2 U8 U US U UF
 9 FS П FØ 8 П FU UF F
 U Q 9 U8 FU
 U 4 U 7 E UF U

 НАЦИОНАЛЬНАЯ
 АКАДЕМИЯ
 НАУК
 АРМЕНИИ

 NATIONAL
 АСА DE MY
 OF
 SCIENCES
 OF
 ARMENIA

 ДОКЛАДЫ
 2 E 4 П F8 8 U E
 REPORTS

Հատոր Том 117 Volume

2017

УДК 577.113.6

БИОФИЗИКА

№ 1

П. О. Вардеванян, А. П. Антонян, М. А. Парсаданян, В. Г. Саакян

Исследование совместного связывания акридинового оранжевого и бромистого этидия с ДНК

(Представлено академиком Л.А. Тавадяном 15/XII 2016)

Ключевые слова: ДНК, акридиновый оранжевый, бромистый этидий, тройная система, температура плавления, ширина интервала плавления.

ДНК является "самой главной молекулой" жизнедеятельности клетки [1]. Биологические свойства ДНК проявляются в присутствии различных низкомолекулярных соединений (лигандов), с которыми ДНК образует различные типы комплексов (см [2]), что придает актуальность таким исследованиям. Эти исследования важны и с точки зрения конструирования новых препаратов, имеющих фармакологическое значение. При этом особую важность приобретает выяснение молекулярных механизмов взаимодействия различных низкомолекулярных веществ с ДНК [3].

В настоящее время исследования комплексов ДНК-лиганд становятся актуальными еще и в связи с тем, что огромное прикладное значение приобретают ДНК-биосенсоры, которые функционируют как поверхностный рецептор. Одним из важнейших направлений приготовления данных биосенсоров является улучшение селективности и чувствительности этих "приборов", что будет способствовать возрастанию электрического сигнала и стабильности пробной мишени. Стабильность ДНК в биосенсоре строго зависит от условий среды: pH, ионной силы, лигандов и т. п. Селективность, а также чувствительность ДНК-сенсоров можно увеличить, используя электрохимически активные соединения с более высоким сродством к ДНК. Такие соединения могут увеличить стабильность ДНК и в то же время амплитуду генерированного сигнала, что может приводить к возрастанию чувствительности ДНК-биосенсора. Среди таких лигандов важное место занимают интеркаляторы, которые, имея плоскую гетероциклическую структуру, хорошо подходят к нуклеиновым кислотам и меняют локальную структуру ДНК [4, 5]. С этой точки зрения исследования комплексов ДНК-лиганд являются важными в контексте совершенствования ДНК-биосенсоров, обнаруживая эффект влияния лигандов на ее термодинамику и кинетику расплетения.

Установлено, что многие лиганды влияют на биологические функции ДНК, поскольку образуют медленно диссоциирующие комплексы с ней. При этом большинство из них могут ингибировать процессы репликации или транскрипции, создавая затруднения для расплетания ДНК [6-8]. Интеркаляторы бромистый этидий (БЭ), акридиновый оранжевый (АО) и др. имеют широкое применение [7-13]. Исследования последних лет указывают на то, что многие лиганды с ДНК могут связываться более чем одним способом, вследствие чего их влияния на ее структуру и функции могут быть противоположными [14,15]. В частности, и БЭ, и АО могут связываться как с двухцепочечной (дц), так и одноцепочечной ДНК и в зависимости от сродства к этим участкам стабилизировать или дестабилизировать ее нативную структуру. В связи с этим особый интерес представляет изучение совместного связывания двух лигандов с ДНК [5,7-13]. Целью настоящей работы стало исследование совместного связывания двух интеркаляторов – БЭ и АО с ДНК.

Материалы и методы. В работе были использованы: ДНК тимуса теленка (Sigma, США), АО (Sigma, США), БЭ (Serva, Германия), NaCl, Naцитрат, ЭДТА (этилендиаминтетраацетат), химически чистые. Все препараты были использованы без дополнительной очистки. Концентрации ДНК, БЭ и АО определялись спектрофотометрически, с использованием следующих коэффициентов поглощения: ε_{260} =6600 M⁻¹см⁻¹ для ДНК т.т., ε_{420} =5800 M⁻¹см⁻¹ для БЭ и ε_{490} =35000 M⁻¹см⁻¹ для АО. Исследования проводились при ионной силе раствора μ =0.02 M, pH=7.0.

Плавление комплексов ДНК с лигандами, а также спектрофотометрическое измерение поглощения растворов препаратов осуществлялись на спектрофотометре РҮЕ Unicam-SP8-100 (Англия). Нагрев растворов комплексов осуществлялся при помощи программного устройства SP 876 Series 2. Для спектрофотометрических измерений использовали кварцевые кюветы, герметически закрытые тефлоновыми пробками, объемом 3 мл и длиной оптического пути 1 см. Плавление осуществлялось при длине волны λ =260 нм, соответствующей поглощению ДНК. Значения поглощений комплексов при плавлении выводились на монитор ПК с помощью программы, разработанной в среде LabView; на их основании построены кривые плавления комплексов (см. [5] и цит. там).

Комплексы ДНК с лигандами готовились с учетом концентрационного соотношения г=[С]/[Р], где С – концентрация лиганда (БЭ или АО, или совместно БЭ и АО), Р – концентрация фосфатных групп ДНК. Значения г менялись в интервале 0<r≤0.33. В случае совместного связывания БЭ и АО с ДНК концентрация каждого лиганда была взята вдвое меньше для обеспечения тождества значений г с этими же значениями, соответствующими комплексам БЭ-ДНК и АО-ДНК.

Результаты и обсуждение. Связыванию различных лигандов с ДНК посвящено множество теоретических и экспериментальных работ, в кото-

рых изучены разные аспекты молекулярных механизмов взаимодействия между ними. Основная часть этих исследований относится к связыванию одного лиганда с ДНК, и полученные данные указывают на то, что большинство из изученных лигандов с различными структурами ДНК могут связываться более чем одним способом. Из литературных данных также следует, что проявление того или иного способа связывания лиганда с определенными структурами ДНК зависит от концентрации этих веществ [5, 14-18]. С этой точки зрения определенный интерес представляет исследование взаимодействия двух различных, однако связывающихся одинаковым механизмом лигандов с ДНК. Исходя из этого нами исследована тройная система ДНК-БЭ-АО, поскольку основным способом связывания и БЭ, и АО является интеркаляция. Необходимо отметить, что БЭ является классическим интеркалятором и подходящим объектом для моделирования молекулярных механизмов взаимодействия различных соединений с ДНК, так как для комплексов БЭ-ДНК разработана теоретическая модель структурного перехода спираль – клубок, которая позволяет с помощью зависимости изменения T_m и ΔT от концентрации лиганда рассчитать значение теплоты ΔH^0 и проводить термодинамический анализ образовавшихся комплексов ДНК с этим лигандом (см. [19]). С помощью этой модели теоретически было обосновано, а в дальнейшем экспериментально показано, что БЭ, а также другие лиганды (МС, Hoechst 33258, актиномицин Д) могут связываться с ДНК несколькими способами. В частности, в случае БЭ обнаруживается три способа связывания с двухцепочечной ДНК – интеркаляционный, полуинтеркаляционный и электростатический, которые к тому же универсальны и проявляются независимо от ионной силы раствора, рН или других внешних факторов [5, 20, 21]. Этот факт позволяет систему ДНК-БЭ применить в качестве фундамента в исследованиях по взаимодействию различных лигандов с ДНК. В частности, эта модель может стать информативной как для исследований по взаимодействию других интеркаляторов с ДНК, так и для исследований совместного взаимодействия двух лигандов с ней.

Для выяснения особенностей совместного связывания БЭ и АО с ДНК проведено сравнение экспериментальных результатов по взаимодействию одного из этих лигандов в отсутствие другого с ДНК с аналогичными данными, полученными для комплексов ДНК-БЭ-АО. Исследования комплексов ДНК-лиганд осуществлялись методом УФ плавления при ионной силе раствора 0.02 М, получены кривые плавления (кривые не приводятся). Из этих данных определены значения температуры (T_m) и ширины интервала плавления (ΔT) ДНК и ее комплексов с лигандами и на их основании определены значений этих параметров – $\delta(1/T_m)$ и $\delta(\Delta T/T_m^2)$ от г.

На рис. 1 приведены кривые зависимости $\delta(\Delta T/T_m^2)$ от г, полученные при ионной силе раствора 0.02 М. Из рисунка видно, что эта зависимость приобретает колоколообразную форму в случае комплексов БЭ-ДНК (кривая 1), поскольку возрастает при низких концентрациях лиганда, затем, достигая своего максимального значения при r=0.1, с увеличением концентраций БЭ начинает уменьшаться. В случае комплексов АО-ДНК имеет место возрастание зависимости $\delta(\Delta T/T_m^2)$ от г при низких концентрациях лиганда (0<r≤0.1) (кривая 2). При дальнейшем увеличении концентрации АО эта кривая выходит на плато. Иная ситуация наблюдается в случае совместного связывания БЭ и АО с ДНК (кривая 3), поскольку она, как и кривая 1, колоколообразная. Аналогичная с кривой 1 кривая получается при математическом сложении значений $\delta(\Delta T/T_m^2)$ комплексов ДНК-БЭ и ДНК-МС при соответствующих значениях г (кривая 4).

Рис. 1. Кривые зависимости $\delta(\Delta T/{T_m}^2)$ от г комплексов БЭ-ДНК (1); АО-ДНК (2), БЭ-ДНК-АО (3) и ДНК-БЭ +ДНК-АО (4), при ионной силе створа 0.02 М. Кривая 4 является математической суммой значений $\delta(\Delta T/{T_m}^2)$ комплексов ДНК-БЭ и ДНК-АО, при соответствующих значениях г.

Интеркаляционный механизм связывания БЭ вносит основной вклад в стабилизацию дц-структуры ДНК (см. [19]). При низких концентрациях этого лиганда места для интеркаляции не насыщены, и по ходу плавления имеет место перераспределение связанных молекул БЭ с денатурированных на еще не денатурированные участки. Это приводит к увеличению значения ΔT комплексов по сравнению с ΔT ДНК. С увеличением концентрации БЭ по мере насыщения интеркаляционных мест перераспределение прекращается, вследствие чего величина $\delta(\Delta T/T_m^2)$ достигает своего максимума, а при дальнейшем увеличении концентрации БЭ начинает уменьшаться. Этот факт обусловлен тем, что молекулы БЭ начинают связываться с ДНК полуинтеркаляционным и электростатическим способами. В то же время величина $\delta(1/T_m)$ в зависимости от г возрастает, поскольку БЭ является стабилизатором двухцепочечной структуры ДНК. Стабилизирование дц-структуры ДНК обнаруживается и при интеркаляционном способе связывания АО с ней. Тем не менее, этот эффект намного сильнее проявляется в случае БЭ, что может быть результатом того, что сродство БЭ с дц-ДНК существенно больше, чем АО. Несмотря на это, при совместном связывании обоих лигандов значения $\delta(\Delta T/T_m^2)$ практически сопадают с аналогичными значениями, полученными дла комплексов АО-ДНК.

Известно, что величина ΔT является мерой гетерогенности стекинг взаимодействий между АТ-АТ, АТ-ГЦ и ГЦ-ГЦ парами (см. [5] и цитируемую там лит.). Учитывая это, мы заключаем, что при связывании лиганда гетерогенность стекинг взаимодействий между парами оснований возрастает, при этом при интеркаляции БЭ проявляется некоторая предпочтительность к ГЦ парам. Исходя из того, что в случае ДНК-АО и ДНК-БЭ-АО значения $\delta(\Delta T/T_m^2)$ меньше, чем в случае ДНК-БЭ, мы полагаем, что имеет место уменьшение гетерогенности стекинг взаимодействий между указанными парами. Этот эффект является результатом того, что оба интеркалятора практически одинаково влияют на гетерогенность стекинг взаимодействий между парами оснований (в интервале 0<r≤0.01 значения δ(ΔT/T_m²), полученные для комплексов ДНК-АО и ДНК-БЭ, практически не отличаются), вследствие чего ΔT тройной системы близка к значениям этого параметра, соответствующего свободной ДНК, в то время как в случае отдельных комплексов этих лигандов с ДНК величина ΔT значительно больше. Из полученных данных мы заключаем, что при относительно низких концентрациях обоих лигандов между ними не возникает конкуренции за места связывания. По мере увеличения концентраций обоих лигандов значения ΔT , несмотря на то, что в случае их отдельных комплексов продолжают возрастать, начинают расходиться, и при этих значениях r ΔT тройной системы все еще остается меньше. При дальнейшем увеличении г (0.04<r≤0.17) значения δ(ΔT/T_m²) тройной системы ДНК-АО-БЭ и двойной системы ДНК-АО практически совпадают. Это указывает на то, что в этих условиях гетерогенность тройной системы приобретает свое максимальное значение, которое близко к таковому, соответствующему ДНК-АО системе. Интересным является то, что кривая 4 не совпадает с кривой 3, из чего следует, что влияние АО и БЭ на ширину интервала плавления ДНК при их совместном связывании с ДНК не является простой суммой их влияний при отдельном связывании.

Полученные данные также выявляют, что AO, по всей вероятности, связывается с ДНК двумя способами. На это указывает то, что кривая зависимости $\delta(\Delta T/T_m^2)$ от г, возрастая при низких концентрациях AO, выходит на плато с увеличением значения г. Аналогичные результаты были получены для комплексов ДНК-МС. МС является акридиновым красителем и аналогом AO и при ионной силе раствора 0.02 M связывается с ДНК двумя способами – полуинтеркаляционным и электростатическим (см. [5]). При дальнейшем увеличении концентраций обоих лигандов интеркаляция молекул БЭ, а также AO прекращается, и БЭ начинает связываться с ДНК полуинтеркаляционным способом, что приводит к понижению значений $\delta(\Delta T/T_m^2)$. В этих условиях AO или не связывается с ДНК, или же связывается слабым (электростатическим) способом.

На рис. 2 приведены кривые зависимости δ(1/T_m) от г комплексов БЭ-ДНК (кривая 1), АО-ДНК (кривая 2), ДНК-БЭ-АО (кривая 3) и БЭ- ДНК+АО-ДНК (кривая 4). Из рисунка видно, что и в случае БЭ, и в случае АО кривые зависимости $\delta(1/T_m)$ от г возрастают с увеличением концентраций лигандов в растворе. Это указывает на то, что оба лиганда стабилизируют дц-структуру ДНК в интервале изменения 0<r≤0,33. При этом стабилизирующее влияние БЭ на нативную структуру ДНК намного значительнее, чем АО. При совместном же связывании этих лигандов с ней значения $\delta(1/T_m)$ меньше, чем при отдельном связывании БЭ, однако кривые 3 и 4 совпадают, что указывает на то, что совместное влияние связанных молекул БЭ и АО на температуру плавления ДНК практически является математической суммой их влияний на этот параметр при отдельном связывании. Необходимо отметить, что в случае МС при аналогичных условиях обнаруживается иная картина – молекулы БЭ и МС конкурируют за места связывания полуинтеркаляционным способом, поскольку при ионной силе раствора 0.02 М МС полностью не интеркалирует в ДНК [5].

Рис. 2. Кривые зависимости $\delta(1/Tm)$ от г комплексов БЭ-ДНК (1); АО-ДНК (2), БЭ-ДНК-АО (3) и ДНК-БЭ +ДНК-АО (4), при ионной силе раствора 0.02 М. Кривая 4 является математической суммой значений $\delta(1/T_m)$ комплексов ДНК-БЭ и ДНК-АО при соответствующих значениях г.

Полученные данные также указывают на то, что в случае АО полуинтеркаляционный тип связывания с дц-ДНК отсутствует. Исходя из этого полагаем, что колоколообразное изменение зависимости $\delta(\Delta T/T_m^2)$ от г в случае БЭ обусловлено тремя способами связывания этого лиганда с ДНК – интеркаляционным, полуинтеркаляционным и электростатическим, в случае же совместного с АО связывания – проявлением интеркаляционного и электростатического способов связывания обоих лигандов. При этом константа связывания АО интеркаляционным способом, по всей вероятности, отличается от таковой БЭ, вследствие чего в данном случае влияние обоих лигандов на зависимость величины $\delta(\Delta T/T_m^2)$ от г аналогична этой же зависимости для случая связывания одного лиганда с ДНК тремя способами.

Заключение. Таким образом, полученные данные указывают на то, что АО и БЭ, являясь интеркаляторами, по-разному влияют на ширину интервала плавления ДНК. С другой стороны, оба лиганда являются стабилизаторами дц-структуры ДНК. При этом интеркаляционный способ связывания БЭ превалирует над интеркаляцией АО. Также выявлено, что в противоположность БЭ полуинтеркаляционный способ связывания АО с ДНК не обнаруживается.

Исследование выполнено при финансовой поддержке Государственного комитета по науке МОН РА в рамках научного проекта № 15Т-1F105.

Ереванский государственный университет

П. О. Вардеванян, А. П. Антонян, М. А. Парсаданян, В. Г. Саакян

Исследование совместного связывания акридинового оранжевого и бромистого этидия с ДНК

Проведено исследование тройной системы ДНК-БЭ-АО при ионной силе раствора 0.02М, в интервале изменения концентрационного соотношения лиганд/ДНК 0<r \leq 0.33 и определены значения изменений параметров (температуры плавления ($\delta(1/T_m)$) и ширины интервала плавления ($\delta(\Delta T/T_m^2)$) этих комплексов. Из полученных данных следует, что зависимость $\delta(1/T_m)$ от г, полученная для тройной системы, по форме совпадает с аналогичными кривыми, полученными для комплексов БЭ-ДНК. Аналогичная зависимость получается и при математическом суммировании значений $\delta(1/T_m)$, полученных для комплексов ДНК-БЭ и ДНК-АО. Зависимость $\delta(\Delta T/T_m^2)$ от г, полученными кривыми, по форме совпадает с аналогичными для комплексов БЭ-ДНК, а также с помощью математического суммирования значений $\delta(\Delta T/T_m^2)$, полученными для комплексов БЭ-ДНК, а также с Помощью математического суммирования значений $\delta(\Delta T/T_m^2)$, полученных для комплексов ДНК-БЭ и ДНК-АО, однако не является их простой суммой.

Պ. Հ. Վարդևանյան, Ա. Պ. Անտոնյան, Մ. Ա. Փարսադանյան , Վ. Գ. Սահակյան

ԴՆԹ-ի հետ ակրիդինային նարնջագույնի և էթիդիումի բրոմիդի համատեղ կապման ուսումնասիրությունը

Ուսումնասիրվել է ԴՆԹ-ԷԲ-ԱՆ եռակի համակարգը լուծույթի 0.02 Մ իոնական ուժի պայմաններում, լիգանդ/ԴՆԹ կոնցենտրացիոն հարաբերության 0<r≤0.33 փոփոիության միջակայքում և որոշվել են այդ կոմպլեքսների հալման պարամետրերի (հալման ջերմաստիձանի (ծ(1/Tm)) և հալման միջակայքի լայնության (ծ(ΔT/Tm²))) փոփոխությունների արժեքները։ Ստացված տվյալներից հետևում է, որ եռակի համակարգի դեպքում ծ(1/Tm) կախվածությունը r-ից համընկնում է ԴՆԹ-ԷԲ և ԴՆԹ-ԱՆ կոմպլեքսների համար ստացված ծ(1/Tm) մաթեմատիկական գումարը ներկայացնող կորի հետ։ r-ից δ(ΔΤ/T^{m2})-ի կախվածությունը, որը ստացվել է եռակի համակարգի համար, իր ձևով համապատասխանում է համանման կորերին, որոնք ստացվել են ԴՆԹ-ԷԲ կոմպլեքսների, ինչպես նաև ԴՆԹ-ԷԲ և ԴՆԹ-ԱՆ կոմպլեքսների δ(ΔΤ/T^{m2}) արժեքների մաթեմատիկական գումարման միջոցով, սակայն եռակի համակարգերի դեպքում այդ կախվածությունը չի համընկնում վերջինիս հետ։

P. O. Vardevanyan, A. P. Antonyan, M. A. Parsadanyan, V. G. Sahakyan

Study of Joint Binding of Acridine Orange and Ethidium Bromide with DNA

The study of the triple system DNA-EtBr-AO at 0.02 M ionic strength of a solution and $0 < r \le 0.33$ interval of ligand/DNA concentration ratio change has been carried out and the values of changes of prameters (melting temperature ($\delta(1/T_m)$) and melting interval width ($\delta(\Delta T/T_m^2)$)) of these complexes were determined. From the obtained data it is followed that $\delta(1/T_m)$ dependence on r for the triple system coincides by its form with analogous curves obtained for DNA-EtBr complexes. Analogous dependence was obtained at mathematical sum of $\delta(1/T_m)$ values for DNA-EtBr and DNA-AO complexes as well. Dependence of $\delta(\Delta T/T_m^2)$ on r obtained for the triple system coincides with analogous curves obtained for DNA-EtBr complexes by its form as well as with that obtained through mathematical sum of $\delta(\Delta T/T_m^2)$ values for DNA-EtBr and DNA-AO complexes.

Литература

- 1. Франк-Каменецкий М. Д. Век ДНК. М. КДУ. 2004. 240 с.
- 2. Gowda K.R.S, Blessy B.M., Sadhamani C.N., Naik H.S.B Biomedicine and Biotechnology. 2014. V. 2. N 1. P. 1-9.
- 3. Tsuboi M., Benevides J.M., Thomas G.J.Jr. Biophysical Journal. 2007. V. 92. P. 928-934.
- Pasternack R. F., Goldsmith J. I., Szep S., Gibbs E. J. –Biophys J. 1998. V. 75. P. 1024-1031.
- 5. Vardevanyan P., Antonyan A., Parsadanyan M., Torosyan M., Karapetian A. J. of Biomol. Struct. and Dyn. 2015. V. 34. P. 1377-1382.
- 6. Nafisi Sh, Saboury A. A., Keramat N., Neault J.-F., Tajmir-Riahi H.-A. Journal of Molecular Structure. 2007. V. 827. P. 35-43.
- Kusuzaki K., Murata H., Matsubara T., Miyazaki Sh., Shintani K., Seto M., Matsumine Ak., Hosoi H., Sugimoto T., Uchida A. – Photochemistry and Photobiology. 2005. V. 81. P. 705-709.
- 8. Kapuscinski J., Darzynkiewicz Z., Melamed M. R. Biochemical Pharmacology, 1983, 32, p. 3679-3693.
- 9. Lantukh Yu. D., Pashkeich S. N., Letuta S. N., Alidzhanov E. K., Kul'sarin A. A. Optics and Spectroscopy. 2013. V. 114. P. 283-287.
- 10. Lantukh Yu. D., Pashkeich S. N., Letuta S. N., Alidzhanov E.K., Kul'sarin A. A. Optics and Spectroscopy. 2011. V. 110. P. 880-884.
- 11. Lai Sh., Chang X., Tian L., Wang S., Bai Yu., Zhai Yu. Micrichim. Acta, 2007, 156, p. 225-230.
- 12. Rawtani D., Agrawai Y. K. BioNanoSci. 2013. V. 3. P. 52-57.
- Rohs R., Sklenar H. J. Biomol. Struct. Dyn. 2004. J. Biomol. Struct. and Dyn. V. 21. P. 699-711.

- 14. Hossain M., Giri P., Kumar G. S. DNA and Cell Biology. 2008. V. 27. P. 81-90.
- Zhao G.C., Zhu J.J., Zhang J. J., Chen H. Y. Anal. Chim. Acta. 1999. V. 394. P. 337-344.
- 16. Han F., Taulier N., Chalikian T. Biochemistry. 2005. V. 44. P. 9785-9794.
- 17. Ismail M.A., Rodger P.M., Rodger A. J. Biomol. Struct. Dyn., 2000, 11, p. 335-348.
- Karapetian A.T., Mehrabian N.M., Terzikian G.A., Vardevanian P.O., Antonian A.P., Borisova O.F., Frank-Kamenetskii M.D. – J. Biomol. Struct. Dyn. 1996. V. 14, P. 275-283.
- 19. Suh D. Exp. and Mol. Medicine. 2000. V. 32. P. 204-209.
- 20. Xinhui H., Wang Q., Pingang H., Fang Y. Analytical Sciences. 2002. V. 18. P. 645-650.
- 21. *Tang Tz.Ch., Huang H-J.* Electroanalysis. 1999. Electroanalysis. 1999. V. 11. P. 1185-1190.