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Necessary and sufficient conditions for the existence of a simple 
hypergraph with given degree sequence is one of the known open problems in 
the graph theory domain [1-10]. The problem has its interpretation in terms of 
binary matrices. Existence/construction issues of related matrices with the given 
parameters/constraints were investigated and an approximation algorithm is 
constructed [11-12]. In this paper we achieve the performance assessment of 
that algorithm applying the random set cover technique. 

 Introduction. A hypergraph H  is a pair( ),V E , where { }, , nV v v= … is the 

vertex set of H , and E , the set of hyperedges, is a collection of non-empty 
subsets of V  . A hypergraph H  is simple if it has no repeated hyper-edges. The 
degree ( )d v  of a vertex v  of H  is the number of hyperedges in H  containing 

v  . ( ) ( ) ( )( )1 , , nd H d v d v= …   is the degree sequence of hypergraph H .  

The question of simple necessary and sufficient conditions for the 
existence of a simple hypergraph with the given degree sequence is a long-
standing open problem. The problem has its interpretation in terms of binary 

matrices. We codethe hyper-edges of H  with (0,1) sequences of length  such 

that -th component of the sequence equals 1 if and only if -th vertex of the 

hypergraph belongs to the given hyper-edge. Hence we get a (0,1) matrix, 
where the numbers of 1's in rows are cardinalities of hyper-edges; the number of 

1s in -th column is the degree of -th vertex.Thus, the problem is equivalent to 

the existence of (0,1)-matrices with distinct rows and with given column sums 
(number of 1s in the columns). In general, (0,1)-matrices with prescribed row 
and column sums is a classical object, which appears in many branches of 
applied mathematics. For example, in Discrete Tomography (0,1) matrices 

Հատոր 
Том 

Volume 
117 2017 № 1 



 27 

serve for representation of discrete sets [13-15]. The projections of a matrix by 
the horizontal and vertical directions correspond to the row and column sums of 
the matrix. There is a known result by Ryser, who obtained a necessary and 
sufficient condition for a pair of vectors being the row and column sums of a 
(0,1)-matrix([16]), and a polynomial algorithm that constructs the matrix itself. 
The requirement of non-repetition of rows makes the problem hard. For such 
matrices both cases: existence of a (0,1) matrix with a given column sum and 
with or without row sum, - are algorithmically open problems [17],[18].We 
consider an optimization version of the problem – to find a (0,1) matrix with a 
given column sum and with maximal number of pairs of distinct rows, - this 
leads to a matrix with distinct rows in case when such matrix exists.To find an 
approximate solution of the problem a greedy algorithm is constructed in [11], 
which is optimal in local steps. Several properties of the algorithm and 
experimental results are given in [12]. In this research we estimate the 
performance of the algorithm using the greedy and randomized set cover 
technique. 

The paper is organized as follows: a brief description of the greedy 
algorithm is given in Section 2 below. Section 3 is devoted to the evaluation of 
the algorithm’s performance using the greedy set cover technique.  

Approximation greedy algorithm for constructing (0,1)-matrices with 
distinct rows. Consider a (0,1)-matrix of size m n× . Let ( )1, nS s s= …  denote 

the column sum vector of the matrix, where js  is the number of 1's in j  –th 

column. ( )U S  denotes the set of all (0,1)-matrices which have m  distinct rows 

and have the column sum vector ( )1, nS s s= … . Now we formulate two versions 

of the problem: existence and optimization. 
(P1) Existence of a matrix in ( )U S . Consider a matrix A  of ( )U S . 

Clearly any interchange of rows of A  keeps the matrix in ( )U S . Applying  

certain set of row interchanges we can transform A  into another matrix of 
( )U S , in which 1s  ones of the first column are situated in the first 11, ,s…  

positions, and thus form an interval. Then in the same way we can transform the 
obtained matrix into another one where 2s  ones of the second column compose 
two intervals (say 2,1s   and 2,2s  lengths, where 2 2,1 2,2s s s= + ) situated in the 

2,11, ,s…   and 1 2,21,s s+ …  positions, respectively. Continuing this process we 

obtain alternating 1 and 0 intervals (possibly of 0 lengths) in each column. 
Rows i  and j  taken from different intervals are distinct, and rows within the 
same interval coincide with each other.We call this construction matrix of 
partitioned form. An illustration is in Figure 1 below. 

Thus, if ( )U S  is not empty then it contains at least one matrix of 

partitioned form. We will search solution of (P1) among the matrices of 
partitioned form, constructing the matrix column-by-column, and providing in 
each column the given number of ones. If in the last column the matrix has all 
one length intervals, then all rows are different. Generally, partitioning of 
intervals can be arbitrary, but it is reasonable to have some objective, for 
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example certain quantitative characteristics leading to the matrix with distinct 
rows. 
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Figure1. The step-by-step partition matrix. 

 

Let ( )U S  denote the class of (0,1)-matrices of size m n×  which have the 

column sum vector ( )1, nS s s= … . In this way ( ) ( )U S U S⊆ . For a given 

( )A U S∈  let ( )D A  denote the number of pairs of distinct rows of A . 

Consider the following optimization problem: 
(P2) Find ( )optA U S∈  such that ( ) ( ) ( )maxopt A U S

D A D A∈=  

Obviously 
2

m 
 
 

 is the lowest upper bound for ( )D A and it is achievable for 

matrices of ( )U S  only. Therefore if ( )U S  is not empty, then solutions of (P2) 

are also solution of the existence problem (P1). In this way (P2) is not easier 
than (P1).   

Below we give a brief description of the greedy algorithm G  introduced in 
[11] for solving (P2). G  constructs a matrix column-by-column starting from 
the first column and adding a column in each step. 

Algorithm G . Without loss of generality we assume that 
, 1, ,i is m s i n≥ − = … . 

Step 1. Construction of the first column: we place 1s ones in the first 1s  
positions followed by 1m s−  zeros. We get two intervals: 1s -length interval of 

ones, and ( )1m s− -length interval of zeros. We denote these intervals by 1,1
Gd  and 

1,2
Gd . Hereafter the first sub-index will indicate the number of column and the 

second – the number of interval within the column. Intervals with odd numbers 
contain all ones, and intervals with even numbers contain all zeros. Thus the 

construction of the first column is in unique way:1,1 1

1,1 1,2

G

G G

d s

d d m

 =


+ =

. At this point 

we get  ( )1,1 1,2 1 1
G Gd d s m s⋅ = −  pairs of differing (by the first position) rows.  

Let we have constructed the first 1k −  columns. In general, ( )1k − -th 

column consists of  12k−  intervals. Among them 0-length intervals are possible,- 
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these intervals cannot be used any longer. Assume that ( )1k −  - th column 

consists of  p  non-zero length intervals denoted by 1,1 1,2 1,, ,G G G
k k k pd d d− − −… . Recall 

that the rows coincide within the intervals and differ otherwise. If in some 
column j  we get all one length intervals, then at this moment non repetition of 
all rows, and hence the maximum number of pairs of different rows is already 
provided. Further constructions can be arbitrary. 

Step k.Construction of thek  -th column: each 1,
G
k id − -length interval is 

partitioned into 1, ,0
G
k id −    and 1, ,1

G
k id − -length intervals filled by zeros and ones 

respectively such that 1, ,0

p G
k i ki i

d m s−=
= −∑  and 1, ,1

p G
k i ki i

d s−=
=∑ . 

The increase of objective function during the k  -th step is:  

1, ,1 1, ,0

p G G
k i k ii i

d d− −=
⋅∑ . 

We will realize partitions having the goal to minimize length differences of 
intervals. The idea is in the following: if , 1, ,k ks m s k n= − = … , then in each step 
we would split every interval into 2 equal (1± ) parts and fill by zeros and ones 
respectively; this would lead to all one length intervals in logarithmic number 
(minimum possible [19]) steps.Furthermore, among all integer partitions of 

1, 1, ,0 1, ,1
G G G
k i k i k id d d− − −= + , the largest product 1, ,0 1, ,1

G G
k i k id d− −⋅  is achieved when 

1, ,0 1, ,1
G G
k i k id d− −= . Thus following this strategy would bring to the goal, but in 

general at each step k  we have ( )k ks m s− −  extra ones. Trying to be closer to 

equal lengths of intervals we 1) distribute the extra ones among intervals 
keeping a “homogeneous” distribution; and then 2) split each of the remaining 
intervals into 2 equal parts– putting equal number of zeros and ones.  

Theorem 1 [11] 
(1) Algorithm G  is optimal in local steps: it provides the maximum 

increase of the objective function – pairs of differing rows; 
(2) All optimal constructions of each column are those according to 

G . 
Performance estimation of the algorithm G . In this section we will 

use the greedy set cover technique to evaluate the performance of G . Consider 
column-by-column constructions of a (0,1)-matrix of size m n× , with is  ones in 

the i -th column. There are
i

m

s

 
 
 

possible placements of  is  ones in i -th column. 

Each placement will produce the same ( )i is m s− number of pairs of different 

rows (differing by the i -th column). We enumerate these placements as: 

1,2, ,
i

m

s

 
 
 

… . By the other hand  
2

m 
 
 

 is the maximum number of distinct pairs of 

rows. Enumerate these pairs as: 1,2, ,
2

m 
 
 

… . 
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Now we construct (0,1)-matrix P  in the following way: P has 
1

n

i
i

m

s=

 
 
 

∑   

rows grouped by 1 2, , nP P P…  blocks/submatrices. Each block iP  consists of 
i

m

s

 
 
 

 

rows, corresponding to the placements of  is  ones in i -th column. P  has 
2

m 
 
 

  

columns corresponding to the distinct pairs of rows of M  (by the placements). 
Figure 2 below illustrates the construction. 

 
Figure 2. Structure of matrix P . 

 
Let , ,i j kp  denote the element of ( ),j k –th position (j -th row and k -th 

column) of submatrix  iP : 

, ,

1, ,

0,

i

i j k

if thek the pair of rowsof M is differing by the i thcolumn and namelyby the j th placement of s ones
p

otherwise

− − −= 


 

In this way j -th row in iP  indicates the pairs which are differing by the  j -th 
placement of is  ones. Therefore, the number of ones in each row of iP  equals 

( )i is m s− . 

k -th column in iP  indicates those placements of  is  ones, which make 
distinct thek -th pair of rows of M . Therefore, the number of ones of k -th 
column is the number of placements of is  ones making k -th pair of rows 
distinct by i -th position. Any pair of rows is distinct by i -th position if one the 
rows has 1, and the other has 0 in this position; or vice versa. In other positions 
the placement of ones is arbitrary. Thus, the number of ones in every column of  

iP  equals 1
22 is

mC −
− . 

We get the following relation: 

( ) 1 2
22i is s

i i m m ms m s C C C−
−− = .   

Now we construct a matrix M , and consider the corresponding construction in 
P . The construction of each column ofM is simply a selection of a row in iP .  
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Construction of the first column of M means selection of a certain placement 

among all 
i

m

s

 
 
 

placements of is  ones. As a result certain pairs of rows will be 

differing, and in this way the corresponding row of 1P  will be selected. Ones in 

this row will indicate ( )1 is m s− distinct pairs of rows in M . We separate this 

part in P  and exclude it from the further considerations. 
Suppose that 1i −  columns of M  are constructed with 1 2 1, is s s−…  ones, and 

as a result certain pairs of rows are already differing. In Figure 3 these pairs are 
in the dashed part (without loss of generality, the differing rows are shown in 
the first part of P ). At this moment outside the dashed part there is no 1s. Let 

1it −   denote the number of row pairs of M  which are not yet distinct after the 
first 1i −  steps. Now we construct i -th column of M  in P , namely, in iP . 

 
Figure 3. Construction of sub-matrix iP  . 

We calculate the number of ones that the not-dashed part should contain, this 

equals to 1
1 22 is

t mt C −
− − . Therefore,  

1

2
2

1t
i

i

m
t

s

m

s

−

− 
 − 

 
 
 

 is the average number of ones in 

rows.  It follows that there is a row with at least   
1

2
2

1t
i

i

m
t

s

m

s

−

− 
 − 

 
 
 

 ones (or  

1

2
2

1t
i

i

m
t

s

m

s

−

 − 
  −  
  
  
   

ones, since we deal with integer numbers). We select this row as 

a construction of i -th column of M . This means that the construction of i -th 
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column of M  will produce at least 
1

2
2

1t
i

i

m
t

s

m

s

−

 − 
  −  
  
  
   

 

new pairs of distinct 

rows.Thus: 

( ) ( )
( ) ( )

( )1

1 1 1

2
2

1 2 2 ! ! !

1 ! 1 ! !

2

t
i i i i i

t i i t
i i

i

m
t

s m s m s s m s
t t t t

m ms m s m

s

−

− − −

− 
 − − − − − ≥ = =

− − −   
   

  

 

The achieved important property is stated by the following lemma. 
Lemma. Let we construct a matrix M  in column-by-column manner, and 

at i -the step we have: 
a) first 1i −  columns /by some constructions/. Let 1tt − denote the number of pairs 
of rows in M  which are not yet differentiated, 
b) is - the number of ones in i -th column of M , then there is a placement of is  
ones in the i -th column such that new pairs of rows will compose at least  

( )

2

i is m s

m

−
 
 
 

 part of 1tt − .    

We notice that the result does not depend on the constructions of the first 1i −  
columns, as well as on the order of components of the vector S . Summarizing, 
we achieve the following estimate of the greedy algorithm: 

Theorem 2. For a given vector ( )1 2, , nS s s s= …  let  M  be a binary matrix 

of size m n×  with the column sum S , constructed by the greedy algorithmG . 
Then the part of not differentiated pairs of rows M  is at most 1 2 nξ ξ ξ… , 

where 
( )

1

2

i i
i

s m s

m
ξ

−
= −

 
 
 

. 

Further examples are considered in order to understand how tight the 
estimate is.  
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Existence/construction issues of related matrices with the given parameters/constraints 
were investigated and an approximation algorithm is constructed in earlier works. In 
this paper we achieve the performance assessment of that algorithm applying the 
random set cover technique. 

 

Հ. Ա. Սահակյան  
 

Հիպերգրաֆի աստիճանային հաջորդականության մոտարկում 
 
Տրված աստիճանային հաջորդականությամբ պարզ հիպերգրաֆի գոյության 

անհրաժեշտ և բավարար պայմաններ գտնելու խնդիրը գրաֆների տեսության հայտնի 
բաց խնդիրներից մեկն է: Խնդիրը ունի իր մեկնաբանումը բինար մատրիցների 
տերմիններով: Նախորդող աշխատանքներում հետազոտվել են տրված սահմանափա-
կումներով մատրիցների գոյության / կառուցման հարցերը և կառուցվել է ապրոքսի-
մացիոն ալգորիթմ: Ներկա աշխատանքում տրվում է այդ ալգորիթմի աշխատանքի 
գնահատականը՝ բազմությունների ծածկույթի մեթոդի կիրառմամբ: 
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Аппроксимация последовательности степеней 
вершин гиперграфа 

 
Задача нахождения необходимых и достаточных условий существования 

простого гиперграфа по данной последовательности степеней вершин является 
известной открытой задачей теории графов. Задача имеет простую интерпрета-
цию в терминах бинарных матриц. В предыдущих работах были исследованы за-
дачи существования и построения бинарных матриц с данными ограничениями и 
построен аппроксимационный алгоритм. В данной статье приводится оценка ра-
боты аппроксимационного алгоритма путем привлечения метода покрытия мно-
жеств. 
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