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Necessary and sufficient conditions for the existerof a simple
hypergraph with given degree sequence is one okribe/n open problems in
the graph theory domain [1-10]. The problem hasnitsrpretation in terms of
binary matrices. Existence/construction issue®latted matrices with the given
parameters/constraints were investigated and amodppation algorithm is
constructed [11-12]. In this paper we achieve thefgpmance assessment of
that algorithm applying the random set cover teghei

Introduction. A hypergraphH is a paifV, E), whereV ={v,..., v} is the
vertex set ofH, and E, the set of hyperedges, is a collection of nontgmp
subsets o/ . A hypergraphH is simple if it has no repeated hyper-edges. The
degreed(v) of a vertexv of H is the number of hyperedges i containing
v .d(H)=(d(y).....d()) is the degree sequence of hypergraph

The question of simple necessary and sufficientditimms for the
existence of a simple hypergraph with the givenreegequence is a long-
standing open problem. The problem has its intg&gpom in terms of binary

matrices. We codethe hyper-edgestbfwith (0,1) sequences of lengthsuch

that j-th component of the sequence equals 1 if and ibnith vertex of the

hypergraph belongs to the given hyper-edge. Heneeget a (0,1) matrix,
where the numbers of 1's in rows are cardinaldfdsyper-edges; the number of

1s inj-th column is the degree #ith vertex.Thus, the problem is equivalent to

the existence of (0,1)-matrices with distinct roavel with given column sums
(number of 1s in the columns). In general, (0,1)fic@s with prescribed row
and column sums is a classical object, which agp@amany branches of
applied mathematics. For example, in Discrete Taapgy (0,1) matrices
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serve for representation of discrete sets [13-Ibg projections of a matrix by
the horizontal and vertical directions correspamthe row and column sums of
the matrix. There is a known result by Ryser, whtamed a necessary and
sufficient condition for a pair of vectors beingethow and column sums of a
(0,1)-matrix([16]), and a polynomial algorithm thainstructs the matrix itself.
The requirement of non-repetition of rows makes gheblem hard. For such
matrices both cases: existence of a (0,1) matrik wigiven column sum and
with or without row sum, - are algorithmically opgmoblems [17],[18].We
consider an optimization version of the probleno-find a (0,1) matrix with a
given column sum and with maximal number of pairgligtinct rows, - this
leads to a matrix with distinct rows in case whaarsmatrix exists.To find an
approximate solution of the problem a greedy atboriis constructed in [11],
which is optimal in local steps. Several propertsthe algorithm and
experimental results are given in [12]. In this esgh we estimate the
performance of the algorithm using the greedy aaddomized set cover
technique.

The paper is organized as follows: a brief desaoniptof the greedy
algorithm is given in Section 2 below. Section 8lévoted to the evaluation of
the algorithm’s performance using the greedy seeictechnique.

Approximation greedy algorithm for constructing (0,1)-matrices with
distinct rows. Consider a (0,1)-matrix of sizewxn. Let S=(s,... §) denote

the column sum vector of the matrix, wheseis the number of 1's ij —th
column. U (S) denotes the set of all (0,1)-matrices which havedistinct rows
and have the column sum vect®r(s.... ) . Now we formulate two versions
of the problem: existence and optimization.

(P1) Existence of a matrix in U(S). Consider a matrixA of U(S).
Clearly any interchange of rows of keeps the matrix irJ (S). Applying

certain set of row interchanges we can transfokminto another matrix of
U(S), in which s ones of the first column are situated in the fitst.,s
positions, and thus form an interval. Then in thme way we can transform the
obtained matrix into another one wheseones of the second column compose
two intervals (says,, ands,, lengths, wheres, = s+ s ,) situated in the
1...,s,;, and s +1,...s,, positions, respectively. Continuing this process w
obtain alternating 1 and O intervals (possibly ofefigths) in each column.
Rowsi and j taken from different intervals are distinct, amadvs within the
same interval coincide with each other.We call thimstruction matrix of
partitioned form. An illustration is in Figure 1lbe.

Thus, if U(S) is not empty then it contains at least one matix
partitioned form. We will search solution ¢Pl) among the matrices of
partitioned form, constructing the matrix columndniumn, and providing in
each column the given number of ones. If in the datumn the matrix has all

one length intervals, then all rows are differeBenerally, partitioning of
intervals can be arbitrary, but it is reasonableh&tve some objective, for
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example certain quantitative characteristics legadnthe matrix with distinct
rows.

12 i .n
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Figurel. The step-by-step partition matrix.

Let U(S) denote the class of (0,1)-matrices of sizen which have the
column sum vectorS=(s.... §). In this way U(S)OU(S. For a given
ADU(S) let D(A) denote the number of pairs of distinct rowszof
Consider the following optimization problem:

(P2) Find A, 0U(S) such that D(A,,) = max,,

() D(A)

Obviously {r;] is the lowest upper bound fdb(A)and it is achievable for
matrices ofU (S) only. Therefore ifu (S) is not empty, then solutions (2)

are also solution of the existence probl@). In this way(P2) is not easier
than(P1).

Below we give a brief description of the greedyoaitpm G introduced in
[11] for solving (P2). G constructs a matrix column-by-column starting from
the first column and adding a column in each step.

Algorithm G. Without loss of generality we assume that
szm-s, i=1...,n

Step 1. Construction of the first column: we placgones in the firsts
positions followed bym- g zeros. We get two intervals; -length interval of
ones, andm- s) -length interval of zeros. We denote these interbgld’;, and
d,. Hereafter the first sub-index will indicate thenmber of column and the
second — the number of interval within the coluhmtervals with odd numbers
contain all ones, and intervals with even numbenrstain all zeros. Thus the

dg =
construction of the first column is in unique w yl:‘l 5 . At this point
diy+dg,=m
we get dj [F, = s( m- ) pairs of differing (by the first position) rows.
Let we have constructed the fir&t-1 columns. In general(k-1)-th

column consists of2** intervals. Among them 0-length intervals are poissi

28



these intervals cannot be used any longer. Assinae(k-1) - th column

consists of p non-zero length intervals denoted by, ,,d7, ,....d¢,,. Recall
that the rows coincide within the intervals andfetifotherwise. If in some
column j we get all one length intervals, then at this moimen repetition of
all rows, and hence the maximum number of pairdifbérent rows is already
provided. Further constructions can be arbitrary.

Step k.Construction of the -th column: eachd?, -length interval is
partitioned inta’,,, and dZ, ,-length intervals filled by zeros and ones
respectively such tha}.” d¢, ,=m-gand> " d?, ,=s.

The increase of objective function during theth step is:

ip:i dIil,i,l |]jkGflj ,0"
We will realize partitions having the goal to mirmm@ length differences of
intervals. The idea is in the following: § = m- g, k=1..., r, then in each step

we would split every interval into 2 equat {) parts and fill by zeros and ones
respectively; this would lead to all one lengtheimtls in logarithmic number
(minimum possible [19]) steps.Furthermore, amongirdgeger partitions of
do, =d2, ,+d’, , the largest productd’, .S, , is achieved when
doyio=do ;. Thus following this strategy would bring to thead but in
general at each step we haves —-(m- ) extra ones. Trying to be closer to

equal lengths of intervals we 1) distribute ther@xbnes among intervals
keeping a “homogeneous” distribution; and then®it ®ach of the remaining
intervals into 2 equal parts— putting equal nundfereros and ones.

Theorem 1[11]

(1) Algorithm G is optimal in local steps: it provides the maximum
increase of the objective function — pairs of difig rows;

(2) All optimal constructions of each column are those according to
G.

Perfor mance estimation of the algorithm G. In this section we will
use thegreedy set cover technigte evaluate the performance Gf. Consider
column-by-column constructions of a (0,1)-matrixstfe mx n, with 5 ones in

m . .
the i -th column. There ar[es}possmle placements o§ ones ini -th column.

Each placement will produce the samgém- s) number of pairs of different
rows (differing by thei-th column). We enumerate these placements as:

12,.. [;HJ By the other hanc{r;} is the maximum number of distinct pairs of

. m
rows. Enumerate these pairs a2,... [2]
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Now we construct (0,1)-matri® in the following way: P has 2?1[:1]

rows grouped byR,R,.... P blocks/submatrices. Each blo¢k consists o(g
m

rows, corresponding to the placements ©fones ini -th column. P has[z)

columns corresponding to the distinct pairs of r@ivav (by the placements).
Figure 2 below illustrates the construction.

~

Cm
rﬂ P ]
b
‘r.-sil I :
_. F,

Figure 2. Structure of matrix P.

Let p,, denote the element dfjk)—th position (j-th row and k-th

column) of submatrixP :
_ |1if thek~- the pair of rows of M is differing by theih tolumn and namelybythe-j th placementof s ¢
Prix _{0,0therwise
In this way j -th row in P indicates the pairs which are differing by thieth
placement ofs ones. Therefore, theumber of ones in each row &f equals
s(m-s).
k-th column in P indicates those placements of ones, which make

distinct thek -th pair of rows of M . Therefore, the number of ones bfth
column is the number of placements §f ones makingk-th pair of rows

distinct byi -th position. Any pair of rows is distinct biyth position if one the
rows has 1, and the other has 0 in this positiowjae versa. In other positions
the placement of ones is arbitrary. Thus,thenber of ones in every column of

P equals2C:’;.
We get the following relation:
s(m-s) G=2G3 G.
Now we construct a matrix , and consider the corresponding construction in
P . The construction of each columnhofis simply a selection of a row iR .
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Construction of the first column of1 means selection of a certain placement

m . . .
among all placements ofs ones. As a result certain pairs of rows will be
S

differing, and in this way the corresponding rowmfwill be selected. Ones in
this row will indicate s (m- s) distinct pairs of rows inM . We separate this

part in P and exclude it from the further considerations.
Suppose that-1 columns ofM are constructed wit s,,... 5, ones, and

as a result certain pairs of rows are already riiffe In Figure 3 these pairs are
in the dashed part (without loss of generality, diféering rows are shown in
the first part ofP). At this moment outside the dashed part thereids. Let
t_, denote the number of row pairs bf which are not yet distinct after the

first i -1 steps. Now we constructth column ofM in P, namely, inP.

_
wlm %) //%

Figure 3. Construction of sub-matrix .
We calculate the number of ones that the not-dagledshould contain, this

Ly

- ~a
[ A

m-2
A7)
equals tot,_,2C3"2. Therefore, —: is the average number of ones in
¥
m-2
A7
rows. It follows that there is a row with at Ieast—j] ones (or
¥
m-2
2
— ones, since we deal with integer numbers). We s#tecrow as
)

a construction of -th column of M . This means that the constructionioth
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m-2
b2y
column of M will produce at least —————=| new pairs of distinct

rows.Thus: { j
m-2
Lt ztt_lz s71)_, Am-lsm gt A ™3

The achieved important property is stated by theviang lemma.

Lemma. Let we construct a matri® in column-by-column manner, and
at i -the step we have:
a) firsti -1 columns /by some constructions/. ltetdenote the number of pairs
of rows in M which are not yet differentiated,
b) s - the number of ones in-th column ofM , then there is a placement gf

ones in thei-th column such that new pairs of rows will compaegeleast

m part oft,_, .

%)

2

We notice that the result does not depend on thstaections of the firsi-1
columns, as well as on the order of componenteef/ectorS. Summarizing,

we achieve the following estimate of the greedyatgm:
Theorem 2. For a given vectoiS=(s, s.... §) let M be a binary matrix

of size mx n with the column suns, constructed by the greedy algoritkam
Then the part of not differentiated pairs of rows is at mostéé,...¢&,,

s(m-s)

2)

Further examples are considered in order to urmleshow tight the
estimate is.

where§ =1-
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Necessary and sufficient conditions for the existeof a simple hypergraph with
the given degree sequence is one of the known ppalslems in the graph theory
domain. The problem has its interpretation in terro§ binary matrices.
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Existence/construction issues of related matricitls the given parameters/constraints
were investigated and an approximation algorithnedestructed in earlier works. In

this paper we achieve the performance assessmettiabfalgorithm applying the

random set cover technique.

2. U. Uwhuljjub
Zhwpqpudh wmunpLwuyghtt hwgnpuwluinipjut dnnwplynid

Spyws wunhfwbwhtt hwgnppuljwimipyudp wwpq hhybpgpudh gnmipju
wihpwdbon b pudupup wuydwbbp qgnubint punhpp gqpubtbph mbunipjut hwpnih
pug htnhpukphg uklu bk unhpp miuh hp Jdbjtwpwinudp phttwp dwnnphgubph
wnbpdhubpny: Vwpunpnnn wphiwnwtpubpnud hinwgqnngty Bo mpus nwhdwbuthw-
Unulutpny duwnnphgubph qnmnipjul / jurnigdwt hwpgbpp b jurnigdl) b wwpnpup-
dwghnt wgnpphped: Lkplju wopwwnwipnid wpynud £ wyn wignphpdh wouuwnwiph
quwhwinwlwip puqunipmnibtbph swsynyph Ukpnnh §hpundwdp:

A. A. Caaksan
ANIpoKcUMAIUS MOCTeA0BATEIbHOCTHU CTeNeHeil
BepUIUH runeprpada

3amaya HAaXOXKACHHS HEOOXOIMMBIX M JOCTATOYHBIX YCIOBHI CYIIECTBOBAHUS
mpocroro rumneprpada mo AaHHOH IOCHENOBATENFHOCTH CTENEHEW BEpIINH SBISETCS
M3BECTHOW OTKPHITOH 3amadell Teopuu rpadoB. 3amada UMeET NMPOCTYI0 HHTEpIpeTa-
LU0 B TEPMHUHAX OMHAPHBIX MaTpHl. B mpensiaymux paboTax ObUIM HCCIETOBaHBI 3a-
Jla4 CyIIECTBOBAHMSA U MOCTPOECHUS OMHAPHBIX MATPUI] C JAHHBIMH OIPaHUYEHUSMU U
IIOCTPOEH aIllIPOKCHMALMOHHBIN anropuTt™. B naHHOMN cTaThe MPUBOIUTCS OICHKA pa-
GOTBHI amMmpOKCUMAIIMOHHOTO aJTOPUTMAa IyTEeM NPHUBICUEHHUS METOIa MOKPBITHS MHO-
KECTB.
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