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In many problems of combinatory analysis operatiohsddition of sets
are used (sum, direct sum, direct product etc)hénpresent paper — as well as
in the preceding one [1] — some properties of amldibperation of sets (namely,
Minkowski addition) in Boolean spac®" are presented. Also, sums and
multisums of various ‘classical figures’' as: sphel@yer, interval etc are
considered. The obtained results make possiblesoribe multisums by such
characteristics of summands as: the sphere rasaight of layer, dimension of
interval etc. using the methods presented in [d}well as possible solutions of
the equation X +Y= A where X,Y,AO B, are considered. In spite of
simplicity of the statement of the problem, comfilexf its solutions become
obvious at once, when the connection of solutionth wonstructions of
equidistant codes or existence the Hadamard mstiscapparent.The present
paper submits certain results (statements) whieht@aibe the ground for next
investigations dealing with Minkowski summation ogt@ns of sets in Boolean
space.

§ 1. Sum of Sets According to Minkowski. If x=(x%...x), y=

= (ylyz... yn) are points inB", whereB", is a boolean space, then:
x+y=((x0 %)(%0 w)-( x0 y))

where O is the mod2 addition operation.

This addition operation for members Bf can be extended in subsets of
B".

In other words, if X,YO 2%, then:

X+Y={x+y xd Xyl ¥ (1)

Thus, the sum of subsets+Y is consisted of sums of points belonging to

X andyY, respectively.
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Examples.

1.if x02%,y0B", then{X +y} is the ‘shift’ of the setX to the pointy,
and|X +y =|X|.

2.if Xis asubsetirB", then X+ X = X.

3. X+B"=B" forany X 02%.

Also, {X +Y} can be interprated as union of ‘shifts’ of the s&tsonto
points of the set¥ .

The family (23" ,+), with an introduced Minkowski addition operatiof<

forms a monoid with the neutral eleme{ﬂ”} which is a one member set

having the zero element &".
The following inequality is valid:

max{|X| Y} =[x+ M <| XY
Both limits are achievable here. The following staénts describe the sets
in which these limits are achieved.

Definition [2]. The pair(X,Y) is called additive if for any,x O X and

y., ¥, OY the following is valid:
%+ % Zy+y.

Statement 1. The upper limit is achieved (i, Y)is an additive pair.

Corollary. If X +Y|=| X [Y then|X, +Y,|=| X,|(y| forall x,0X,y,0 Y.

We consider an arbitrary subgro@0 B" and the action of this subgroup
on the family2®":

gX={x+gxd %,

where gOG. Thus, G acts on2® with shifts transferring the subset into its
‘shift.’

Definition [3]. A stabilizer of the seK with respect to the groug is the
union of ‘shifts’G, from G, conservingX, i.e. gX = X forall gOG, .

Statement 2. The lower limit is achieved if there exist§] B" for which
X+zOG orY+zOG.

Corallary. If [X+Y|=| X, then|X +Z|=|X| forall zOY

Now let X O B"and X ={v, \,,...,\,} .

Example.

1. If G={v,0} is a group of shifts, then fox ={v,v,....,v,} the following
is valid:

G X =Myt v, Y

In this caseX has a non-obvious stabilizer if all constituentsxocan be

partitioned into the pairgx x+v), xd X, i.e. X ={(v,y+ )} with respect to

i=1,2..m/2. For m=4 we get X ={(v, %+ v).(%.yw+ J}. It is clear that in
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this caseX +v= X and vOG, . Thus, all subsets oK, having a non-obvious
stabilizers, are described above.

In the general form the stabilize®, for an arbitrary groupG and an
arbitrary set X 0 B" can be described in the following terms [3].

Statement 3. The constituerd 0 G, if the setX can be partitioned into
the pairs(vi,vj) in such a way that, +v, = g for all pairs which are included in
the partition

This statement can be obtained by analogical cersidn forG=B" as
in [4].

From the above statement one can construct thewioly algorithm for
building the stabilizerG, of an arbitrary sex for the subgroupG O B", acting

on 2* . And at the same time| = 2m.

1. First we build the multiseC = X + X.

2. Then we choose all the pairs@rhaving the multiplicitym.

3. Then we build all partitions i out of these pairs.

4. If {P} is the set of all partitions oK having the same weights in pairs

xdC, thenG, ={x U{0} .

Example.

1. LetG=8

X ={y =(0019 v, =(1019 w=( 111p v =( or
Then:

v, +V, =(1009) v+ v, =(110) y+ v,=( 010C

v +Vv, =(100]) v, + v, = (110} v+ v=( 010f.

This means that all pairs; v,), (v, v,).( 4 ), (V. v).(v%, V) .( %, v, have
the multiplicity 2 in the sunX + X . Then we have:

X={wvU{w v} ={ v qU{ v ¢ ={ v yU{ v }.

The sum of the pairs in each of the solutions & $hme. Hence, the
following set:

Gy ={(w+v).(y+v).( ¢+ v).d ={(1003 ( 120)(, 0190(, 00jo
is a stabilizer forX .

Below we present the simple properties of the dmara«+» — the addition
in the sense of Minkowski, as it was mentioned abewvhich can be taken as
properties of an algebraic system with basic2eand those for operations of
addidion, union of sets, set intersection etc.

1. Assosiativity:

X+(Y+2)=( X+ Y)+ z

2. Commutativity:

X+Y=Y+ X

3. Distributivity with respect to union:

(XUY)+z=(x+2U(Y+ 3
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4, iLle(x +Y)= X+Qy

There are finitely many other relations connectoanstituents of the
algebraic system described above.
Sum of Spheresin B". Let p(xy)=|x+ y| be the Hamming distance

between the pointsg, yO B' and S (V) be the set of the points of the the sphere
of the radiust with the centre at the point0 B". In other words,§ (\0 is the
sphere of the radius having the point as its centre. And at thag, (V) = B

forall aOB".
Statement 4[1].

S(v)= $(0)+ (2)
Statement 5.
(Y= ST (Y fort<n-1
HereS (V) is the set complement of the sph&gv)in B" and v is the
logic ‘negation’ of the binary set.We assume thag (v) =0, for t<0.
Example.
1. We consider the spheg(0). Then§ (0)= S_,(11..9).

Formula (2) in the preceding statement allows tiling generalization
connected with addition.

Let M O2% andS,(M) be the set of points belonging to the union of
spheres of the radipwith the centres at the poinks , that is:

s,(M=Us(y

xOM
S, (M) is the ‘generalized’ sphere of the radipshaving its centre at the

point M .
Statement 6 [1]. The following presentation is valid:

S,(M)= M+ 5 (0).
Corollary. For M,,M, O B"the following take place:
Ls(M+M)=g(M)+ M= g( M)+ M= §0)+ M- M
2. 5,(8(M)=5.,( ™).

Statement 7 [1]. The following relation is valid:
S, (M)=§(M)= §.,( M+ M)
For p+g<n
and the next one is valid:
S,(M)+§(Mm)=8
forp+g=n.
Coroallary. For M,,M, O B"the following is valid:

S, (M)+§(M)= M+ M+ 5,(0)
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The Sum of Facetsin B". A facet, or sub-cube, or interval B is the set
of points satisfying the following condition [5-6]:
J={usx< ¥,
where(<) is a coordinate-wisepartial order relatiorBh:
xsye2 x <y, i=1n,wherex=(x%...%), y=(%Y%- %)-
In other words, an interval can be given by a wairdhe length nin the
alphabet{0,1¢} , the letters of which are ordered lineartys 1<c.

Indeed, if:
J={aa,...a,<x<BpB,..5} .
then the codel (J) of the intervalJ is built in the following way.
LetA(J)=(A4,...4,) . Then:

cifa <fg

:{ai:/f.,ifcn:ﬁ

Examples.

1.1f 3={0100< x< 011}, theru(J) = (01cc)

2.I1f 3=8"={00...0 x< 11.. } , thenA(B") = (cc... 9.

If 2(3)=(A4,...4,) is the code of the interval, then all points of the

interval J are obtained from the codéJ)by replacing the letters in an

arbitrary way by zeros or units.
LetA, (J)and, (J)be the numbers of letters landespectively included in

A(J) which is the code of the interval. It is clear that, (J)is the dimension
of J,i.e. 4,(J)=dimJand|J[=2""".

If the operation xois introduced in the alphabea by the following Caley
table [7]:

then the sum of the intervalsof the system defined above as a sum of subsets
is the interval the code of which is calculatedthg codes of items (addends)
using the above Caley table.

Statement 8 [1]. The sund, +J, is an interval with the codd (J, + J,)+
+1(3,) +A(J,) and dimensiom (3, + J,)+4,( ) +A,( 3,) = 2,( 3N I).

Examples.

1. If 3, ={(010) (01)} J,=( 10D, thenA(J, +3J,)=(117).

On the other hand, we get by definition:

3,+3,={(010)+(109 ( oxj+( 108 ={( 1d0(, L}
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ie. J,+J,={(119),c0{0,}} .

2.1f J,=B", thenJ, +J, = B'for any intervalJ, .

Statement 9[1]. p(J,,3,)=A,(3,+ J,), where p is the Hausdorff
distance between the sets.[8]

Thus, the distance between the intervalsand J, is the number of
occurrence of lettersin the code of their sum.

Sum of Layersin B". Let B} :{xD B”,||>ﬂ:p} be thep -th layer of ann-
dimensional cube or sphere of the radjusnd the centre at zero [9-10].

By definition B} + B} is the sum of layers iB", consisting of the union of
sums of the points one of which has the weighdand the second has the weight
g. It is clear that the symmetrical grou operates on each layer in the
following manner:

if gOS,, theng(x%... %)= %y X Xy -
Hence, g permutes the coordinates of the poit leaving its Hamming

weight unchanged.
At the same time the relationg(x+y)=g(X+ d yis valid for

g0s, x yd B.
Thus, each layeB; is a transitive set or an orbit of operation @ group
S, on the cubes”
Let [p-g/=a p+ g= L
Statement 10 [1].The following formula is valid:
B, + B = U B.,, - 3)

2r<min{ 0-b B -a
For not large values of the layer the followtagle of addition is valid:
+ |8 B B
B | B B B
B'|B BUB  BUB
BB BUB BUBUSR
Note that formula (3) can be rewritten for any nembf terms, using the

above-mentioned property of distributivity.
Indeed, using (3), we get:

Bp+B+B= |J B,+®= U (8,+8)

2rsmin{ n-b B-a 2rsmif 2-bf-a

which makes possible to use (3) again.
Example.
1. Let us find the sum®" + B] + B} . We have:

B'+8+ B =(8UB)+ g=( g+ B)U( B+ B)=
=(8;+8)U(B'UBUBU B)= U BU BU B
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NB. As each layerB] is a sphere of the radips and the centre at zero

point, then all the preceding formulae are rulespliere’ addition.
Sum of Subsetsin B". If we take subspaces iB" as terms of the sum
X +Y,we will get a well-known object. Indeed, X,y is a subspace iB",

then(X +Y)is a subspace, too, and we have:
dim(X +Y) = dim X+ dimY- dim( X0 V),
in terms of cardinality:

x oy X1
[XNY]|
Thus, ‘theory of addition of subspaces,” being dl-developed part of
linear algebra, makes possible to answer many ignsstoncerning the subject
problem.
Sum of Spheresin B". Thek-dimensional interval we denote 3y .
According to statement 6, we have:

¥+g(0)=U $(»

x0Jy
i.e. J*+5'(0)is the union of all spheres of the ratlivith centres at the points
in the intervalJ, , or:
>+5(0)= [ (1+9)
x5 (0)
Let t, =min(t,n-kK)
Statement 11. 3“+§'(0) = §7( ¥).
For the cardinality of the set + §'(0) the following is true:
Corollary. |3* +§'(0) = 2 §"*, where §"* is the cardinality of the sphere
of the radiust, in B"*.
Sum of a Layer and an Interval in B". Analogous to the preceding
statement and corollary we get the sum of the BgtsJ*.
Statement 12. The following relation is valid:

B+ =57 ( I g4 ( 8.
Corollary. The cardinality of the sei"+ J* is calculated as follows:
B +3"=2(s7"- §.,).
Sum of a Sphere and a Layer in B". Statement 13. The following is

valid:
B+ (M)=g(M\ $( N
wherel, =min(p +q,n),l, = ma{ 0,p- g) - 1
§ 2. Equation in Sets. Let (23" +) be the monoid of all subsets with

operation of addition (1) irB" as was defined above. This monoid is of certain



interest both in classical discrete analysis [&] for a number of problems
connected with theory of information [4].

The ‘simplest’ equation in sets is as follows:

X+Y=A 4)

where X,Y, A0 2%

It is clear that equation (4) always has the thig@ution X ={0} Y = A,

Examples.

1.If A=B", then one can choo® for X, andany subset @&" for Y.

2.If Ais a subspace oB", then A+ A= Aand, therefore, equation (4)has
the solutionX =Y = A

3. {(12) +{(08 (10} ={( 10 ( O} { B +{( . B={( 3¢

Now, let:

[+ v = min{]l 50 x+
Then p(X,Y)=| X+ Y;
consequently, the Hausdorff distance between tiseXseand Y :
p(X,Y)=min(x )
yay

is expressed by the norm of the sum of these solstti

On the other hand, if:

R(XY)={p(% Y0 X0 ¥
then R( X, Y)is the reciprocal spectrum of the distance betvikerpoints of the
setsX andY and:
RO X)={lx o 0 x 0 %

that is, R( X, X)= R X is the spectrum of the distance between the points
the setX, or rather, the spectrum of .

Thus, the setX + X describes, to a considerable extent, the setstdntes
between the points oX or the spectrum of .

In an additive channel of communication [4] thesslaf equivalence has
one to one presentation by transitive sets of iceftgenerating’ channels. The
problem is to order these transitive sets througtdinalities of ‘generating’

channels.We need the following numerical paramgetedsich depend on
solutions of equation (4) and on the right hane siflA .

Let N(A) ={(X.Y), X+ Y= A,
We introduce the following parameters:
|AU{a}if N(A) =D
m( A) = mml XU Yi,_ﬁ( A: minlxl
(x.Y)EN(A
(X, X)EN(A
|AU{g}.if N(A) =0

max| X|
(X, x)ON(A

M (A) =max| XUV, M( A =
(xYN(
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Introduction of such definitions &g A) and M (A) is explained by the

fact that the equatiox + X = A can sometimes have no solution (for instance,
for |[A=3|A=50r for 00A), though the equatiorXx +Y= A always has a

solution.
Then, for the minimal and maximal cardinality seXUY,

where(X,Y)O N( A we get respective boundary values, which makeilpess
narrow the regionN (A) i.e. the region of the set of solutions of equat{d)

(we shall see this below).
It is not hard to prove that:

m(A=m{ A< M(A<| Afd|< M A
As every solution(X, X) of the equationX + X = A is a solution for (4),

then we present the following useful statement twinakes possible to obtain
solutions of the equatiorX + X = Yfrom solutions of the equation (4), under
certain limitations.

Statement 14. If (X,,Y,) is a solution of the equation+Y= A , then
(X,UY,) is a solution of the equatioX + X = A iff (X,+X,)0 A and
(Y, +Y%) 0O A

Statement 15. For the subspace\ O B" the following is valid:

a) m( A= { 4;

b) M(A)=M(A) =2,
Statement 16. The following estimations are valid:

K] [k
1 m(A< 2u + zu - 2 for the subspaces\ B, for dmA=k= 3.

1
2, m(A)zE[(a 4—7)2}]{, for AOB".
1

3. IfAOB"is a subspace, then equality inm(A)zE{(SM— 7)2J+{
takes place ifdimA=1,2 or 4.

Examples.

1. The pai{X,,Y,) where X,=Y,= §(0) is a solution of the equation:
X+Y= B‘\[l”] for n=2t+1

2. The pair (X, Y,)where X, =5'(0),Y= S(O)U x& B\ J0 is a
solution of the equationX +Y = B'for n=2t+1

If we keep to these examples, then we can assuatehibre exists some
monotonous dependence of the functieiA) on the cardinalith. But one

can manage to find the possible connection betwbkenright hand side of
equation (4) and the function( A) for the case ifA is the halfspace.
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Corollary. For the halfspacea, A the inequalitydim A = dim A is valid iff

m(A)=z n( 4).
The ‘seemingly obvious’ hypothesis that the uppemitl of m(A) is

reached for alk =dim A is refuted by the following examples.

Examples.

1. Let A=P°. In this case there is no solution of equation $&}isfying
the condition[X| =9.Consequently, since far=5the following is valid:

k k
2H 0 z[ﬂ -2=102m( A
m( A) =10, and the upper limit is reached in this example.

2.LetA=B. X={00000000),(0000100),(00001)100011
01),(0010001),(0010111),(01000),(0100100), (011010
0),(0110101),(0111011),(0111@W00111110),(1000010),
(1001101),(1001110),(1010000011011),(1100101),(11
01100).

Kl [k

We have: X+X=Am A=22<24= M + M - . Consequently, the
upper limit is not reached in this example.

Statement 17 [11]. If A\{0} O B, then the solution of the equation
X+ X = A is an equidistant code with a distance betweentaoypoints equal
k, and M (A) < n+1_At the same time (A) = n+1 iff there exists a Hadamard
matrix of the ordem+1 [12].

Consequently, the problem of constructing of anidigiant code with the
distance k having the minimal cardinality can be formulated terms of
solvability of the equatiorX + X = A.

Definition. The setAd 2% is called a quadrate if the following equation:

X+X=A of1
is solvable
It is clear that a quadrate always contains the pemt.
Example.

1. If Ais a halfspace iB", then, as it was mentioned aboues A= A
and, thereforeA is a quadrate.lfa\{0} O Bj,,,,r0{0,1,.} , then Ais a quadrate
iff |Al= 2i.e.A:{O, x; X0 E§Hl}

The notion of ‘quadrate’ is connected with probleofsequivalence of
additive channels [4] where description of the £lasequivalence is connected
with finding of all solutions of the following eqtian:

X+ X=A.

Let:

M(n,d):Nr(rl%{IVI(A);A\{QDQ r?n}

We denote byA(nd) the cardinality of the maximal code with the
minimal distancel [6].
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Statement 18. M (n,d)= A(n d).
From this and taking into account the known estiomst A(n, d) (the

upper limit; see [6]) we get:
Statement 19. The following inequality is valid

M (nd)s—2— t= 9=

)
ZI_(}@ J21

At the same time equality takes place iff theresesxa perfect code iB"
with the minimal distancd.

Consequently, the problem of constructing the cafdmaximal cardinality
— in particular, a perfect code — is reduced tdifig the solution of maximal
cardinality for equation (10) among all quadratdstle union of layers

BjUB.,...UB.
Statement 20 [1]. If A B is a quadrate, theffA+ B)is a quadrate too

Corollary. The preceding statement is valid for any numbeuaimands
Now let GL, (n) be a group of invertible matrices having componéntae

field F, ={0,3 .

Definition. The set ofmatricess, 0 GL,(n) is called stabilizer of the set
AD2% if all matrices in G, conserveA, i.e. gA= A, wheregG, .

At the same time, ik={v, ...} , thengA={ gy, gy... gy} .

Statement 21. Let G, be a stabilizer of the seA02® and G, ={g} . Then
the pair X, gX is the solution of the equatioxi + X = A, as well

§ 3. Multisets. The second definition of addition of sets fropf is
connected with multiplicity of containing each mesninto the sumA+ B [4].

Definition. A multisum of two seta, BO 2% is called multiset:
A+B={al(x+y), X3 A YD B (11)
in which each membefrx + y)is counted as many times as it comes in sum (11),
and a is the multiplicity of the membék + y).
Examples.
1If A={(01) (10} 0 2, then A+ A={20(00) ,20( 1}} .
2.1f

A =8 ={(007) (019 (10p A = B ={( 11p(, 101, o}
then A+ A ={30(111) ,27( 109 ,2( 01p .2 oY}

It is clear that by definitionA + A|=|A|(JA|, in which the cardinality of

the multiset is the sum of the multiplicities of inembers.
In particular, the following expression is valid:

U{c+x=|qos,

x0B"
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whereC is an arbitrary subset iB" and |C|is the multiplicity of the constituent

yOB".
It follows from this that:

c+a}\-|c|w
xOB"

Leta=|g-d,b= g+
Statement 22. For the multiset B} + B; the following formula is valid:

Bi+B = |J a(a+2r).,, (12)

2r<min{ n-b o} -a

a+2ry(n-a-2r . o
}( ) J is the multiplicity of the member of
r min(g, p)-r

the multisetB; + B] with the weight(a+2r).
Corollary. For g < p< nwe have

where a(a+2r) :[

a0 T )
R Rse i<y
IT p+g=nand:

Vo P S Gy

if ptgs<n
Statement 23. For the multisetS" (v) + B the following is valid:

mln( p+t,n)

F(V+8B= a(+2)0( B, + Y

2r= rna>(0p t)-1
WherevO B"; and at the same time:

=5 3 (7 nyer

i=0i=ji-p|

is the multiplicity of the members @qr )
Coroallary. Forn= p,t= 0the following is valid

SV paieh e B 09 0y

i=0 = r=0

o(0)o-505 3

Statement 24. For the multisetS' (y)+ $( v) the following equality is

valid:



0+ $(9=Ua, o 8+ x ).

wherev,, v, 0 B'and at the same time

4 'm min(t, =i t, -m+i) n-m
a . = . . .
S

is the multiplicity of the membessl (B} +(y +v)) .
Coroallary. For n>t,t, >0 the following equality is valid:

S-Sl

Statement 25. For the multisetB; + J* the following formula is valid:
By +J" =[] a(x)Ox.
xaB"
Wherea (x) :( (k J is the multiplicity ofx.
t=A (3% +x

Coroallary. For n= p=0the following is valid:

B )

Statement 26. For the multisetS" () + J the following formula is valid:

g+ I=Ua(Ho =y

x0B"
t—/]l(Jk +><)

where vO B" and at the same timez(x)= > [T] is the muiltiplicity of

i=0
X+V.
Corollary. For n= k=0,n= t= 0 the following is valid:

LN G n-kyE (K
20"
Statement 27. For the multisetd* + J*% the following is valid:
I+ =a(d8, 390,
wherek, =k +k-4,(J:N J*) 3“ is the interval with the codea (3% +J*)
and
a(3%,3%)=2,(3N %) is the multiplicity of the members af
Finally, we define the operation “/”, that is, st#ztion for multisets.
Let x ={a(x)0x x0 B}, Y={a( yOy ¥ 8.
Definition.X\Y={a(z)Dz where ( )= max{a( Pea( )y(} L Z X Oy "}3
Example. We consider the multisets:

X:B;+Jk:{( Kk jmx@ B},
p—/]l(Jk+x)
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Lif k 21
Y=B+XF=14 Oy yl B, &Y= (pﬂl(ﬁy)]

0;otherwise
From Statements 23 and 13 we get:
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(sum, direct sum etc). In the present paper somgepties of addition operation of sets
(namely, Minkowski addition) in Boolean spad®" are presented. Also, sums and
multisums of various “classical figures” as: sphdager, interval are considered. The
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existence the Hadamard matrices is apparent.

9. 4. Lintunl, 1. L. Unduhyuib, d. @ Uupqupyui
Puqunipnibubph gnudwp poyyub nupubmpjub ke

Unuphttwinnp wiwihqh owwn hunhpubpnid oqunugnpdynid L puqunipniuibph
gnudwp (gnudwp, ninhn gnuidwp b wy): Upuwwnwbpnid tkpuyugdus b puqune-
pinttitbph gnudwph (gnudwp pun Uhtynyuynt) npnpwlh hwnnipgnitkp B” poyjut
nuwpwénipjut Uke: Thinwplynud ki gnudwpubp b dnyunp gnudwpubp wytyhuh nw-
punbuwl] puuwlub puqunipnititph hwdwp, hisyhuptt B gniby, okpwn, dhowljuyp:
Uwnwugqué wpnyniupubpp httwpwynpnipinit Bu mmuhu bjupugpbine dnywnp gni-
Uwpibpp, gmuwpljhubph wijyhup pintpugphsibpny, hsybu ophtmy’ qinh pwow-
yhn, otpuh Yohe, dhpwluyph swhnpquuwinipmit: Quunidbwuhpdnd £ X +Y = A
hujuwuwplwi htwpuynp nisnidkph gnipinibp, npinky X, Y, AO B' : Wugph npp-
Jusph wupqmipjudp hwinkpd, hajuwuwpdw nusnwdubph gnynipjwt jpunph pupnpni-
pniup whthwyn E nuntnwd, kpp wupqynud £ ipw juyp hwjuwuwpwhbe §onkph ju-
mnigdwt, Unudwph dwwnphguh qgnynipjut munhpubph htan:
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CymMa MHO:KeCTB B 0yJ1eBOM NMPOCTPAHCTBE

Bo MHOrux 3ajgauyaXx KOMOHMHATOPHOIO aHaJlW3a MCIHOJB3YIOTCS OlEepalyu
CIIOXKEHHS MHOXKECTB (CymMMa, mpsMas cyMMa W T.11.). B maHHOW paboTe mpUBOASATCS
HEKOTOPHBIC CBOICTBA OICPALMH CIOKEHHS MHOXECTB (CIIOKeHHst M0 MHUHKOBCKOMY) B
OyaeBom mpoctpancTBe B" u paccMaTpuBarOTCs CyMMBI H MYJIBTHCYMMBI Pa3IHYHBIX
«KJTAaCCHYECKHX (HUTyp», TaKMX Kak IIap, cJoi, mHTepBal. [loimydeHHBIE pe3ynbTaThl
MO3BOJIAIOT ONMCATh MYJIBTUCYMMBI Yepe3 TaKHe XapaKTePHCTHKU CIIaraeMbIX, Kak
panuyc Iapa, Bec CJOsl, Pa3MEpPHOCTb HHTepBaja. PaccMaTpuBalOTCs BO3MOXKHBIC
peutenust ypasuenus X +Y = A, re X,Y, A B'. IIpu 3TOM HECMOTpst HA TIPOCTOTY
MIOCTAHOBKH 3aJ1a4M CIIOKHOCTh PEIEHUs] CTAaHOBHTCS OYEBUAHOW Cpasy, KaK TOJIBKO
BBISIBIISIETCSI CBSI3b C IIOCTPOECHHEM OKBUANCTAHTHBIX KOJOB WM CYIIECTBOBAHHUEM
MaTpuI Anamapa.
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