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Throughout this papeF, stands for a finite field witly elements, andr;
for an n-dimensional linear space oved, (obviously F' is isomorphic to
Fqn )- If L is alinear subspace iR, then the setr+L E{a+x|xD L} , aOF]
is acoset (or translate) of the subspateand dim(a +L) coincides withdimL .
An equivalent definition: a subseét OF,' is a coset if whenevex',x?,...,x"

are in N, so is any affine combination of them, i.e., so)$x for any

i=1
in F, such that)A =1. It can be readily verified that ank-
i=1
dimensional coset irF' can be represented as a set of solutions of airert

Ao

m

system of linear equations over of rankn-k and vice versa.

Definition 1. Aset M of cosets C form a coset covering for a subset N in
F; iff N=[JC. The number of cosetsin M is the length (or complexity) of

coMm
the covering. The shortest coset covering is the covering of the minimal possible
length.
The problem of finding of the shortest coset cawgnivas introduced in [1]
originally for F; in relation with a natural generalization of thetian of

Disjunctive Normal Forms of Boolean functions. TégbsetN O F can be

given in different ways: as a list of elements, aset of solutions of a
polynomial equation over; etc. Finding the shortest coset covering means

finding the minimal number of systems of linear oW equations, such that



N coincides with the union of sets of solutions lué tinear systems. Various
aspects of this problem were investigated in [2-8].

In this paper we prove an upper bound for the lemdtthe shortest coset
covering based on some properties of the stabitiztve subseN , considering
the action of the General Affine Group &l .

2. General Affine Group and Coset Coverings. Consider affine
transformations of] of the formy=xA+b, wherex,y andbOF, and A is
an (nxn)-dimensional non-degenerate matrix owgr. We refer to an affine
transformation as a pa{iA,b) .The General Affine Group acts naturally &fi,
on the set of all subsets iR’ and on the set of all cosets K , and coset
dimension remains invariant under this action. Tlifusvo subsetsN, and N,
are in the same orbit then, obviously, any cosetedng for N, can be
transformed to a coset covering of the same lefgthN, by an appropriate

affine transformation, and coset covering propsriee invariant under the
action of the General Affine Group.
Definition 2 A set T of affine transformations is a coset if whenever

(A,b), (A b,),....A, b,)arein T, sois (iAiA,Zm:/lib,] forany A,...,4, in F,

suchthat A =1.
i=1

For a given set of affine transformations one cansier coset covering
and the shortest coset covering.

Definition 3. Let G be a subgroup in the General Affine Group. The coset
rank of G is the length of its shortest coset covering, which is denoted by
CR(G) .

Let NOF; and Sab(N) be the stabilizer ofN under the action of the
General Affine Group. Any subgrou@ in the stabilizerstab(N) acts onN
splitting N into disjoint orbits of elements. We denote thenbar of orbits by
#orb (N).

3. The main Theorem. Theorem 4. The length of the shortest coset
covering for a set NOF is not greater than CR(G)x#orh;(N) for any
subgroup G in Sab(N). This upper bound is achievable and cannot be
improved.

Proof. For xON consider its orbitorb, (x) ={xA+b|(Ab)0G} . Let L be

the shortest coset covering fo6 and COL be a coset of affine

def
transformations. It can be readily verified thaix,C) ={xA+ b|(A,b)DC} is a

coset inN . Indeed, for anyi,,..., A

m

in F, such thatzml/li =1 and anyxA +b,
i=1

XA, +b,,....xA, +b, from M(x,C) we have

28¢



$4.04 +0)= £+ 520 =50 $n

Obviously, [i‘/liA,zm‘/lithC and me:)liA+Zm:)lihDM(x,C); therefore,
i=1 i=1 i=1 i=1

M (x,C) is a coset inN . This immediately implies thairb (x) = UM (x,C) isa
cOL

coset covering foorh, (x) of the lengthCR(G) . Applying the same procedure
to each orbit in N we obtain a coset covering foN of the length
CR(G) torh, (N). This completes the proof.

4. The Upper Bound is Exact. In this section we show that the upper
bound in theorem 4 is achievable and, thus, exact.

Let f@)=a,+af+..+a, 0" +6" be a normalized primitive
polynomial with deg(f ) =n over F, and
000.. 0 -a

100.. 0 -a
A=|0 1 0 .. 0 -a,
00O0.. 1-a

be the companion matrix fof (6) . Obviously, a, #0 and detA =(-1"a,. As
known from algebra (see [9]), the S‘g}i of non-zero elements of the finite field

n-1

Fqn that form a cyclic group can be represented by guswof A, i.e.

Fan ={E,A,A2,...,Aq"’2}. The elements of the fieIGqn can be represented by
polynomials overA of degree less than with coefficients inF,, i.e. each
element in Fqn is represented by a unique polynom@E + BA+...+ B _ A",
BOF,i=1,2,..n. The field Fn can be considered as am-dimensional

linear space over, i.e. F'.

def def n i
Let us takeN = F"\{0} andG = Fan :{E,A,A2 o AT '2} . Itis clear thatG

is a subgroup in the General Affine Group and as@a subgroup in the
stabilizer of N . In [10] it is proven that the length of the slesttcoset covering

for Fq”\{o} =Fan is equal ton(g-1) and shortest covering can be chosen to
consist of cosets oflim=n-1. Therefore,CR(G) = n(q-1) and the length of
the shortest coset covering foir is also equal ta(g-1). In fact all elements in

N lie in a single orbit under the action &. Indeed, affine transformation
defined by the matrix A maps any vector (), p,....V,..)ON into

(Waveo Voai Ve ==Qo¥Vo—ayi—...—Q,_¥, ) . This means that the orbit of a non-
zero vector(y,, y;....,V,.,) coincides with the sequence of states of a Linear

28¢



Feedback Shift Register that generates a periadjoence with a connection
(characterictic) polynomial g(6)=1+a,_ 6+a, 6*+...+a 8 " +a 8" with

(Vos Var---+V,a) @s the initial state (see [9, 11]). Bgg) = 6" (%j thusg(®) is

the reciprocal polynomial of (8) , which means that both polynomials have the
same period equal tg"-1 and the above Linear Feedback Shift Register
generates a maximal-length sequence of the pefied. Therefore, the length

of the orbit is equal t@" -1 and it consists of all non-zero vectorsl?g', i.e.

coincides withN . According to the theorem 4 the length of the tdgircoset
covering for N is not greater thail€R(G) x#orh, (N) =n(g-1)x1=n - 1), but,
in fact, as indicated above, it is exactly equahtg-1), thus the upper bound
from the theorem 4 is achieved.

If we define N as above equal 5] \{0} and takeG equal to the General
Linear GroupGL,(F,) then clearlyG is a subgroup irsab(N) . Obviously all
vectors inN lie in a single orbit, therefore, due to theorertind length of the
shortest coset covering fot is not greater than:R(GLn(Fq))xl.

Corollary 5. CR(GL,(F,)) = n(q-1)
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U. U. Ujtpuwiyui, U. 9. Uhtwuywb

JEpowynp nuisnh Eupwpuqunipnititkph hwpuljhg nuwukpnyg
Swblynyph pupnnipjut JEpht gowhwnwljwuip

Uuyugmgyky k ykpgunynp nuipnh kuipwpuqunipjut hwpwlhg nuwubpny wdkiw-
Jupg swsynyph bpjupnipjut 4tpht quwhwnwlwip, npp hhduqus t Eupwpwuquni-
pjwl unwphihquuinph npny hwnlnipniuttph Jpu' nhnwpylng pighwingp whh-
twlwl fudph gnpénnnipinip:
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A. A. Anekcansii, A. B. MunacsiH

BerHflﬂ OLICHKA CJI0KHOCTH MOKPBITHA CMEKHBIMU KJIAaCCaMHU
MOAMHOKECTB KOHCYHOI'0 ITOJId

JlokazaHa BepXHss OLIEHKA JJIMHBI KpaT4aiIlero MoKphITHS CMEXHBIMU KJIaCCaMH
MIOJIMHOKECTBA KOHEYHOT'O 10JIsl, OCHOBaHHAsi HA HEKOTOPBIX CBOMCTBAxX cTabMiiM3aTopa
MIOJIMHOKECTBA, pacCMaTpuBas JeiicTBrie o0ei aUHHON IPYyIIIBL.
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