h;,.
If ue L%, then for fixed z=x+iye G* and ¢ =& +in

Pu(z)= Re{% J:TRILTM ;Ru(g)dfj:” Jilz=%) I:(tt)]dw(Zﬂ)} -

= Re{% J'(:M(nggw I:O e ;;_(7;) er._RR e"fu(f)dedw(Zﬂ)} -

+o0 4o o] .
:Re{% IO do(27) L em—)u”(t)}dt, (2.5)

1,(t

R .
where ﬁ”(t):1.i.m.R—>+ooJ. ¢"“u(é+in)dé is the Fourier transform of
-R

u(&+in)e [* (—oo,+) for a fixed, almost every 7 >0 . Note that the equalities
in (2.5) are true, since by Plancherel’s theorem

e u(L)dE i, (1)) ar

F il
<[5 (2i(y+v))] “2 -0

_nf f—ﬁ” (t)

=l

1% (=00, +0)

as R — +oo . From (2.5) we conclude that

=Re L +°°eitz CID(Z‘) ze +
Pu(z)=R {\/;J.o 0 dt}, G',,

where
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The change of the integration order transforming (2.5) to (2.6) is valid, since by
(2.3) for afixed y>0 and a small £ >0 there is a constant M >0 such that

too o 1(347)
\/_J‘ j T“ )|dt£
S\/EJ.0+M[C;)(2i(y+77))T/2 7

u

do(2n)

17(0,+00)

(2n) 172
+o  do(2n
L, -[() 3+2a-¢ <teos

(y+n)
where @ is the Volterra square of @ (see lemma 4 in [5]). By an application of
Holder’s inequality and Plancherel’s theorem, from (2.7) we get

[®] 2(0.4) > » while by the Paley-Winener theorem (see eg. [6], pp. 130-
131) from (2.7) we obtain

2
) l oo Ll |(I)(t)| B
3 L;HS,,L do(2y)[ e T 2|}

Thus, P, is a bounded operator which maps 2, to A2 .

(0,40

Now, let ue h%. Then obviously u(z+in)e h* for any 7>0. Hence, for
any fixed 7>0 the function u(z+in) is the real part of some function

f(z+in) from the holomorphic Hardy space H* in G*. Consequently, by the
Paley-Wiener theorem

f(z+i77):ﬁj(:xei’zfn(t)dt,ze G*,
where
J?rz(t):li’ﬁ;%f e f(E+in)dé

is the Fourier transform of f on the level iy, and

Note that one can prove the independence of the function ¢ fn (t) of

2

=t (z+im)];. =]
H

M2 (0,400) *

[? (=00, +0)

77>0.Further forany 7>0 and {=¢&+in

so vy (e=E)ag = [ ", ()

27 i, (1)

i [ 47,015

From (2.8) and the Paley-Wiener theorem, it follows that for ¢ >0

ozm_hmff I (Erin)dg =1, (1)

Consequently, for any ze G,
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1 o ) PN L[ i) oAl
wl e le-Jas= o [ A 05

and hence

Ref [T )dr}=Re{f<z)}=u<z),

i.e. the operator P, is identical on h2.
3. Orthogonal decomposition. In virtue of Remark 2 and Theorem 2 in
[5], if we Q,(a>~-1) and v is the associated Riesz measure of a subharmonic

in G* function U e I, satisfying (1.1) with p =2, then

”G+Uoﬂmw(t)dtjdv(§)<+oo and ”G Im{dv({) < +oo

for any p >0, which conditions provide the convergence of the potential
2)= ] togfea, (z.Ofv(¢)

in G*,and U is representable in the form

=”G+ log|b, (2. dv(¢) ” J{ReCy (2= w)}daty (w)

:=Ga,(z)+uw(z), zeG'.  (3.1)
The next theorem gives an orthogonal decomposition for some @ -weighted
classes of functions subharmonic in G* .

Theorem 3.1. If we Q, with —1<a <+, then:

1. Both summands G, and u, in the right-hand side of the representation

(3.1) of any function U € L, (L, satisfying (1.1) with p =2 are of L,,.

2. The operator P, is identical on hZ, and it maps all Green type potentials

G, € L, satisfying (1.1) with p =2 to identical zero.

3. Any harmonic function ue hl is orthogonal in L., to any Green type
potentials U e L, (L2, satisfying (1.1) with p=2.

Proof. Let U e L,,N L% be a subharmonic in G* function satisfying (1.1)
with p=2. Then U is representable in the form (3.1), where ueh’ by
Theorem 2.1. Hence, also G, € Lﬁ, and satisfies (1.1) with p=2. Further, if
G, ¢ L, and satisfies (1.1) with p =2, then applying the operator P, to both
sides of equality (3.1) written for G, we get P,G,(z)=0, ze G*. Since P, is
the orthogonal projection of 2 to its harmonic subspace %2, we conclude that

(RU.G,), =(Pu.G,),=(Pyu. Gw)w =(u.P,G,),=0.
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At last, if u is a function of %2 and a Green type potential G, e L' NL* and
satisfies (1.1) with p =2, then by Theorem 2.1

(u, Gal)w :(Palu’ Ga))a, :(P(Z”’ Ga))a) :(uvPa)Ga))w =0.
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U. U. ppuigyuiy, . Jwpgquu

Oppngnuun Jtpménid Yhuwbwppenipintimid umphwpdnithly
dnrulghwibph oubqu-Yonwyhtt nuubpnid
Spyws k4. Thpuhuqph wpnklghnt pinpdh nt npu hwdwnp U. U. Qppwgjuh
quwd (l— r)a -onwjhtt pyuydwt hwpunuhl hwdwidwip Yhuwhwppenipjut by,

hsybku wl oppngntiuy YEpnidnipnit Jhuwhwppenipniinud uniphwpdnthly npny @ -
Yonwyhti nuubpnud:

A. M. [I;xp6amsin, /I. Baprac

OpToronajbHoe pa3jio:keHHe B OMera-BecoBbIX Kiaaccax GyHKIMIA,
cyOrapMoOHUYECKHX B MOJYILIOCKOCTH
JlaH TapMOHWYECKHH, @ -BECOBOH, IOMYIUIOCKOCTHOMW AaHAJIOT IPOEKIMOHHON

a o
Teopemsl B. Buptunrepa u ee (1—r) -BECOBOr'0 pacIIMpeHusi, HalpeHHoro M. M.

JbxpOamsHOM. YCTaHOBIEHO TaKKe OPTOrOHAIBHOE PA3IOKEHHE B HEKOTOPBIX @ -
BECOBBIX KJlaccaxX (QYHKIMH, CyOrapMOHUYECKUX B MOJYIIOCKOCTH.
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