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The quadrature formulas, especially Gauss quadratarmulas for
common integrals, are widely used in solving Fréathimtegral equations of
the second kind [1-3], and analogous Gauss fornfalasingular integrals with
Cauchy kernel are used in solving singular integlations [4-6]. The both
types of the integral equations are usually mdidaondary value problems of
mathematical elasticity theory, hydrodynamics, reathtical physics, and in
many other problems of applied analysis.

In the present paper which is the continuationhaf &uthor’s previous
paper [7], Gauss quadrature formulas on Chebysbdesand on the nodes,
coinciding with Legendre polynomials roots, are laggpto the solution of
Fredholm integral equations of the second kind véyimmetric kernels of
certain structures. These kernels are representéddebsums of their principle
parts in the form of a logarithmic function and ukg parts in the form of
different continuous functions. By such integrabiations a sufficiently large
class of contact problems of the theory of elastion bending of a beam of
finite length on an elastic foundation in the foofra half-plane, strip, wedge in
the framework of l.Ja. Shtaerman contact modelaf8jwell as other similar
problems are described. Ultimately, the solutiohthese problems are reduced
to the solutions of the systems of linear algebegieations (SLAE).

1. In [7], in a dimensionless form the followingvgoning integral equation
(GIE) of a contact problem on bending of a bearfirofe length on an elastic
half-plane, taking into account the factor of thsurface structure of the
foundation, is derived by I.Ja. Shtaerman contaideh|[8]:
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or J[aoln;n+xoeo(z,n) () dn = hu(E) ~y & a1,

. (-1<€<1(1.1)
Gy (&) =[&-n"; ho(E)=Ao_IGo(E,n)qo(n)dn-

Here p,(&)is the unknown dimensionless contact pressureeobéam on
the foundationg, (E) is the dimensionless intensity of the given vettioeces,
acting on the upper face of the bea¥p,and A, are some combinations of the
elastic constants, and the parametgrand a, characterize, correspondingly,

the rigid rotation angle and the settlement of beam. The GIE (1.1) is
considered under the conditions of the beam edjuititn

jpo(n)dn=Po, fnpo(n)dn=Mo- (1.2)

To solve the GIE (1.1) under the conditions (1I2}, us represent its
solution, as in [7], in the form of

Do (€) = A& +By+y1-8,(8) (-1=&<1) (1.3)
where A and B, are unknown coefficients, anx} (§) is an unknown function
continuous over the segment [-1,1]. Substituting+1 into (1.3), we find that
after having determinedy, and B,, the values of the contact pressure at the
endpoints of the segmenti<&<1 will be determined by the formulas
p(+l) =+A +B;.

Further we put (1.3) in GIE (1.1) and calculatenedatary integrals of the
logarithmic function. We shall have

{EH)OIZ +)\ IG &.n r]dr]}Ao{lhf)ol +)\ IG &N dn}B +

+‘/1_EZXO(E)+J[’9 In‘E ‘+)\G Er]}/l N*Xo(n)dn=hy(&)-y&-a,

1

Iln dr] 2-(1-8)In(1-&) - (1+&) In( 1+&) ; (1.5)

(1.4)

1,(8) = jnlnlE |dr|— [(1+z) In(1+8)-(1-8) In(1-8) - Z]+81,(8) , - =< 1

We put the representation (1.3) into the conditiddng).As a result we come to
the equations

1 2 1
28, + [V1-n'Xo(n)dn =Ry, ZA* [11-n"xo(n)dn =M. (1.6)
bl )

Now in order to calculate the integrals in (1.4)}d&a1.6), we use Gauss
guadrature formulas on Chebyshev nodes [9] and Isaneously choose
inner and outer nodes. As the inner nodes we taloésrof Chebyshev

polynomials of the second kit (n), i. e.n, =cos(rr/N) (r :1,N—1),
but as the outer nodes we take roots of Chebysléynpmials of the
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first kindT,(§), i.e. Em:cos[(zm— Iy :N] (mzl_N) where N is an
arbitrary natural number. It is evident, thatn <& <n,
(rzl,_N;nozl, rN:—]).

As a result, the equations (1.4) and (1.6) will dagorrespondingly, the
form of

18X (&) + {E +9,1,( )+W°ieo zﬁ}w

m=.

e (e + e B £ I8 B S

+AOEGO(En,nr)axo(nr):ho(En)—voEn—ao (n=1N);

-y |awxo( n)+ (1.7)

= 2 = T . ,(1r
2B, +Y axo(n,)= Po:ng+Zaanxo(nr) =M 3, =Wsm2(—Nj-(l-8)
r=1 r=1

Then we takex, (n,) =Ry+(n, ) (r =1N-1), where

R =2 3] 25T (7, () o)

is the Lagrange interpolation polynomial of thedtion xo(n) on Chebyshev

nodes [10]. It is evident, that

N N-1 _
P
k=1

N et

Using the well-known expression of the finite suhtaosines [11] (p. 44,
formula 1.342.2), we have

50 :cos[rr(2+ M- )(N-)/ ] sipr( 2+ @- )1 ]4+
" sin[m(2r + 2n- 3/ N | (1.10)
+cos[r[(2— 2114? )/ 4 sihn( - @+ (N- )1 M| (r _INTE m=1W).
sin[m(2r - 2n+ 3/ N ]
Now, with the help of (1.9)—(1.10) it is easy t@® gbat the equations (1.7)
— (1.8) form a SLAEof N+2 equations in N+4 unknowns
A By Yo 0o Xo(Em) (mzl,_N). The missing two equations will be obtained from

Xo(N,)

(1.4), requiring that it was also satisfied at thedpoints £ =+1 of the
segmenti< ¢ <1. In this way we get the following two equations:

19,1, (7 R0 36, (118, )6 A5
{1+30|1(¢1)+W°ieo(¢1,zm),/1—z;}Bo+yo¢aOJ_r (1.12)
1.

+

N-1 N-1
9,2 In(1£0,)a X (N ) 762 Go(¥20,)aXo(n, ) = Fho(
r=1 r=1
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Here, according to (1.5)1,(-1)=1,(1)

=2-1In4, 1,(-3=-
Further we substitute the expressiong(n,)from (1.9)—(1.10)

= Iz(:):_:'

9)—(1. into the
equations (1.7), (1.8) and (1.11), and introduee fillowing new unknowns

and notatlons(Em =cod (- J/ N ] ;m—l_N)

Yi=A, Y,=Bg Yi=Yo YT04 Y =X :XO(Ek) (k:l:_N)§
N
TRRO AACE RN RNEEL N LN
m=1
As a result, we come to the following SLAE
N+4

Y, +anm ' =C, (nzl,N+4),

(1.12)

0 (m:ﬂ);m*:m—4;cl:—Mo; O(m:T,A) m =m- 4;:2:£P
K = K, = Nt
_erllarnrsf(n:{) (m=5,N+4); 2_r=1afs’f(’,‘\‘f) (m= 5N+ 49 :
1_‘9o|2(_1)_)‘0|-5 (m:]');
~[1+851,(-1) +AH; | (m=2
Kam =1 0 (m=3); -1 (m=4); ¢,=-h(-
o, 5an(en ) -2, Fac, (10 ) (m =m-4m= 5N+
1+8,1, (1) +A L, (m=1);
Kin = 1+190|1(1)+7\0H8 (m: 2);
1 (m=3); 0 (m=4; c,=h();
K4m=—%{ 0ZaTIn(l—nr) N 0ZaTG (1n,)s™ (m m-4; m= 5N+Z)
En+ 91, (8 )+—°ZG (&7.8,) €28
1+80I1( )+—°ZG (ED )Jl—Ei (m=12);
£, (m=3), 1 (m=4); ¢, = (&)
Kom = |: ozarln ED | rm*)"' (EE:En—Al)
o3 G, (€0, ) S}?}(\/l—zi -1)3,,

= 5 =L
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The main characteristics of the considered probdimensionless contact
pressurep, (§), dimensionless bending momenitg (§) and transversal forces

Q (&) will be expressed through the solution of SLAE1R). According to
(1.3) in node<,, we have

pO(Em):YlEm+Y2+ 1_Eszm+4; (m:l,_N) (113)

and the formulas for the bending moments and temsaV forces in [7] for the
given case will give

Mo (8) = 2| g(22 -1)+ 2(1-8°) |+ 2 (1+87) +
- 2[( "3l )} 2 (48 (1.14)
+%;|E_nr|ar)(o(nr)—fo(§);

Y, 18 .
Qo(E)231(52—1)+Y25+EZSIQH(E—ﬂr)@Xo(ﬂr)‘go(E), (115)
r=1
where the valuesy,(n,) in (1.9)-(1.10) should be expressed through

Xo (&m) = Xy = Yines-

Thus, the calculation formulas of the discussed problem withbe
formulas (1.13)—(1.15).

2. Due to the fact that the logarithmic term of GIEL1) on the diagonal
n=¢& of the square-1<&,n <1 turns into infinity, it was necessary above to

choose the inner and outer node points differeBtlyt. this difficulty is easy to
overcome and then we can take identical inner andraode points, as it is
done when applying Fredholm well known method [IL,Nlamely, following
[1], we transform the GIE (1) to the following form

[1+’90|1(E)] po(z)"'soj‘ |n%[ po(r]) - po(E)]dn +
o (2.1)

+AojGO(E,n) po(n)dn=h,(&)-y&-a, (-1=&<1).

It is evident, that the intergrand in the firstegtal at £ =n remains

bounded.

GIE (2.1) under the conditions (1.2) is again reguto SLAE, for the
calculation of the integrals this time we usethaigdaquadrature formula on
nodes, coinciding with the root of Legendre polynomiaR, (£): P, (§,)=0.

As a result, we come to the following SLAE:

xm+i|_ka:bm (m=1N); (2.2)
8ol (&)= AN |+ XA Gy (€0 ) (k=m);
L. = k=1 |Em_Ek|
9,A |nﬁ+)\oAkeo(zm,zk) (k=1,2,..m- 1,m+ 2,...N)
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2(1-¢2 _ _
:%@)) (k=LN); b, =R (E,) ~VeEm =0, (M=1N); X, = p,(&,).

Here a prime mark on the summation symbol mearesa pf the member
with the numbek =m. Note, that in case of the considered contactlpnob

GO (Em'zm):o
Then the conditions (1.2) lead to the equations
N N
ZA(Xk:RJ; ZA(Eka:MO' (2.3)
k=1 k=1
Now let the solution of SLAE (2.2) with the rightshd sideh, (€,) be
denoted byx!”, with the right-hand sid&, by X?and with the right-hand
sidel by X . Then
X = XE -y X —a X (m=1N). (2.4)
Taking into account (2.4), we get from (2.3) thdldi@wing system of
linear equations for parameteys and o, :

aYotaf,=d, _ > A gl _ N .
b d=R P 4= M+ X% 2.5
{aZlyD +a,0,=d, ' 0 Z A& 2 0 ZEK'A& K ( )

ZA(Xk » 8= ZA(Xk , aZl_ZE A(Xk , azz_zz A<X

Thus, the solution of GIE (2.1) under the condisigh. 2) is reduced to the
successive solution of SLAEs (2.2) and (2.5).
After solving these systems, the values of the dsimnless contact

pressure at the node poings, according to (2.4) will be determined by the
formula

Po(En) = X = X —yoX? —a X (m=1N) (2.6)
and the dimensionless bending momeNt§(E) and transversal force§, (&)
by the formulas

Mo () =5 D J6-EJAX, - o 2):

o (-1=g<1) (2.7)
Q(8) =5 sian(E ~&,)A X, -G, (8).

So, the main characteristics of the contact probilerihe given case are
expressed by the formulas (2.6)—(2.7). In the tutilee numerical analysis of
these characteristics obtained by different methwitisbe carried out and the
comparative analysis of obtained results will bediacted.
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Application of Gauss Quadrature Formulasto the Solution of Integral
Equations of One Class of Contact Problems of Elagticity Theory

Gauss quadrature formulas on Chebyshev nodes athe: arodes, coinciding with
Legendre polynomials roots, are applied to thetsmiwf Fredholm integral equations
of the second kind with symmetric kernels. Thesmdds are represented by the sums
of their principle parts in the form of a logaritexfunction and regular parts in the
form of various continuous functions. A fairly widdass of contact problems on the
bending of a beam of finite length on an elastienfdation in the form of half-plane,
strip, wedge and other similar problems are desdriby such equations. Finally, the
solutions of these problems are reduced to thetigoki of the systems of linear
algebraic equations.

22 QUU prpulhg winud U. U. Uluhpwpjuh

QGuniuh punwlnuugdut pmbtwdbbph jhpuenipniip
wnwédqulijuinipjub nkunipjui Ynbwnwljuught jwughpbtph vh guup
huntgpuy hujuwuwpnidutph psdwip

Okphouh b Lhdwinph pwquuinwdubph wpdwwnbbph hbn hwdpuliung hwb-
gnygubpny Quniuh pwnwlniuugdwt puwbwdbbpp Jhpundnud Bu uhdbwnnphl Ynphg-
ubkpny, dpknhnlh tpypnpn ubnh ptnkgpu hwjwuwpnudutph nsdwp: Uy Ynphg-
ulipp ubpuyugynud i (nqupppdwljui $niuljghugh wnbkupny hpkug quwynp dwuh b
wnwppbp wipighwn $niujghwitph wbupny hpkig phgniyup dwubph gnudwpubpng:
Unuwhuh hujuuwpnidabpny tupugpynud £ jhuwhwppnipjul, gkpnh, ubwh nku-
pny wnwdquljut hhuptnh Jpw Jkpowynp tpjupnipjut hkswuh sndwb YEpwupbpjuy
Untnwljniuyhtt jpunhpubph pudujuiwsut juyt nuu: Upgnibpnid wyny juinhputph
nwsnudubpp phpynud B gduyghtt hwipwhwyquljwh hwdwlwpgbph nusnwdubpht:

UYnen-koppecnonaentr HAH PA C. M. Mxurapsin

[pumenenue kBaapaTypHbIX Gopmy. 'aycca Kk pelreHH 0 HHTErpajabHBIX
YPaBHEHHUI 0JHOI'0 KJ1acca KOHTAKTHBIX 32124 TEOPMH YIIPYTOCTH

KBanparypusle ¢opmynsl ['aycca 1mo 4eOBILIEBCKMM y3JIaM M IO y3JlaM, COBIa-
JTAIOIMM C KOPHAMH MHOrow€wieHoB JlexkaHapa, MPUMEHSIOTCS K PEIICHUIO MHTETPajb-
HBIX ypaBHeHMH Ppexaronbpma BTOPOTO Pojia ¢ CUMMETPHUYECKUMHU sapaMu. OTH sfpa
MPENCTABILIIOTCS. CyMMaMH CBOMX IJIABHBIX YacTel B BHUJE JoraprudMudeckoil GpyHKINN
U PEry/sIpHBIX YacTel B BHIE Pa3MYHBIX HENpPEepBHIBHBIX (GyHKumi. Takumu ypaBHe-
HUSIMU ONHCBIBACTCS JOCTATOYHO IMMPOKUH KIIACC KOHTAKTHBIX 3a7a4 00 u3rude Gayku
KOHEYHOH JUIMHBI Ha YIIPYTOM OCHOBAaHHH B ()OopMe MOIYIIIIOCKOCTH, IOJIOCH, KIIMHA. B
KOHEYHOM MTOT€ pEIICHHs 3THX 3aJad CBOIATCA K DPELICHUSM CHCTEM JIMHEHHBIX
anreOpanyuecKux ypaBHEHUIl.
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