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1. Introduction. Formulation of theresults. Let D={(x y): ¥+ y¥*<1}

be the unit disc of the complex plane. We considethe domainD fourth
order elliptic differential equation
4 a*u
—(x Y =0, ,y)O D, 1
;0/& Sy T V=0 (%) @)
where A, are the complex constantg,(# 0). We suppose that the roofs

(j =1,2,3,4of the characteristic equation

4
> AATK=0, 2)(
k=0

satisfy the condition

A=A 21, 04>0, 4,24, A #-,04 <0, = 3,4 3)
that is the equation (1) is properly elliptic. Wamw to find the solution of the
equation (1) in the class*(D)N Cc**)(D), which satisfy the Dirichlet conditions
au
aN|,
on the boundary . Here f OC™*(I') and g C (') are the given functions,

aiN = —ai - is a differentiation in the inner normal directito the boundary
r

(here and furthee = x+ iy= ré?).

It is well known ([1, 2]) that for the properly gitic equation (1) the
Dirichlet problem is Fredholmian. We want to detaventhe defect numbers of
the problem (1), (4), that is the number of thedirty independent solutions of
the homogeneous problem (the problem (1), (4) whereg=0) and the

uo= fO0W, = =a(x W, (x0T, (4)
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number of the linearly independent solvability cibiods of the inhomogeneous
problem. The problem (1), (4) in the case when ofehe roots of the
characteristic equation (2) is equal 0 was completely investigated in [23].
The caseA =4,,A,=A,was considered in [4]. In [5] was investigated the

problem (1), (4) for higher order equation (1).

In this paper we consider the problem (1), (4) (bgemeous and
inhomogeneous), when the roots of the equatiorsg@%fy the conditions (3).
We get the new formula for the determination of trefect numbers of the
problem and we find in explicit form the solutiont homogeneous problem
and the solvability conditions of inhomogeneoushm.

For exact formulation of the obtained results legpresent the equation
(1) and boundary conditions (3) in the complex forasing operators of
complex differentiation

i:l i—|i i:} i+|i
0z 2\ox dy) oz 2lax ay’

Taking into account the conditions (3) the equaiibnwill be represented in
following form:

d aY(a aNa_ @
——pu— | | == =—-v,— =0, 3
(az ”azJ (az Vlfz}(a z sz;u(x » ®)
i— i+A,. . .
wherey:! A , Vs :f 21 j=1,2. Using the conditions (3), we have
i+ A,
|11V 2v,, by <1 =12 mvp, % ( @)
Boundary conditions (4) are reduced to equivaiemh ([3])
ou ou
—| =F(Xy), o =G(x ), (xyor; y1,0)= f(1,0) )
0z| az|

Here the functionsF and G from the classC”(I') are determined by the
formulas
F(x.y)=5(g(x P+ i (x w]. ax yf( dx ¥ o (x y] z feor. (6)
2 FY} 2 0¢
Using these denotations the results of the papgrbedormulated in following
way.
Theorem 1. Let's denoteo = uv,, r = uv,. The problem (1), (4) is

uniquely solvable if and only if the conditions
m-p-1

Pk(a,r)skizm:(m— p)(o7)” Z olirm P £0, k=3,4,.. (7)

m=0 p=0

hold. If the conditions (7) fail, that i% (o,1) =0 for some valuek, > 2, then

the homogeneous problem (1), (4) has one lineadgpendent solution which
is polynomial of ordeik, +1. The corresponding inhomogeneous problem has a

solution if the boundary functiond=,G satisfy one linearly independent
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orthogonality condition. Therefore, the defect nenstof the problem are equal
to the quantity of the numbekg for which R_(o,7) = 0.

2. Proof of the theorem 1. The general solution of the equation (3) may
be represented in the form ([5]):
.0 _ _ -
u(x y) =P, (z+ 4 Z)+£¢1( W (Cry B W (v, )i (8)
where @, and ¥, (j=0,1) are the functions, which must be determined,
analytic in the domainsG={z+yz 21 D and D,={z+v,,74 21 DO

respectively. We substitute the function (8) in loeindary equations (5). Using
operator identity ([5])

ak+m al B a . ! ak+m
K A5 m T —H(k-mil | ——,
0Z9z" 0¢' | 0¢ 0207
we get

m)a(zw—z)w[%— ilj¢;<z+u‘z>+w;<—z+vl yrWi(Cav, )= E)z @,

) (2+ 42) +[£+ iljma(z+ {D VW (ZHy, P

+, W (Z+v,2= 3, ZrI. 9)
Now, we represent the functioQ(z+xz), where Q is analytic in the
domain G={z+yz Z1 p, on the circumferencd using analytic inD
functions. It was proved in [76] that the functi@{z+ 4z) may be represented
in the form (for|z|=1)
Q(z+p2) =+ i, (10)
where w is analytic function in the unit disk. If we hatle functionw, then
the functionQ is determined by the formula:

Q(()=w[—Z+“522_4’L(]+w{—z_“522_4'u], (11)

for ¢0G. In these formulas we choose the branch -4u, what is

analytic outside the segmenﬁ—zﬁ,zﬁJ and satisfies the condition

¢ -4 - 1for ¢ - ». We use (10) and represent the functigns¥’ on
the circumferencé&

q:;(z+y—z):z9j(z)+z9,~(ﬂ‘2)fi f ?+i 2,

ViEHad=p (D a1a3=2 B2+ By Z $01, 2r. (12)
k=0 k=0
We want to determine unknown functioits and p, . These functions are

analytic in the unit disb, therefore they determined by the corresponding
Taylor coefficientsA; uB,;. For the determination of these coefficients let's
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substitute the expansions (12) and Fourier expagasib the functions= and
G

F@=YFR#+YF 7%= F(3+ F( %

GR=YG2+Y G 2= Gl P+ QX (15)

in the boundary equations (11). We get
DAHZAY AMTZ Y A (ke JuE=Y p( ke Jut 2y B 2
k=0 k=0 k=0 k=0 k=0

B A B2+ By =Y EY R 2 | EL
k=0 k=0 k=0 k=1

YAZ +3 A D (ke ) 24T A(F Bt 24 By, 2

0

Y B+ By, 25+ Y By £=Y G 5+ G 2 | EL (16)
k=0 k=0 k=0 k=0

k=1
Equating the coefficients by the same degreeg @ind Z, we get the system
for the determination of the unknown coefficierds and B, . For k=0 we

have:
2/1'%0 - Z.Uip\n"' 2800+ 2801 = F01 2A00+ 2Ao1+ 2 1B od" 2 3301 :Gc (13)
If k=1 we have fourth order system of linear equatiomstie determination
A; and By:
Ao +i(k+1) A+ Bo+V5 B, = G,
,UA«) + i(k_l):uA(l-'-Vt 3<0+V; B<z = Fk’
:ulkA<o —i(k _1)/11(A<1+V13<0+V23<2: G—k'

Ao i(k+ D) A+ B+ B, = Fy (14)
We consider the determinant of the main matrixhefdystem (14):
1 i(k+1)  ytovst
L K K
S =det§ = de 5 A L : (15)

i(—k+1)u v,
'uk+l | (_k _1) 'uk+1 1 1
After transformation, using denotations of the tie@ol, we get:

1 k+1 0_k+1 Z_k+l
Y o LA BICRS T 3 B R
1 (-k-1) 1 1
=i(1-0)’(1-71)° 0, (0.7). (16)

And finally, the function®, may be represented in the form
O (o,1)=(r-0)R(o.1),
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where B, is a function defined in the theorem 1. From tbeditions of the
theorem we haver 21, r#1 and o # 7. Therefore,S, 20 for k> 2 if and only
if the conditions (9) hold. S, #0 also, becauseS, is a generalized

Vandermond determinant with different terms.
Let's suppose, that the conditions (9) hdlden the coefficientsp; and

B, for k=2 are uniquely determined. Determinagt of the system (18) for

k=1 is equal to zero, because second and third rogvtharsame. But, taking
into account the formulas (8) we have

2
=G, = Jatcosp sip i
that is the system (18) has a solution (not unidoek =1 also. And at last we
determine (not uniquely too) the coefficiemts and B,; from the system (17).
Thus, the coefficientsy; and B; may be found for arbitrark, and therefore,
we get the functionsy, and p, after what, by the formula (13) we determine
@, and ¥, . We haves, - -2i for k - », hence the coefficientg,, and B

have the same rate of decreasing as coefficieptsand G,, therefore, the

resulting functionu (the solution of the problem (1), (4), defined hg formula
(10)) belongs to the prescribe clasg™("). Now, let's consider the
homogeneous problem (1), (4). In this case, if ¢baditions (9) hold, the
corresponding Taylor coefficients, and B, are equal to zero fok >1 and,
therefore, nontrivial solution of the homogeneousbfem (1), (4) may be at

most second order polynomial. But the theorem Eoinf[7] (p. 84) implies,
that every nontrivial polynomial, which satisfiesrhogeneous conditions (4)

must be divisible b;(l— z‘z)z, that is must have at least fourth order. It means

that if the conditions (9) hold, then the corregtiog homogeneous problem
has only zero solution.
If the condition (9) fail for somek,>2 , that is S, =0, then the

corresponding homogeneous problem has one linéadgpendent solution
which is determined by nonzero solutiofy ; and B, ; of the system (18).

Theorem 1 is proved.
3. Some numerical results. In this point we will speak about the
conditions (9). First, open the brackets in (5). yée

[P3(0',T) ?4 ~+E o’ +H o +,uza—4+|/lvza—4}u:
0z°0z 097 0Hz" 0% 02
where R, (o,7) defined in (9) fork =3:
B (o.1)=1+2(o+1)+0r = 1+ 2u(v, +v,)+ 1Pvy,,
and the constantg, H are following:

0, (21)

E=-(v,+v,+2uvy,); H :—(2,u+y2(vl+v2)).
Let's illustrate the results of the theorem 1 ire tbasesk=3,4. We
consider the homogeneous problem. Taking into adcduwomogeneous
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conditions (4) we know ([7], p.84) that the seekanfution must be divisible by
(1-22)".

First, let's suppose, that the functiom(z2)=a(1- z)° (¢ #0) is a
solution of the homogeneous problem (1), (4). Thiection satisfies the
homogeneous boundary conditions (4). Substitutiegitinction in the equation
(21), we get:

R(o,7)4a =0.
Thus, the functioru,is non-zero solution of the homogeneous problem(&))
if and only if RB,(o,7) =0. For example, if the constangs, v,, v, satisfy the
conditions

Nl

2
’uulzg':—glluuzzz':—

then the functiony, is a non-zero solution of the homogeneous problBm(4).

Now, let’'s seek the non-zero solution of the honmageis problem (1), (4)
in the form

w(z2)=(1- 2 (6 zy 1 |Bl+f=o0.
Substituting this function in the equation (21), ge:
R (o.7)(1282+1%2)+ 126 2 12H3 = (.
This equality holds if and only if3, y satisfy the system:
R(o.7)B+Ey=0,HB+R(o,r)y=0. (22)
This homogeneous system of linear equations hazeensolution if and only

if the determinant of the main matrix of this systés equal to zero. Using
denotations of the theorem &,= uv,, 7 = pv,, this determinant may be written

as follows:

R’ (o.7)-EH :(1+ 2(J+r)+a'r)2 ~(o+1+2(o+r+ D7)=P,(0 7).
Thus, we get thatl, is the non-zero solution of the homogeneous prol{lE),
(4) if and only if P,(o,7) = 0. Let's show thatP, may be equal zero faw,7
such that|o] <1, |7| < 1. First, we represeng, (0,7) =1+ 2(g +7)+ 3 + 47 +
+3r’ + 201 (0 +1)+0°r? in the form:

P(o.r)=1+20+ 3"+ 2( ¥ +0°)+17( 3 Z+0?)=E,+ET+ET?, (23)
fix arbitrary o (|o] <1) and consider second order polynomial

p(r)=E,+Er+Er” .
We will use Shur transform (see [8], p.492) forwhngy that two roots of this

polynomial lie in the unit disc. We havg' (r) =7 p(%j: E +Er+ Er® and,

therefore, Shur transformp of the polynomial (23) is following:

Tp(r)=E p(r)- E p(r)=(E E- EBr+| § | §.
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Let’s calculate the constants
k=To(0)=|E] ~E]", v.= T HO=( & | &) -| B & EF.
Using representation = pe? , we get
v, =-8(1- p*)’ (1+ p*+ p co9p) |,
A :16(1—p2)2(3(1+p2)+ 40( J;rpz) cog - B° siﬁb).
Taking into account inequalit§ < p <1, we obtainy, <0 and y, >0, therefore,

by the theorem 6.8b from [8] we have that all twots of the polynomial (23)

lie in the unit disc. For example, if we get=0.5 then Egzlzl, Elzs—;,

-0+
17 9_i7x/108 _and

E, = and the roots of the polynomial (23) are equal=

= _9+|—7 V108 then

therefore,|r1'2|<1 . Thus, in this case, ifiv, =0.5 and uv,
the functionu,, where B,y is a nontrivial solution of the system (22), in@n-
zero solution of the homogeneous problem (1), (4).
We can continue in the same way, for example,
u(z2)=(1- z‘jz(ﬁ Z+y 2+0 ‘jz |Bl+|A+|d]% 0,
is a non-zero solution of homogeneous problem (4), if and only if
R(o.1)=0.

Authors tried to find concrete values of the defaatbers for the different
values of o,r The calculation, what was done using MATHEMATICA
program, showed that the defect numbers may bel ¢éguzro and one only.
Therefore, we may formulate hypothesis, what véllitteresting to check:

Hypothesis. Let's denoter = pv,, r = uv,. The problem (1), (4) is uniquely
solvable if and only if the conditions (9) hold.eTéondition (7) may fail at most
only for one numbek , therefore, the defect numbers of the problemeauel
only to zero or one.
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A. H. Babayan, M. H. Mohammadi

On aDirichlet Problem for
One Properly Elliptic Equation in the Unit Disk

The Dirichlet problem for the fourth order propedliptic equation with constant
coefficients in the unit disc is considered. Tharelcteristic equation has one double
root in upper half-plane and two different rootghe lower half-plane.

The solution must be found in the class of functicsatisfying the Holder
condition with first order derivatives up to theumdlary. The new formula for the

19¢



determination the defect numbers is obtained. Tdleability conditions and the
solutions of homogeneous and inhomogeneous prokdeensbtained in explicit form.
The numerical results show that the defect numimens be only zero and one.

U. Z. Pupuyul, U. Z. Unjuuddwnh

Uhunp opowtinid vh &2qphwn fhyuuljuwd hwjuwuwpdu
hunfup Yhphhukh hutnph duubt

TYhunwpyynud £ dhwynp oppwtnud Yhphhykh finhpp hwuwnwwnnit gnpswljhg-
ubpny snppnpn Yupgh £ogphnn Hhyuwlwt hwjwuwpdwb hwudwp: Funipugphy hw-
Juuwpnud niuh jpjuwyunhl wpdwn Jpht jhuwhwppenipmniind b Eplynt imuppbp
wpdunibp unnphtt jhuwhwppnipmniunid: Lnwsnudp thunpynd L wnwghtt Jupgh
wéwbguuph htwn dhwuht punhnuy dhtgh kqpp Zmpbiph wuydwht pujupwupnn
dmuhghwbph nuunud: Unwgdl) b nhbbljinughtt pybkph npnpdwt hudwp tnp pw-
twdlip: Thunnwplynn punph puskihnipjut wuwpldwtiubpp b hwdwube m wthwdwubn
hutnhpubph pisnudubpp vnwgyl) B pugwhwjn mbupny: BJuyht wipnyniupubpp gnyg
Eu nnwphu, np gdbiuniught ptpp Yupnn G (hubp dhwyb qpon b dY:

A. O. ba6asn, M. X. Moxammaaun

O 3apave Jupuxiie Ajs1 0AHOTO MPABUIbHO YLIHITHYECKOT0
YpPaBHeHHUSI B eIMHUYHOM Kpyre

PaccmatpuBaercs 3anaua JIupuxiie Ui NPaBHIIBHO SJUTMIITHYECKOTO YPABHEHHUS C
MTOCTOSHHBIMU KO3 GHUIHEHTaMH YETBEPTOr0 OpAKa B €JUHUYHOM Kpyre. [Ipennona-
raercs, YTO XapaKTepUCTUYECKOE YpaBHEHHUE UMEET OJIUH JBYKPATHBIA KOPEHb B BepX-
HEH IOJYIUIOCKOCTH W JBa pa3JIMYHBIX KOPHS B HW)KHEH MOJIYIJIOCKOCTH. Pemenue
umeTcs B kiacce GpyHKUUH, yIOBISTBOPSIONIMX YCIOBUIO ['@Ibaepa BIUIOTH 10 I'paHH-
L[l BMECTE C MPOU3BOIHBIMU IIEPBOro nopsjaka. [lomydeHna HoBas ¢popmyia Juisd onpese-
JIeHUs1 [eQEeKTHBIX Yuces. Y CIOBHUS Pa3pelIMMOCTH pacCMaTpUBaeMO 3a/laui U pele-
HHUE OJHOPOJHOM M HEOAHOPOIHOM 3ajad ONpPEIEISIOTCS B SIBHOM Buje. PesynbpraTs
BBIYMCIICHUH TTOKA3bIBAIOT, YTO Ne(eKTHBIE YHCia MOTYT IPHHUMATD 3HAUCHHUS TOJIBKO
HOJIb WJIU €JIHUIIA.
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