ZUSUUSUUF SESNEDSNEUUSUF UQQUSEU UYUAUTEUFUHAЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК АРМЕНИИNATIONAL ACADEMY OF SCIENCES OF ARMENIAДОКЛАДЫQUYNF88UF
REPORTS

Zwwnp Tom 116

2016

№ 2

МАТЕМАТИКА

УДК 517.984.46

П. Э. Мелик-Адамян

О симметрических операторах с вещественной точкой регулярного типа

(Представлено академиком Н. У. Аракеляном 19/ІІ 2016)

Ключевые слова: симметрический оператор, точка регулярного типа, масштабное подпространство, характеристическая функция, спектр.

1. Пусть \mathfrak{H} – гильбертово пространство со скалярным произведением $\langle \cdot , \cdot \rangle$ и T – простой замкнутый симметрический оператор с областью определения $\mathscr{D}(\mathsf{T})$, плотной в \mathfrak{H} , так что определен и сопряженный оператор T^* с областью $\mathscr{D}(\mathsf{T}^*) \supset \mathscr{D}(\mathsf{T})$. Пространство линейных ограниченных операторов, действующих из \mathfrak{H}_1 в \mathfrak{H}_2 обозначим $[\mathfrak{H}_1, \mathfrak{H}_2]$. Открытые верхнюю, нижнюю полуплоскости комплексной плоскости C обозначим C^+ , C^- . $\mathscr{H}(\cdot)$ и $\mathscr{H}(\cdot)$ означают ядро и образ оператора.

Далее всюду некоторое $\gamma \in C^+$ будет фиксированным. Пусть \mathfrak{N}_{γ} , $\mathfrak{N}_{\overline{\gamma}}$ – дефектные подпространства оператора T и $\dim \mathfrak{N}_{\gamma} = \dim \mathfrak{N}_{\overline{\gamma}} = \mathsf{n} \leq \infty$. Приведем необходимые определения и факты.

Разложение линейного многообразия $\mathcal{D}(\mathsf{T}^*)$ в прямую сумму

$$\mathscr{D}(\mathsf{T}^*) = \mathscr{D}(\mathsf{T}) \, \dot{+} \, \, \mathfrak{N}_{\gamma} \, \dot{+} \, \, \mathfrak{N}_{\overline{\gamma}}$$

определяет косые проекторы P_{γ} , $P_{\overline{\gamma}}$ в $\mathscr{D}(T^*)$ на подпространства \mathfrak{N}_{γ} , $\mathfrak{N}_{\overline{\gamma}}$ параллельно $\mathscr{D}(T) \dotplus \mathfrak{N}_{\overline{\gamma}}$, $\mathscr{D}(T) \dotplus \mathfrak{N}_{\gamma}$, и следующие сужения оператора T^*

$$\mathsf{T}_{\gamma} = \mathsf{T}^* \, \big| \, [\, \mathscr{D}(\mathsf{T}_{\gamma}) = \mathscr{R}(\mathsf{P}_{\overline{\gamma}}) \,] \, \text{ и } \, \mathsf{T}_{\overline{\gamma}} = \mathsf{T}^* \, \big| \, [\, \mathscr{D}(\mathsf{T}) = \mathscr{K}(\mathsf{P}_{\gamma})] \qquad (1)$$
 являются максимальными диссипативным ($\mathit{Im} \, \langle \mathsf{T}_{\gamma} \, \mathsf{f}, \, \mathsf{f} \rangle \geq 0, \, \, \mathsf{f} \in \mathscr{D}(\mathsf{T}_{\gamma}) \,) \, \, \mathsf{и}$ аккумулятивным ($\mathit{Im} \, \langle \mathsf{T}_{\overline{\gamma}} \, \mathsf{f}, \, \mathsf{f} \rangle \leq 0, \, \, \mathsf{f} \in \mathscr{D}(\mathsf{T}_{\overline{\gamma}})) \, \, \mathsf{расширениями} \, \, \, \mathsf{оператора} \, \mathsf{T}.$

Операторы $(\mathsf{T}_{\gamma} - \zeta \mathsf{I})^{-1}$, $\zeta \in C^{-}$; $(\mathsf{T}_{\overline{\gamma}} - \lambda \mathsf{I})^{-1}$, $\lambda \in C^{+}$ существуют, определены всюду на $\mathfrak S$ и ограниченны (см. [2, XXII, 4.]).

Образ \mathscr{R} (T – σ I) является подпространством для любого $\sigma \in C$, $Im \ \sigma \neq 0$, и в работе [7] доказано, что прямые разложения

$$\mathfrak{H} = \mathcal{R} (\mathsf{T} - \lambda \mathsf{I}) \dot{+} \, \mathfrak{N}_{\forall}, \, \lambda \in C^{+}; \quad \mathfrak{H} = \mathcal{R} (\mathsf{T} - \zeta \, \mathsf{I}) \dot{+} \, \mathfrak{N}_{\gamma}, \, \zeta \in C^{-}, \quad (2)$$

определяют аналитические в C^+ , C^- операторные функции $P_{\overline{\gamma}}$ (λ), P_{γ} (ζ), значениями которых являются проекторы в \mathfrak{H} на $\mathfrak{N}_{\overline{\gamma}}$, \mathfrak{N}_{γ} параллельно \mathscr{R} ($T - \lambda I$), \mathscr{R} ($T - \zeta I$). Если существуют комплексные числа $\lambda_0 \in C^+$, $\zeta_0 \in C^-$ и подпространство $\mathfrak{M} \subset \mathfrak{H}$ размерности n такие, что

$$\mathfrak{H} = \mathcal{R} (\mathsf{T} - \lambda_0 \mathsf{I}) \dot{+} \mathfrak{M} , \ \mathfrak{H} = \mathcal{R} (\mathsf{T} - \zeta_0 \mathsf{I}) \dot{+} \mathfrak{M}, \tag{3}$$

то они называются \mathfrak{M} -регулярными (регулярными) точками оператора T , а подпространство \mathfrak{M} — его масштабным подпространством. Множество $\Lambda(\mathsf{T}) \subseteq C$ регулярных точек оператора T является открытым (см. [4], [1, App.1], [3]). Ниже всюду полагается, что переменные λ , ζ принадлежат C^+ , C^- соответственно и, если не оговорено противное, $\mathsf{n} = \infty$.

2. Пусть оператор T имеет по крайней мере одну вещественную точку регулярного типа. Не ограничивая общности, такой можно полагать точку 0, то есть рассмотрим случай, когда оператор T имеет обратный T^{-1} с областью определения $\mathscr{D}(T^{-1}) = \mathscr{D}(T)$, $\mathscr{D}(T^{-1}) = \mathscr{D}(T)$ и $\|T^{-1}\| < \infty$. Обозначим $\tau = \|T^{-1}\|^{-1}$.

Область определения оператора T^{-1} является подпространством и в ортогональном разложении

$$\mathfrak{H} = \mathcal{R}(\mathsf{T}) + \mathcal{K}(\mathsf{T}^*) \tag{4}$$

имеем $\dim \mathcal{K}(\mathsf{T}^*) = \mathsf{n}$.

Теорема 1. Пусть точка 0 является точкой регулярного типа для симметрического оператора T с равными дефектными числами. Тогда подпространство $\mathscr{K}(\mathsf{T}^*)$ является масштабным для T таким, что

$$\mathfrak{H} = \mathcal{R}(\mathsf{T} - \sigma \mathsf{I}) \oplus \mathcal{K}(\mathsf{T}^*), \ |\sigma| < \tau. \tag{5}$$

Доказательство. Нетрудно видеть, что

$$\mathcal{R}\left(\mathsf{T} - \sigma \mathsf{I}\right) \cap \mathcal{K}\left(\mathsf{T}^*\right) = \{0\} \tag{6}$$

для всех невещественных σ . Действительно, если $(T-\sigma I)$ $f_0=h_0$, $f_0\in \mathcal{D}(T),\,h_0\in \mathcal{H}(T^*)$, то

Определим расширение S оператора T^{-1} на $\mathfrak H$ по правилу $Sh = T^{-1}g_0 = f_0$, $\mathcal K(S) = \mathcal K(T^*)$. Очевидно $\|S\| = \|T^{-1}\|$, следовательно для $\|\sigma\| < \tau$ оператор $I - \sigma S$ ограниченно обратим и $\mathcal M(I - \sigma S)^{-1} = \mathfrak H$. Для всякого λ , $|\lambda| < \tau$ и произвольного $h \in \mathfrak H$, не принадлежащего $\mathcal R(T - \lambda I)$, из формулы (2) имеем

$$\mathsf{h} = (\mathsf{T} - \lambda \mathsf{I})\mathsf{f}_0 + \mathsf{f}_{\overline{\gamma}} \;,\; \mathsf{f}_{\overline{\gamma}} \in \mathfrak{N}_{\overline{\gamma}},\; \mathsf{f}_{\overline{\gamma}} \neq 0. \tag{7}$$

Тогда ненулевой вектор $h' = \left(I - \lambda S\right)^{-1} f_{\overline{\gamma}}$ таков, что

$$f_{_{\overline{\nu}}} \ = (I - \lambda S) h' = (I - \lambda S) \ (g' + h'_0 \) = g' - \lambda S g' + h'_0 \ .$$

Поскольку $g' = Tf'_0$, $Sg' = f'_0$, то формула (7) запишется как

 $h=(T-\lambda I)f_0+(T-\lambda I)\,f'_0+h'_0=(T-\lambda I)\,(f_0+f'_0)+h'_0,$ доказывая формулу (5) для $\lambda\in C^+$. Для $\zeta\in C^-$, $|\zeta|<\tau$ доказательство аналогично. Из обратимости оператора $T-\mu I$ для вещественных $\mu\in (-\tau,\tau)$ следует замкнутость \mathscr{R} $(T-\mu I)$, значит справедливо и ортогональное разложение

$$\mathfrak{H} = \mathcal{R} (\mathsf{T} - \mu \mathsf{I}) \oplus \mathcal{R} (\mathsf{T}^* - \mu \mathsf{I}),$$

так что для произвольного $h \in \mathfrak{H}$ имеем $h = (T - \mu I) \ f_0 + h_\mu$, $h_\mu \in \mathcal{H}(T^* - \mu I)$. Как и выше, из $(I - \mu S)^{-1} \ h_\mu = Tf'_0 + h_0$, $h_0 \in \mathcal{H}(T^*)$ следует, что $\dot{h} = (T - \mu I) (f_0 + f'_0) + h_0$.

Теорема доказана.

Отметим связь этой теоремы со следующим результатом. Симметрический оператор Т называется целым, если существует масштабное подпространство М такое, что разложение (3) справедливо для всех $\sigma \in C$ (cm. [4], [1, App.1]).

В работе [8] доказано, что оператор Т является целым тогда и только тогда, когда точка 0 является его точкой регулярного типа и оператор Т имеет квазинильпотентное расширение S такое, что $\mathcal{D}(S) = \mathfrak{H}$, $\mathcal{R}(S) = \mathfrak{H}$ $\mathcal{D}(\mathsf{T})$, при этом $\mathfrak{M} = \mathcal{K}(\mathsf{S})$.

Замечание 1. *В случае* dim \mathcal{K} (T^*) = $\mathsf{n} < \infty$ из формулы (6) уже следует разложение (5) для $\sigma \in C^+$ U C^- , так как из (2) имеем codim $\mathcal{R}(T - \sigma I) = n$, следовательно формула (5) верна и для $\sigma \in C^+ U C^-$ U ($-\tau$, τ).

Обозначим

$$\mathfrak{R}_0 = \mathscr{K}(\mathsf{T}^*), \ D^+(\tau) = \{\lambda \in C^+, |\lambda| < \tau\}; \ D^-(\tau) = \{\zeta \in C^-, |\zeta| < \tau\}$$

и на областях $D^+(\tau)$, $D^-(\tau)$ рассмотрим операторные функции

$$Q(\lambda, \overline{\gamma}) = P_{\overline{\gamma}}(\lambda) \mid \mathfrak{N}_0 \in [\mathfrak{N}_0, \mathfrak{N}_{\overline{\gamma}}], \quad Q(\zeta, \gamma) = P_{\gamma}(\zeta) \mid \mathfrak{N}_0 \in [\mathfrak{N}_0, \mathfrak{N}_{\gamma}].$$

Следствие 1. Значения операторных функций $Q(\lambda, \gamma)$, $Q(\zeta, \gamma)$ ограниченно обратимы.

Действительно, на области $D^+(\tau)$ разложения (2) и (3) справедливы одновременно, так что для произвольных $h_0 \in \mathfrak{R}_0$ и $f_{_{\overline{\gamma}}} \in \mathfrak{R}_\gamma$ имеем

$$h_0 = (T - \lambda I) f_0 \ + f'_{\ \overline{\gamma}} \ , \ f'_{\ \overline{\gamma}} \neq 0; \quad \ f_{\ \overline{\gamma}} = (T - \lambda I) f'_0 + h'_0 \, , \ \ h'_0 \neq 0.$$

Из первого следует $P_{\overline{\gamma}}(\lambda)h_0=f'_{\overline{\gamma}}\neq 0$, то есть обратимость $Q(\lambda,\overline{\gamma})$, а из второго имеем $f_{\overline{\gamma}}=P_{\overline{\gamma}}(\lambda)$ h'_0 , то есть образ обратного оператора совпадает с $\Re_{\overline{\nu}}$.

Случай оператора $Q(\zeta, \gamma)$ аналогичен.

Теперь произвольной паре $(\lambda \in D^+(\tau), \zeta \in D^-(\tau))$ соотнесем ограниченно обратимый оператор $W(\gamma, \gamma) = Q(\lambda, \gamma)Q^{-1}(\zeta, \gamma) \in [\mathfrak{R}_{\gamma}, \mathfrak{R}_{\overline{\gamma}}]$. Тогда оператор

 $V(\bar{\gamma}, \gamma) = W(\bar{\gamma}, \gamma) [W(\bar{\gamma}, \gamma) W(\bar{\gamma}, \gamma)]^{-1/2} \in [\mathfrak{N}_{\gamma}, \mathfrak{N}_{\bar{\gamma}}]$

в полярным представлением $W(\gamma, \gamma)$ является изометрией.

_ Согласно теории расширений фон Неймана, изометрический оператор $V(\gamma,\gamma) \in [\mathfrak{R}_{\gamma}, \mathfrak{R}_{\overline{\gamma}}]$ задает самосопряженное расширение симметрического оператора T, следовательно при условиях теоремы 1 оператор T определяет некоторое семейство своих самосопряженных расширений, отвечающих всевозможными парами ($\lambda \in D^+(\tau)$, $\zeta \in D^-(\tau)$).

3. А. В. Штраусом в [7] введено понятие характеристической функции (х. ф.) симметрического оператора Т с равными дефектными числами как аналитической в С+ сжимающей операторной функции

 $\Theta(\lambda) = (\mathsf{T}_{\lambda} - \gamma \mathsf{I})(\mathsf{T}_{\lambda} - \gamma \mathsf{I})^{-1} \, \big| \, \mathfrak{N}_{\gamma} \in [\mathfrak{N}_{\gamma}, \, \mathfrak{N}_{\gamma}],$ где максимальные диссипативные расширения T_{λ} определены аналогично (1), и доказано, что

 $\Theta(\lambda) = (\lambda - \gamma)(\lambda - \gamma)^{-1} P_{\overline{\gamma}}(\lambda) | \mathfrak{N}_{\gamma}.$ (8) В работе [5] показано, что х.ф. оператора T_{γ} в определении Надя – Фойаша [6, IX, 4] совпадает с функцией

$$\Theta_{\gamma}(\lambda) = \Theta(\overline{\gamma}, \lambda)\Theta^{-1}(\gamma, \lambda); \ \Theta(\overline{\gamma}, \lambda) = P_{\overline{\gamma}} \mid \mathfrak{N}_{\lambda}, \ \Theta(\gamma, \lambda) = P_{\gamma} \mid \mathfrak{N}_{\lambda}$$
(9)

и отличается от х.ф. Штрауса лишь знаком $\Theta_{\gamma}(\lambda) = -\Theta(\lambda)$.

Связь спектра оператора с ее х.ф. установлена в [6, VI, 4]. Ясно, что γ и \mathfrak{N}_{γ} являются собственными значением и подпространством оператора T_γ соответственно, и в следующей теореме полагается $\lambda \neq \gamma$, если $\gamma \in D^+(\tau)$.

Теорема 2. Пусть оператор Т удовлетворяет условиям теоремы 1. Тогда $\dim \mathcal{K}(\Theta_{\gamma}(\lambda)) \le 1$ для всех $\lambda \in D^+(\tau)$ и λ является собственным значением оператора T_γ тогда и только тогда, когда $\dim \mathscr{K}(\Theta_\gamma(\lambda))=1$. Замыкание полукруга $D^+(\tau)$ принадлежит спектру оператора T_γ .

Доказательство. Из определений функций $P_{\overline{\gamma}}(\lambda)$ и $\Theta(\gamma,\lambda)$ имеем $\mathscr{K}(\mathsf{P}_{\overline{\gamma}}(\lambda) \mid \mathfrak{N}_{\gamma}) = \mathscr{R}(\mathsf{T} - \lambda \mathsf{I}) \cap \mathfrak{N}_{\gamma}, \ \mathscr{K}(\Theta(\gamma, \lambda)) = \mathscr{D}(\mathsf{T}_{\gamma}) \cap \mathfrak{N}_{\lambda}.$

Очевидно, число λ является собственным значением оператора T_{γ} тогда и только тогда, когда $\mathcal{K}(\Theta(\gamma, \lambda)) \neq \{0\}$, то есть вектор $f_0 + f_{\gamma} \in \mathcal{D}(T_{\gamma})$ таков, что $f_0 + f_\gamma = f_\lambda$. Отсюда имеем $T_\gamma (f_0 + f_\gamma) = Tf_0 + \gamma f_\gamma = \lambda (f_0 + f_\gamma)$, $(\mathsf{T}-\lambda \mathsf{I})\mathsf{f}_0 = (\lambda-\gamma)\,\mathsf{f}_\gamma$, значит и $\,\mathscr{R}\,(\mathsf{T}-\lambda \mathsf{I})\,\cap\,\mathfrak{R}_\gamma \neq \{0\}.$

Обратно, если \mathscr{R} $(T-\lambda I)$ \cap $\mathfrak{R}_{\gamma}\neq\{0\}$, то есть $(T-\lambda I)g_0=g_{\gamma}$, тогда $g_0-(\gamma-\lambda)^{-1}g_{\gamma}\in\mathscr{D}(T_{\gamma})$ и $(T_{\gamma}-\lambda I)[g_0-(\gamma-\lambda)^{-1}g_{\gamma}]=0$.

Пусть $P_{\overline{\gamma}}(\lambda)f_{\gamma}=0$ и векторы f_{γ} , g_{γ} линейно независимы. Тогда $g_{\gamma}=f_{\gamma}+h_0$, $h_0\in \mathscr{K}(\overline{T}^*)$ и, в силу следствия 1, имеем $P_{\overline{\gamma}}(\lambda)g_{\gamma}\neq 0$, значит $\dim \mathcal{K}(\Theta_{\gamma}(\lambda)) = \dim \mathcal{K}(\Theta(\gamma, \lambda)) = 1.$

Если $\dim \mathcal{K}(\Theta_{\gamma}(\lambda)) = 0$, то есть λ не является собственным значением оператора T_γ , то оператор $\mathsf{T}_\gamma - \lambda I$ обратим и $\mathscr{R}\left(\mathsf{T} - \lambda I\right) \cap \mathfrak{R}_\gamma = \{0\}$. Тогда $\mathscr{D}(\left(\mathsf{T}_\gamma - \lambda I\right)^{-1}) = \mathscr{R}\left(\mathsf{T}_\gamma - \lambda I\right) = \mathscr{R}\left(\mathsf{T} - \lambda I\right) \dotplus \mathfrak{R}_\gamma$.

Покажем, что $\mathcal{R}(\mathsf{T}_{\gamma}-\lambda\mathsf{I})\neq\mathfrak{H}$, то есть λ не принадлежит резольвентному множеству $\rho(T_{\nu})$.

Допуская противное, для произвольного $h \in \mathfrak{H}$, не принадлежащего \mathscr{R} (T – λ I), будем иметь как h = (T – λ I) f_0 + f_γ , так и, в силу (5), $\mathbf{h} = (\mathsf{T} - \lambda \mathsf{I}) \; \mathbf{g}_0 + \mathbf{h}_0$, откуда будет следовать, что

$$(T - \lambda I) (g_0 - f_0) = f_{\gamma} - h_0 = g_{\gamma} \neq 0,$$

 $\begin{array}{c} (\mathsf{T}-\lambda I) \; (\; g_0-f_0) = \; f_\gamma - h_0 \; = g_\gamma \neq 0, \\ \text{в противоречии c} \; \; \mathscr{R} \; (\mathsf{T}-\lambda I) \; \cap \; \mathfrak{R}_\gamma = \{0\}. \end{array}$

Таким образом $D^{+}(\tau)$ принадлежит спектру оператора T_{γ} , и замкнутость спектра доказывает теорему.

Институт механики НАН РА maperch@gmail.com

П. Э. Мелик-Аламян

О симметрических операторах с вещественной точкой регулярного типа

Показано, что симметрический оператор с вещественной точкой регулярного типа определяет и некоторое семейство своих самосопряженных расширений. В множестве регулярности указана область, замыкание которой принадлежит спектру его максимального диссипативного расширения.

Պ. Է. Մելիք-Ադամյան

Իրական ռեգուլյար տիպի կետով սիմետրիկ օպերատորների մասին

Ցույց է տրված, որ իրական ռեգուլյար տիպի կետով սիմետրիկ օպերատորն է առաջացնում է նաև իր ինքնքնահամալուծ ընդլայնումների մի որոշ ընտանիք։ Ռեգուլյարության բազմության մի տիրույթ է նշված, որի փակումը պատկանում է նրա մաքսիմալ դիսիպատիվ ընդլայնման սպեկտրին։

P. E. Melik-Adamyan

On Symmetric Operators with a Real Point of Regular Type

It is shown that a symmetric operator with a real point of regular type defines also some family of its self-adjoint extensions. In the set of a regularity the domain is specified, closure of which belongs to the spectrum of its maximal dissipative extension.

Литература

- 1. *Gorbachuk M.L.*, *Gorbachuk V. I.* Krein's Lectures on Entire Operators. Birkhauser. Basel. 1997.
- 2. Данфорд Н., Швари Дж. Линейные операторы. Т. 2. М. Мир. 1966.
- 3. Гохберг И.Ц., Маркус А.С. Изв. вузов. Матем. Т. 15 N. 2. 1960. С. 74-87.
- 4. *Крейн М. Г.* Укр. матем. ж. 1949. 1:2. С. 3-66.
- 5. *Melik-Adamyan P.* Armen. J. Math. V. 5. N2. 2013. P. 75-97.
- 6. *С.- Надь Б., Фойаш Ч.* Гармонический анализ операторов в гильбертовом пространстве. М. Мир. 1966.
- 7. Штраус А.В. Изв. АН СССР. Серия мат. 1968. Т. 32. N1. С. 186-207.
- 8. Strauss A.V. O T: Adv. and Appl. V.123. Birkhauser. Basel. 2001. P. 469-484.