
 26

Հ Ա Յ Ա Ս Տ Ա Ն Ի Գ Ի Տ Ո Ւ Թ Յ Ո Ւ Ն Ն Ե Ր Ի Ա Զ Գ Ա Յ Ի Ն Ա Կ Ա Դ Ե Մ Ի Ա
Н А Ц И О Н А Л Ь Н А Я А К А Д Е М И Я Н А У К А Р М Е Н И И
N A T I O N A L A C A D E M Y O F S C I E N C E S O F A R M E N I A
Д О К Л А Д Ы Զ Ե Կ Ո Ի Յ Ց Ն Ե Ր R E P O R T S

INFORMATICS

УДК 519.688

G. E. Harutyunyan

An Approach for Scheduling Parallel and Serial Testing of
Embedded IP Cores in Nanoscale SoCs

(Submitted by academician S.K. Shoukourian 22/I 2018)

Keywords: hierarchical test, system-on-chip, test pattern, test scenario,
pattern porting.

1. Introduction. Variety and complexity of used memories and IP cores,

shrinking technologies and design complexity increasing in nanoscale systems-
on-chips (SoC) make it crucial to have embedded in SoC test and repair
solutions kept up with the advances in order to consistently and continuously
provide chip quality and yield optimization. The embedded test approaches
developed for designs just few years ago are not sufficient for today's designs,
which are bigger, faster, hierarchical and much more sensitive to area, timing
and power [1, 2]. Similarly, the embedded test solutions developed, for
example, for 28-nm technology node will not deliver the same level of test
quality, diagnosis accuracy and repair efficiency for 14-nm and below
technology nodes, as defects and failure mechanisms change with process
technologies shrink. From the other side, nanoscale SoCs are re-using multiple
already designed sub-chips which means that multiple test infrastructures might
be organized in some test hierarchy built according to suggested by the SoC
developer [3, 4].

Figure 1 shows the evolution of the SoC test infrastructure during the last
several years. The part (a) of the Figure 1 shows the stage when there was only
one BIST (built-in self-test) scheme per SoC, while in Figure 1 (b) there are
multiple BIST schemes and, the test configuration for the SoC has only one
Server. This means that though multiple BIST schemes are used but SoC does
not require a hierarchy of Servers. The part (c) of the Figure 1 shows modern
SoCs with many memories and IP cores as well as containing a hierarchy of
Servers, where there is a Server at top and there are Sub-Servers at the second
level of hierarchy.

Usually, different approaches and standards are used for IP testing and
integration into SoC and, at the same time, at the chip level the total number of

Հատոր
Том

Volume
118 2018 № 1

 27

test channels is limited such that all core-level test channels cannot be accessed
at the same time.

In general, hierarchical test gives designers flexibility to schedule test of
individual interface IP cores and other cores for parallel and serial testing to
optimize test time and power consumption during test [2, 5]. The flexible test
schedule can significantly reduce test time, especially for designs with a large
number of high-speed I/Os.

From the other side, there are certain limitations in SoC which should be
taken into account when scheduling the test. Common types of SoC limitations
are the following:

• Design limitation – e.g., limited number of test access mechanisms to test
multiple IP cores;

• Test limitation – e.g., precedence constraint (e.g., test of IP2 should be
run only after completing the test run on IP1);

• Resource limitation – e.g., power constraint (limitation on SoC
consumed power when testing multiple IP cores in parallel).

Fig. 1. SoC and its evolution

 28

In this paper, a hierarchical test approach is proposed which takes into
account all the above mentioned limitations and allows to do efficient test
scheduling.

2. Hierarchical test system. Figure 2 shows a hierarchical test system [2-
4] which is used to do scheduling of parallel and serial testing of IPs in SoC. At
IP level it is based on IEEE 1500 standard [6] which provides unified access to
different types of IP cores. At top level the test system consists of main Server
and multiple Sub-Servers placed at the second level of hierarchy. Top level
Server is connected to IEEE 1149.1 JTAG interface [7] which is in charge of
providing test patterns from the outside world. Usually SoCs are consists of
Sub-Chips and the test patterns applied to a Sub-Chip can be reused at top level
by porting those test patterns from Sub-Chip level to SoC level.

The considered hierarchical test system has the following main capabilities:

• Unified test accessibility for different IP cores in SoC based on existing
test standards (IEEE 1500 [6], IEEE 1149.1 (JTAG) [7], IEEE 1687
(IJTAG) [8]);

• Pattern porting from IP and Sub-Chip level to SoC level which allows to
reduce the design and test times;

• Language for describing the structural models of memories and IP cores;
• Capability to create effective test scenarios under the presence of limited

resources available in SoC.

The mentioned above language for structural models provides a set of
parameters that are necessary to describe the structure of a given IP which is
comprised of the following sections:

• Port description – Name of ports and attributes (function, direction,
range, etc.);

• Core internal and external registers;
• Test patterns;
• Comments – line (//…) and block (/* … */) comments are supported.

3. Scheduling of Parallel and Serial Testing of IPs in SoC. Within the
concept of the hierarchical test scheduling, in nowadays complex SoCs the test
time is one of the important challenges for which usually concurrent test is used
to minimize the test time. For thousands of cores in SoC comprised of multiple
levels of hierarchy the following problem exists: determination of an optimal
scenario for concurrent test and its implementation in a test infrastructure.

Figure 3 shows a ring architecture of the hierarchical test system which
allows to do efficient test scheduling. Group of blocks connected serially is
called ring. Sub-Server can have one or more rings (Ring 1, Ring 2, …, Ring
K), and each ring can contain one or more blocks (e.g., Block 11, Block 12, …,
Block 1N1), where a block can be an IP core or group of IPs (connected with
hierarchical connections) or it can be another Sub-Server.

 29

When several IP cores are being tested in parallel, usually there is a

limitation that the total consumed power should not exceed the given number
(e.g., MAX_POWER) [9]. Figure 4 shows two scenarios for testing a given set
of IP cores. Figure 4 (a) shows a non-efficient (poor) scheduling while in Figure
4 (b) an efficient scheduling scenario is shown. In both scenarios IP cores are
divided to be tested in 3 sequential sessions where in each session the IP blocks

Fig. 2. Hierarchical Test System

SoC

Sub-Server Sub-Server

IP1

IEEE 1500 Wrapper

IP2

IEEE 1500 Wrapper

IPN

IEEE 1500 Wrapper

Server

IEEE 1149.1

. . .

Sub-Chip

Fig. 3. Ring architecture

Sub-

Server

Block 11 Block 12 Block 1N1

Ring 1

…

Block 21 Block 22 Block 2N2

Ring 2

Block K1 Block K2 Block KNK

Ring K

SoC

 30

are being tested in parallel. In the figure, the «Idle time» shows how well or bad
the available resources are used: better scheduling brings smaller «Idle time»
which means the available resources are being used more efficiently and thus
the overall test time is shorter.

Within the proposed architecture in Figure 3, the overall time for testing all
the blocks is calculated in the following way: T = Tring_access + Tring_load +
Tblock_test, where:

• Tring_access – time needed to access rings;
• Tring_load – time needed to load information into rings;
• Tblock_test – time needed to test all the blocks.
Let assume there are K test sessions determined by one of well-known

scheduling algorithms to get effective test concurrency for given design, test
and resource limitations, e.g. Greedy/Rectangle Packing algorithm [10]. It is

proved that the following proposition is true: it is necessary for the proposed
test architecture to have K independent rings (one ring per session) to
reach optimal test time.

Proof. All other cases will lead to having non-optimal test time. There are
the following two cases:

• If blocks of the same session are distributed in different rings, then for
testing those blocks in parallel there is a need to access more than one
ring, which increases the overall ring access time (Tring_access).

Fig. 4. Optimal scheduling scenario

 31

• If a ring contains blocks from different sessions, then for testing blocks
of one session there is a need to bypass the blocks that are in that ring
but are out of that session, which will increase the overall ring load time
(Tring_load).

Tblock_test depends on the scheduling algorithm and is independent from the
test architecture, thus it is not impacted by how the blocks are distributed in the
rings.

Experiments showed the same results, i.e., optimal test time is obtained
when the blocks of the same session belong to the same ring and there are no
other blocks in the ring.

4. Conclusions. In this paper, an approach for parallel and serial testing of
embedded IP cores is proposed allowing:

• to take into account SoC design, test and resource limitations during
scheduling;

• to provide capability for creation of optimal test scenarios under the
presence of limited resources available in SoC.

Yerevant State University
 e-mail: gurgen.harut@gmail.com

G. E. Harutyunyan

An Approach for Scheduling Parallel and Serial Testing
 of Embedded IP Cores in Nanoscale SoCs

Modern nanoscale chips are increasingly growing and involve more memories and
other design blocks. As a result, the test process of such chips becomes essentially
difficult. In this paper, an efficient approach is proposed which provides capability to
create optimal test scenarios under the presence of limited resources available in SoC.

Գ. Է. Հարությունյան

Պլանավորման մոտեցում նանոչափական բյուրեղներում

ներկառուցված նախագծման բլոկների զուգահեռ և հաջորդական
թեստավորման համար

Արդի նանոչափական բյուրեղները (չիպերը) աստիճանաբար մեծանում են՝ ընդ-

գրկելով ավելի շատ հիշող սարքեր և այլ նախագծման բլոկներ։ Արդյունքում էապես
դժվարանում է այդ բյուրեղների թեստավորման գործընթացը։ Այս աշխատանքում
առաջարկված է մի արդյունավետ մեթոդ, որը հնարավորություն է տալիս ստեղծելու
օպտիմալ թեստային սցենարներ՝ բյուրեղում սահմանափակ ռեսուրսների առկայու-
թյան դեպքում։

 32

Г. Э. Арутюнян

Подход к планированию параллельного и последовательного
тестирования блоков проектирования в наномерных

системах на кристалле

С постоянным увеличением размеров и сложности наномерных систем на кри-
сталле усложняется процесс их тестирования. Предлагается эффективный подход
к планированию параллельного и последовательного тестирования блоков проек-
тирования, который предоставляет возможность создания оптимальных тестовых
сценариев в условиях жестких ограничений на используемые ресурсы.

References

1. Han D., Lee Y., Kang S. - ETRI Journal, 2014. V. 36, N 2. P. 293-300.

2. Zorian Y., Shoukourian S. - International Conference on Computer Science and
Information Technologies. 2013. P. 1-3.

3. Kogan T., Abotbol Y., Boschi G., Harutyunyan G., et al. - IEEE International Test
Conference. 2017. Paper 14.2. P. 1-6.

4. Eychenne Ch., Harutyunyan G., Zorian Y. - IEEE International Workshop on
Automotive Reliability & Test. 2017. Paper S01-01. P. 1-4.

5. Keller B., Chakravadhanula K., Foutz B., Chickermane V., et al. - IEEE
International Test Conference. 2014. P. 1-10.

6. DaSilva F., Zorian Y., Whetsel L., Arabi K., Kapur R. - IEEE International Test
Conference. 2003. P. 988-997.

7. IEEE Std. 1149.1, IEEE Standard for Test Access Port and Boundary-Scan
Architecture. 2001.

8. 1687-2014 - IEEE Standard for Access and Control of Instrumentation Embedded
within a Semiconductor Device.

9. Martirosyan L., Harutyunyan G., Shoukourian S., Zorian Y. - IEEE East-West
Design and Test Symposium. 2015. P. 27-30.

10. Iyengary V., Chakrabarty K., Marinissen E. J. - IEEE VLSI Test Symposium.
2002. P. 253-258.

