ZUBUUSUUF SESOF BENETE UQQUEFUUQQUEFUUQUEFU</t

Zuunnp Tom 116 2016

МАТЕМАТИКА

№ 3

УДК 517

Академик В. С. Захарян, Р. В. Даллакян О граничных значениях частного произведений Джрбашяна и Бляшке

(Представлено 29/ VI 2016)

Ключевые слова: оператор интегродифференцирования Римана — Лиувилля, произведения Бляшке и Джрбашяна, класс гармонических в единичном круге функций U_{α} , α -емкость множества E.

Введение. Пусть $-1<\alpha<+\infty, \rlap{/}D$ — единичный круг комплексной плоскости $\Bbb C$ и последовательность $\left\{z_n\right\}\subset \rlap{/}D, z_n\neq 0, n=1,2,\ldots$ такая, что

$$\sum_{n=0}^{\infty} \left(1 - \left|z_{n}\right|\right)^{1+\alpha} < +\infty. \tag{1}$$

Бесконечное произведение $B_{\alpha}\left(z;\left\{z_{n}\right\}\right),z\in\mathcal{D}$ М. М. Джрбашяна определяется следующим образом (см. [1], гл. IX):

$$B_{\alpha}\left(z;\left\{z_{n}\right\}\right) = \prod_{n=1}^{\infty} \left(1 - \frac{z}{z_{n}}\right) \exp\left\{-W_{\alpha}\left(z;z_{n}\right)\right\},\,$$

где для $\xi \in D$

$$\begin{split} W_{\alpha}\left(z;\xi\right) &= \int_{|\xi|}^{1} \frac{\left(1-x\right)^{\alpha}}{x} dx - \sum_{k=1}^{\infty} \frac{\Gamma\left(1+\alpha+k\right)}{\Gamma\left(1+\alpha\right)\Gamma\left(1+k\right)} \\ &\cdot \left\{\xi^{-} \int_{0}^{|\xi|} \left(1-x\right)^{\alpha} x^{k-1} dx - \overline{\xi}^{k} \int_{|\xi|}^{1} \left(1-x\right)^{\alpha} x^{-k-1} dx \right\} z^{k} \end{split}.$$

В специальном случае $\alpha=0$ эти произведения превращаются в произведения Бляшке (см. [1], с. 625):

$$B_0\left(z;\left\{z_n\right\}\right) = B\left(z;\left\{z_n\right\}\right) = \prod_{n=1}^{\infty} \frac{z_n - z}{1 - \overline{z}_n z} \frac{\left|z_n\right|}{z_n}.$$

В работе [2] доказано следующее утверждение о взаимосвязи между произведениями $B_{\alpha}, \left(-1 < \alpha < 0\right)$ и B .

Теорема. Пусть $-1<\alpha<0$ и последовательность $\left\{z_{_n}\right\}\subset D$ удовлетворяет условию (1). Тогда

$$B_{_{0}}\left(z;\left\{z_{_{n}}
ight\}
ight)=B\left(z;\left\{z_{_{n}}
ight\}
ight)\exp\left\{rac{1}{2\pi}\int\limits_{0}^{2\pi}S_{_{lpha}}\left(e^{-i heta}z
ight)d\omega\left(heta
ight)
ight\}$$
 ,

где

$$S_{_{lpha}}\left(z
ight)=\Gamma\left(1+lpha
ight)\Biggl\{rac{2}{\left(1-z
ight)^{1+lpha}}-1\Biggr\},\Bigl|z\Bigr|<1$$
 ,

 $\omega \Big(\theta \Big)$ — некоторая невозрастающая функция ограниченной вариации на $\Big[0, 2\pi \Big].$

Отметим, что для любой функции $\omega(x)$ из класса Ω (см. [3], гл. 1) М. М. Джрбашяном также определены классы N_ω и произведения B_ω . Подобные классы и произведения определены и верхом полуплоскости [4].

Как известно (см. [5], с. 54), для существования радиального предела произведения Бляшке в граничной точке $e^{i\varphi}$ необходимо и достаточно чтобы в этой точке выполнялось условие Фростмана:

$$\sum_{n=0}^{\infty} \frac{1 - \left| z_n \right|}{\left| e^{i\varphi} - z_n \right|} < +\infty$$

Для произведений $B_0\left(-1<\alpha<0\right)$ доказано, что если имеет место условие типа Фростмана (см. [6], с. 139)

$$\sum_{n=1}^{\infty} \left(\frac{1 - \left| z_n \right|}{\left| e^{i\varphi} - z_n \right|} \right)^{1+\alpha} < +\infty,$$

то в граничной точке $e^{i\varphi}$ существует конечный предел произведения B_{α} .

Рассмотрим систему всех множеств $\left\{B\right\}$, измеримых по Борелю и лежащих на $\left[0,2\pi\right]$. Назовем мерой μ всякую неотрицательную, вполне аддитивную функцию множеств, определенную на $\left\{\beta\right\}$ и нормированную, т. е. $\mu\left(\left[0,2\pi\right]\right)=1$. Скажем, что мера сосредоточена на B, и запишем $\mu \prec B$, если $\mu\left(B\right)=1$, т. е. если

$$\int\limits_R d\mu = \int\limits_0^{2\pi} d\mu = 1 \, .$$

Множество E , измеримое по Борелю, имеет положительную γ - емкость $\left(0<\gamma<1\right)$, если найдется такая $\mu\prec E$, для которой функция

$$V_{\gamma}\left(x;z\right) = \int_{0}^{2\pi} \frac{d\mu}{\left|e^{it} - re^{ix}\right|^{\gamma}}$$

остается равномерно ограниченной по x при $r \to 1-0$, т. е. если при некоторой $\mu \prec E$

$$V_{_{\gamma}}\left(\mu\right) = \sup_{0 \leq r \leq 1} \left\{ \max_{0 \leq x \leq 2\pi} V_{_{\gamma}}\left(x;r\right) \right\} < +\infty \;.$$

Если же для любой меры $\,\mu \prec E\,\,\,\,V_{\gamma}\left(\mu\right) = +\infty\,\,$ то скажем, что $\,E\,$ имеет $\,\gamma$ - емкость, равную нулю, и запишем $\,cap_{\gamma}E = 0$.

В работе [6] доказано, что если последовательность $\left\{z_n\right\}\subset D$ удовлетворяет условию (1) и имеет место $(1+\alpha)$ -условие типа Фростмана $\left(-1<\alpha<0\right)$, то везде на $\left[0,2\pi\right]$ существуют конечные радиальные значения (отличные от нуля) произведения $B_{\alpha}\left(z;\left\{z_n\right\}\right)$, кроме некоторого множества $E\subset \left[0,2\pi\right]$, $\left(1+\alpha\right)$ -емкость которого равна нулю: $cap_{1+\alpha}E=0$.

Более того, если точка $z=e^{i\varphi}$ не является точкой сгущения для последовательности $\left\{z_n\right\}$, то произведение $B_{_{\alpha}}\!\left(z;\!\left\{z_n\right\}\right)$ непрерывно в некоторой окрестности точки $z=e^{i\varphi}$.

Если последовательность $\left\{z_{n}\right\}\subset D$ удовлетворяет условию (1), то (см. [7]) для произведения Бляшке также везде на $\left[0,2\pi\right]$ существует радиальный предел (по модулю равный единице) кроме некоторого множества E , для которого $cap_{1+\alpha}E=0$.

Класс $U_{\alpha}\left(-1<\alpha<+\infty\right)$ можно определить (см. [1], с. 650) как множество всех тех функций $u(z),z\in \mathcal{D}$, которые можно представить в следующем виде:

$$u\Big(z\Big)=\int\limits_{0}^{2\pi}P_{lpha}\Big(arphi- heta;r\Big)d\psi\Big(heta\Big),\;\Big(z=re^{iarphi}\Big)$$
 ,

где

$$P_{\scriptscriptstyle lpha}\left(arphi;r
ight) = \Gammaig(1+lphaig)\operatorname{Re}\left\{rac{2}{ig(1-re^{iarphi}ig)^{1+lpha}}-1
ight\},$$

 $\psi \Big(\vartheta \Big)$ — вещественная функция с конечным полным изменением на $\Big[0, 2\pi \Big]$.

В работе [8] доказано, что если для некоторой точки $e^{io}, \varphi \in \left[0, 2\pi\right]$, при каком-либо $\alpha, -1 < \alpha < +\infty$ выполняется условие

$$\overline{\lim_{z \to e^{u}}} \left(1 - \left| z \right| \right)^{1+\alpha} \left| u \left(z \right) \right| = d > 0,$$

где $z \to e^{i \varphi}$ по касательному к единичной окружности пути, то $u \Big(z \Big)$ не принадлежит классу U_a .

Отметим, что это утверждение в специальном случае $\alpha=0$ доказано Нафталевичем [9].

Основные результаты. В этой работе доказаны следующие утверждения.

Теорема 1. Пусть $-1 < \alpha < 0$, последовательность $\left\{ z_n \right\} \subset D$ удовлетворяет условию (1) Бляшке — Джербашяна и $n \left(r \right)$ — количество точек z_n , лежащих в круге $|z| \le r < 1$. Тогда если

$$n(r) \le \frac{\lambda(r)}{(1-r)^{1+lpha}},$$

 $\it rde \lambda(r)$ такая, что

$$\lim_{r \to 1-0} \lambda(r) = 0,$$

то для любого значения $\,arphi, arphi \in \left[0, 2\pi
ight]\,$

$$\lim_{z \to e^{i\varphi}} \left(1 - \left|z\right|\right)^{1+\alpha} \left| \log \left| \frac{B_{\alpha}\left(z; \left\{z_{n}\right\}\right)}{B\left(z; \left\{z_{n}\right\}\right)} \right| = 0 \; .$$

Из теоремы 1 следует справедливость следующего утверждения.

Теорема 2. Пусть $-1 < \alpha < 0$, последовательность $\left\{z_n\right\} \subset D$ удовлетворяет условию (1) Бляшке — Джрбашяна. Тогда, если для некоторого значения $\varphi, \varphi \in \left[0, 2\pi\right]$

$$\left| \overline{\lim_{z \mapsto e^{i\varphi}}} \left(1 - \left| z \right| \right)^{1+\alpha} \left| \log \left| \frac{B_{\alpha} \left(z; \left\{ z_n \right\} \right)}{B \left(z; \left\{ z_n \right\} \right)} \right| = d > 0 \text{ ,}$$

то существует последовательность $\{r_k\}$

$$0 < r_{_{\!\!1}} < r_{_{\!\!2}} < \ldots < r_{_{\!\!k-1}} < r_{_{\!\!k}} < \ldots < 1, r_{_{\!\!k}} \xrightarrow{} \xrightarrow{_{\!\!k \to \infty}} 1$$
 ,

такая, что

$$n\left(r_{\scriptscriptstyle k}
ight) = rac{c}{\left(1-r_{\scriptscriptstyle k}
ight)^{1+lpha}}\,.$$

Теорема 3. Пусть $-1 < \alpha < 0$, последовательность $\left\{z_n\right\} \subset D$ удовлетворяет условию (1) Бляшке — Джрбашяна и z стремится к граничной точке $e^{i\varphi}$ касательным путем. Тогда

$$\lim_{z \mapsto e^{i\varphi}} \left(1 - \left|z\right|\right)^{1+\alpha} \log \left| \frac{B_{\alpha}\left(z; \left\{z_{n}\right\}\right)}{B\left(z; \left\{z_{n}\right\}\right)} \right| = 0 \; .$$

Следуя М. М. Джрбащяну (см. [2], с. 26), через Ω обозначим класс функций $\omega(x)$, удовлетворяющих следующим условиям:

1) $\,\omega\!\left(x\right)\,$ положительна и непрерывна на $\left[0,1\right).$

2)
$$\omega(0) = 1$$
, $\int_0^1 \omega(x) dx < +\infty$.

Докажем следующее утверждение.

Теорема 4. Пусть $-1<\alpha<0$, последовательность $\left\{z_{_n}\right\}\subset D$ удовлетворяет условию (1) Бляшке — Джербашяна, последовательность $\left\{r_{_k}\right\}$

$$0 < r_{\!_{1}} < r_{\!_{2}} < \ldots < r_{\!_{k-1}} < r_{\!_{k}} < \ldots < 1, \lim_{k \to \infty} r_{\!_{k}} = 1$$
 ,

такая, что

$$n(r_k) = \frac{c}{(1 - r_k)}, \ k = 1, 2, \dots$$

Тогда

$$\sum_{n=1}^{\infty} \int_{|Z_n|}^1 \omega(x) dx = +\infty,$$

где $\omega \left(x \right)$ – любая неубывающая функция из класса Ω , такая, что

$$\frac{\omega(r)}{(1-r)^{\alpha}} \xrightarrow{r \to 1-0} +\infty.$$

С учетом теоремы 4 из теоремы 2 следует справедливость следующего утверждения.

Теорема 5. Пусть $-1 < \alpha < 0$, последовательность $\left\{z_n\right\} \subset D$ удовлетворяет условию (1) Бляшке — Джрбашяна. Тогда если для некоторого значения $\varphi, \varphi \in \left[0, 2\pi\right]$

$$\overline{\lim_{z o e^{iarphi}}} \left(1 - \left|z
ight|
ight)^{\!\! 1 + lpha} \left|\log \left| rac{B_{\scriptscriptstylelpha} \left(z; \left\{z_{\scriptscriptstyle n}
ight\}
ight)}{B \! \left(z; \left\{z_{\scriptscriptstyle n}
ight\}
ight)}
ight| = d > 0$$
 ,

то

$$\sum_{n=1}^{\infty}\int\limits_{|Z_n|}^1\omegaig(xig)dx=+\infty$$
 ,

где $\omega(x)$ – любая неубывающая функция из класса Ω , такая, что

$$\frac{\omega(r)}{(1-r)^{\alpha}} \xrightarrow{r \to 1-0} +\infty.$$

Далее нетрудно доказать справедливость следушщего утверждения.

Теорема 6. Пусть $-1 < \alpha < 0$, последовательность $\left\{z_n\right\} \subset \mathcal{D}$ удовлетворяет условию (1) Бляшке — Джрбашяна. Тогда если для некоторого значения $\varphi, \varphi \in \left[0, 2\pi\right]$

$$\left| \overline{\lim_{z \mapsto e^{i\varphi}}} \left(1 - \left| z \right| \right)^{1+\alpha} \left| \log \left| \frac{B_{\alpha} \left(z; \left\{ z_n \right\} \right)}{B \left(z; \left\{ z_n \right\} \right)} \right| = d > 0 \text{ ,}$$

то точка $e^{i\varphi}$ является точкой сгущения для последовательности $\left\{z_{_{n}}\right\}.$

Теорема 7. Пусть $-1<\alpha<0$, последовательность $\left\{z_{_{n}}\right\}\subset\mathbb{D}$ удовлетворяет условию (1) Бляшке — Джрбашяна и E — множество тех точек $e^{i\varphi}, \varphi\in\left[0,2\pi\right]$, для которых

$$\overline{\lim_{z \mapsto e^{i\varphi}}} \left(1 - \left|z\right|\right)^{1+\alpha} \left|\log \left| \frac{B_{\alpha}\left(z;\left\{z_{n}\right\}\right)}{B\left(z;\left\{z_{n}\right\}\right)} \right| = d > 0 \; .$$

Тогда $cap_{1+\alpha}E = 0$.

Исследование выполнено при финансовой поддержке Государственного комитета по науке МОН РА в рамках научного проекта № 15Т-1A083.

Национальный политехнический университет Армении e-mail: dallakyan57@mail.ru, mathdep@seua.am

Академик В. С. Закарян, Р. В. Даллакян

О граничных значениях частного произведений Джрбашяна и Бляшке

Пользуясь аппаратом интегродифференцирования Римана — Лиувилля, М. М. Джрбашян обобщил класс мероморфных в единичном круге функций N Р. Неванлинны, вводя в рассмотрение классы $N_{\alpha}\left(-1<\alpha<\infty\right)$. Фундаментальную роль в этих исследованиях играют произведения B_{α} , которые в специальном

случае $\alpha=0$ превращаются в произведения Бляшке. В настоящей статье исследуется граничное поведение частного произведений $B_{\scriptscriptstyle lpha}, \left(-1 < \alpha < 0\right)$ и $B_{\scriptscriptstyle 0} \equiv B$ Бляшке.

Ակադեմիկոս Վ. Ս. Զաքարյան, Ռ. Վ. Դալլաքյան

Ջրբաշյանի և Բլյաշկեի արտադրյալների հարաբերության եզրային արժեքների մասին

Օգտվելով Ռիման-Լիուվիլլի ինտեգրո-դիֆերենցման գաղափարից, Մ. Մ. Ջրբաշյանը ընդհանրացրել է Նևանլիննայի N դասերը, ներմուծելով միավոր շրջանում մորոմորֆ ֆունկցիաների N_{α} դասերը։ Այդ ուսումնասիրությունների մեջ էական դեր են խաղում B_{α} արտադրյալները, որոնք $\alpha=0$ մասնավոր դեպքում վերածվում են Բլյաշկեի արտադրյալների։ Այս աշխատանքում հետազոտվում է Բլյաշկեի B_{α} , $(-1<\alpha<0)$ և $B_{\alpha}\equiv B$ արտադրյալների հարաբերության եզրային վարքը։

Academician V. S. Zakaryan, R. V. Dallakyan

On Boundary Properties of Partial Products of Djrbashyan and Blaschke

Using the Riemann-Liouville integration-differentiation operator, M. M. Djrbashyan generalized the class of Nevanlinna's meromorphic functions in the unit circle, introducing classes N_{α} , $(-1<\alpha<+\infty)$. Products B_{α} , which in special case $\alpha=0$ coincide with the Blaschke product, play the essential role in these investigations. Boundary properties of partial products B_{α} , $(-1<\alpha<0)$ and $B_{0}\equiv B$ -products Blaschke are investigated.

Литература

- 1. Джрбашян М. М. Интегральные прообразования и представления функций в комплексной области. М. Наука. 1966. 672 с.
- 2. Джрбашян М. М., Захарян В. С. Мат. заметки. 1968. Т. 4. N 1. C. 3-10.
- 3. Джрбашян М. М., Захарян В. С. Классы и граничные свойства функций мероморфных в круге. М. Наука. 1993. 217 с.
- 4. *Djrbashian A. M.* Functions of α -Bounded Type in the Half-Plane. Springer Science+Business Media, ins. 2005.
- 5. *Коллингвуд* Э., *Ловатер А*. Теория предельных множеств. М. Мир. 1971. 312
- 6. Захарян В. С. Изв. АН АрмССР. Математика. 1968. Т. 3. N 4, 5. C. 288-300.
- Broman A. On two classes of trigonometrical series. Thesis. University of Uppsala. 1947.
- 8. Dallakyan R. V. Eurasian Math. Journal. 2013. V. 4. N 2. P. 57-63.
- 9. *Нафталевич А. Г.* Уч. записки Вильнюсского ун-та. 1956. Т. 5. С. 5-27.
- 10. Захарян В. С. Изв. АН АрмССР. Математика. 1988. T. 23. N 2. C. 189-192.