ZUSUUSUULP PSNPESNPLLELP UQQAUSEL UYUTEUPU
HAIOMUOHAJJbBHAA AKAJAEMMUSA HAYK APMEHUWUHU
NATIONAL ACADEMY OF SCIENCES OF ARMENIA

OJOKUJAIJBI 2a5uNpPp3suvEr REPORTS
i#?fip 115 2015 Ne 2

MECHANICS
VJIK 539

Academician Y. L. Sarkissyan

Rigid Body Points Approximating Concentric
Spheresin Alternating Sets of its Given Positions

(Submitted 5/11 2015)

Keywor ds: concentric spheres, algebraic deviation, approximating sphere,
approximate synthesis, reconfigurable manipulator.

Introduction. In [1] we have first studied the special points of a body
which in N positions during a given co-planar motion remain as chsse
possible to a circle, using as the measure of closeness thefsusgquared
distances of such points from the associated approximating circles. Inldive fol
up paper [2] the results of this study have been extended to thes poin
approximating a sphere in a given spatial motion.

In this paper, the concepts of [1] and [2] are generalizedhforcase of
multiple approximating spheres with a common center corresponding to
alternating sets of rigid body positions. Earlier, approximat{@itisigs) of 3D
data point sets by concentric spheres were studied in computetage [3, 4]
and more intensively in physiotherapy applications, in connection théh
determination of the center of relative rotation of two adjacgments
constituting a human joint [5-7].

The present paper considers a new and more complex problemeWto se
determine the points of a moving body which in its m given skfinitely
separated positions remain as close as possible to correspondiogcentric
spheres. By analogy with [2], as a tool to find these poimtsuse the least
square approximations with an algebraic error function defined below.

L east squar e approximations of spatial point position sets by concentric
spheres. A rigid body e undergoes spatial motion with respect to a fixed body
E. Coordinate systems oxyz and OXYZ are rigidly attached tonce E&
respectively. We consider the following problem: givemoat B (%, Vs, Z) in
e, determine a set of sphemaj'fs(j =1, 2, ..., mn E with a common center A

radiiR (j= 1, 2, ..., m) so that each j-th sphere of this set is as close as @ossibl
to the assigned j-th set of poigg (i= 1, 2, ..., §). In other words, the sought-
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for spheres should minimize in alN :zni N, given positions of e geometric
=
(radial) deviationsh; of points B from these spheres

1
A =[AB|-R=(8 + B-2R R~ F 1)
Whereﬁsu and R, are the position vectors of points &d A from the origin
0.

The objective function estimating the closeness of pointstd the
approximating spherg, may have different forms depending on the selected
criteria of closeness (approximation measure). As mentioned aboeewher
use the least square objective which requires to minimizeuheof squared
radial deviations (1) of points;Brom A°. However, there is no closed form
solution for the approximating sphere based on this objectice she sphere
center coordinateX,, Ya, Za are in the radicand of (1), and a lengthy iterative
search routine is required to determine them. In order to avoick thes

computational difficulties we use another error function propose?] ifof the
single sphere case:
A =‘A_3i‘2 -R=4 (A_E’J' JR)' (2)
Clearly, Ag; =0 if only point B; lies on the spherexle, also, Aq; is small
if the point lies near the sphere. Now, sin((eif\_|?>1.i)2 =(R+n, )2 =
=R’+RA; +A7, it follows from (2) that if points B are rather close ta’,
and Aj can be neglected, theiy, =2R A, , i.e. Aq; is proportional toA; and
can substitute it in the further minimization procedures. Terdehe the

approximating concentric spheré$ (j= 1, 2, ..., m) we transform (2) to the
following linear function:
1
Aq, =—2[><BJ X*+Y, %+ % 2+ H-3 I%,ej, 3)
where His a constant depending only on the sphere parameters:
1
H =5 (R - X -¥% - Z), @)
Now we form the objective function as the sum of squared aligetbea
viations determined for m subsets of the given posipr{s1, 2, ..., m; i=1,
2, ..., N:
m NJ
S=2 245 ®)
J

=1 i=1
For any point B (¥, ys, Zs) given in e the concentric spherg$ (= 1, 2,

..., M) approximating the corresponding sets of positignsfB in E should be
determined from the necessary conditions for a minimum of (5):

9S 5 S _y S _y S, Sy (6)
ox, 'y, oz, 'oR R
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After substituting into (5) from (4) and using for brevity rimtias X, Y,

Zj, R; for Xe, Yo Zg and Re, respectively, conditions (6) can be reduced to
the following system of (3+m) linear equations i, X, Za, H (=1, 2, ..., m)
presented below in a matrix form:

MEPE = FF, @)
where
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It is easy to see from (3-5) that conditi%q?fszo in (7) are equivalent to
i
9S g,
0H,
To solve the system (8) we express coordinaigsyX Z; of point B in E

through its coordinatesgX ys, Zz in € by means of the following linear
transformation :

X ji xoji Xg
Yi 151 [T Y (8)
z ji Zoji Zg

whereT; is a 3x3 rotation matrix which rotates the system xyz frguosition

with its axes initially parallel to the axes X, Y, Z to #thiposition of j-th given
position set g
It follows then that if we have m sets of positiag§=1, 2, ...,m; i=1, 2,
, N) and if we select an arbitrary point B in e, equation (7) uniquely
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determines m sphere¥ (j=1,2,.. m) with the common center A@ Ya, Za)
approximating the corresponding m position $tgj=1, 2, ..., m; i=1, 2, ...,
N;) of point B given by (8). For the further analysis, it is conest to present
the solution of (7) in the vector form:
1

(Xp Y Zas Hoeoo Hm)=5( Dy, Dy,D,,D,,Dy ... ,.D ) 9)
where Dx:Dy:Dz.Dy Dy v By are (3+m)-th order determinants defined by
the expanded matrix of (7). The solution (9) exists and is uniagletbermined,
unless the coefficient matrix m of the system (7) is singdlais can happen if
only all points Bji are coplanar [2].

After determining the coordinates of the common center A ofrephe

and constants;Hby (10), we find the radii PfA; from (4):

1
R =(X§+\gf+ Z+2 Hj)z, i=12,..,m.
Substituting (4) for Hinto the last m equations of (7), we obtain another
expression for R

R =305 %) (Y1) +( 2 2T Frze.n a0

It follows from (10) that the radius of each j-th approximaspbere/; is

the root-mean-square of distances fi&l, 2, ..., N) between the common
center A of all spheres; and N positions B (i=1, 2, ..., N) of B in the j-th set
of prescribed positions €i=1, 2, ..., N).

Correspondence between points of e and E. Determinants in the right side
of (9) are functions of the coordinates ¥s, zz of B in e. It follows from (10)
then that corresponding to any point B in e there is a unique fixed ipokE

which is the common center of sphekegj=1, 2, ..., m) approximating in the
last square sense given m alternating sets of point-posBjo@s1, 2, ..., m;
i=1, 2, ..., N).

If we invert themoving and fixed bodies so that e becomes the fixed body
and E moves so as to maintain the same relative positioms the briginal
motion, we obtain the following expression for error functimg‘nﬁs

_ 1
ACU\ :(rB_rA) _RT_Z(XBXP} + yBy,li, + ZBZﬁ\ + h_E éjl (11)

wherer; (xs, ¥5,2;) and 7, (x,ﬁ‘ Y 12y ) are vectors from the origin, in e to

points B and A respectively, while jhare constants depending on the para-
meters of concentric sphergdo be determined:

1 1 .
h,-:E(RZ‘EZ):E(RZ‘)éZ‘ Y- gz) FL2,..,m (12)
Assuming we have a point A in E, the corresponding m concentric sphere

A7 in e which approximate best m sets of inverted posithgng=1, 2, ..., m;
i=1, 2, ..., N) of A should satisfy the necessary conditions for a minimum of

(5):
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ans OO—S=OO =0,.. 9 S — =
0X; A 07, on ah,
Substituting into (13) from (5) and (11), we can transform condit{@8)
into a system of (3+m) linear equationsgnys, z, hy, ..., hy, which we present
in the matrix form assuming notations by analogy with (7):
Mep®=F*. (14)
Expressions of §) P and FE in (14) are similar to those for M and F
in (7) and can be easily written by a simple change of notations.
CoordinatesxA",yﬁl A of inverted positions A of point A in e can be

determined by the following formula of linear transformation:
t t
(% Va2 | = T %= % X ¥ %= %] (15)
whereT,;* is 3x3 matrix inverse t@; in (8).

Equation (14) establishes a correspondence between points Analf thea
centers B of concentric sphere s{a&$} in e approximating m sets of inverted
positions A (j=1, 2, ..., m; i=1, 2, ..., N defined by (15). The singular case of
this correspondence for m=1 is studied in [2].

Points of e deviating least from concentric spheres. Now we proceed to
the main issue in this study: which points of e will approximaté dmscentric
spheresAjE in alternating sets of given positioggj=1, 2,..., m; i=1, 2,..., N.
The sum (5) is a function of (6+m) variables,Xa, Za, Xs, Y&, Zs, R (j=1, 2,
..., m). Therefore, for S to be a minimurthe following conditions are
necessary:

S . 0S__.0S_.0S .,0S 0 S

=0 05—
X,

¢ (13)

S ..

oY, 9z, ox oy 0Z 06_3 i= 12.m) (16)
It is easy to see that equations (16) can be obtained by combistems

(6) and (13) discussed above. This means that any set ajupbtgor (6+m)

parameters for which S has a minimum should satisfy to emsa(6) and

(13).The foregoing leads to the following theorem which gives a gemm

interpretation to the conditions (16).

Theorem. In order for a moving point-fixed center pair (B, A) to cause the

sum (5) to be a minimum it is necessary that:

1) A be a common center of sphem\,j':s(j =1,2...m) approximating m
sets of positions ;B(j=1, 2, ..., m; i= 1, 2, ..., M of point B which it
occupies in given positiong ef e with respect to E,

2) B be the common center of spheﬂﬁj =1,2,..m) approximating m

sets of inverted positions; /=1, 2, ..., m; i= 1, 2, ..., N of point A
which it occupies in inverted positiong & E with respect to e.
To study the locus of points in e for which S has stationary salue first
present the 4-th, 5-th and 6-th equations of (16) in the following form:
ny, o 0A q,. n Y, 0Aqg; m 3, 0Aqg;

ZZA d; =0, ZZAqu =0, ZZA Jl_: ’

j=1i=1 j=1i=1 ayB j=1i=1
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, . 0, oA, oA,
then substitute in them relations—-=-2x, , L=-2y, , L =-2z,
aXB i ayB i GZB i

following from (11) and expression (3) faﬁqu , Which yields the following 3
equations:

m N; 1
Z;(XX"’ X+ 7 Z+ H—E j '
5 (le XA Z + H 5 ] (17)

Mg_

'u‘

i

J

M

1
[xﬁxwvﬁw 3%+ K- ﬁé];\zj:o.

Substituting in (17) expressions ofAﬂ,yA‘,z% from (15) and relations

-

i=1

Xa=Dy/D, Ya=D/D, Z,=D4/D from (10), after some transformations we can
express equations (17) as
V = K{DZ + K,D? + K. D2+Z K',;Dx Dy, +Z KyD,Dy, +> KgD,Dy, +K DD+
i= j=1 j=1
KsDxDKgD,D +Z KiojDu D+ KiD?+KD,D, +K'P,D,+K pD,=0 (l = x,y,z)
=
where coefficient,...K,(I =x,y,z) ~are linear or zero order functions @f x

VB, Z8
Vi Vy, V; in (18) are homogenous quadratic formsnrD,,D,,D,.D,,

The analysis carried out in [2] for the case of a singleokgiven positions
(m=1) has shown that determinantsD, ,D,,D, can be expanded into 6-th

order and D, (j=12,..m) into 8-th order polynomials ingx ys, .

Furthermore, it has been established that equations (18) studied=for
define 3 algebraic surfaces of 13-th order embedded in e. Pbimtersection
of these surfaces correspond to the stationary values objbetive function
(5). It has been proved in [8] that the maximum number of realguwihich
can generally satisfy the equations (18) is not more than 245edsisto be
convinced that these results do not depend on the number m obmpasts
and remain valid fom>1, too. This indicates that, in general, it is likely to
expect a large number of points in e which bring to a minimu®. gfmong
them, we should determine the points which approximate oticepheres
with a sufficient accuracy.
An interactive method for determining the local minimums of S

Algebraic deviations (distance€)q; of point-position sets considered above

from a sphere are bilinear functions of (6+m) parame{gr¥ys, Za, Xa, Ve, Z,
H; (=1, 2, ..., m)which can be represented as linear functions (5) and (12) by
fixing a pointB (X, Vs, z) in € and A pointA (X, Ya, Z) in E respectively.
This property allows to avoid the solution of the nonlinear sygtE® in
determining local minimums of S and to use the method of sucedasear
iterations developed in [8] for locating the so called least squate pwints of
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a moving plane which approximate a circle in a given planaromotihe basic
idea of the method follows from a theorem formulated in [8] whih
applicable to any motion approximation problem with an associatiuddoil
error function. We reformulate it below in terms of the problander
consideration.

Theorem 2. If SV is the value of S for the approximating concentric sphere

set {)le}(l) with the center & determined by (9) for m sets of positions
BY (j=12...m;i=12.. N;) of an arbitrary point & of e andSY is the
value of S for the approximating concentric sphere{se}t(l) with the center
A" determined by (14) for m sets of the inverted position8

(i=12...mii=12.. N;) of AY thenS) < S,

It is easy to be convinced that the proposition of the theorevalics also
for the next and further inversions of relative positionsystems e and E, i.e.

the approximating sphere se[ﬂf}(z)constructed for m sets of positions

Bj(f)(j =12,...mi= :L2,...,Nj) of B® will yield a value & smaller then

S etc. Continuing this process of successive kinematic imressive get a
series of linear multiple sphere approximation problems witdecreasing

sequences”, §), &, & ... of the objective function values which converges

at one of local minimums of S. The iteration process isiteted when the
prescribed accuracy of solution is achieved. The described metmtested
by the numerical examples of designing a 5 (SPS) manipulatoragjtistable
link-lengths for the approximate generation of 2 given setdefrigid body
positions [9].

Conclusion. We have presented a study of special points of a rigid body
which in m alternating sets of given positions deviate least least square
sense from concentric spheres. The results of this papeedaanbidered as a
generalization of the theory of so called least square spoares developed in
[2] for the case of a single set of rigid body positions. &b the case of a
single position set, it is established that the locus of the sémigpoints lies at
the intersection of three T3order algebraic surfaces. An efficient iteration
method of determining these points is proposed which can be rapgilgd to
the synthesis of reconfigurable platform-type manipulators withrsahgoints
and adjustable link-lengths designed for the approximate gesremattigiven
multiphase motions or multiple point-paths. It is anticipated to rekghis
study by including other geometrical entities corresponding h® jbint
constraints in spatial mechanisms, such as parallel planesalcoanes and
cylinders.
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The problem of determining the points of a bodyakhin alternating sets of its
given positions deviate least in the least squamses from concentric spheres is
considered. The sought-for approximation is onectviminimizes the sum of squared
algebraic deviations of these points from the cotrge spheres approximating their
paths in each of the given sets of positions. Tdiatp of interest lie at the intersection
of three 18 order surfaces corresponding to the stationargitions of the least square
objective function. The theory and methods devalopere can be applied to the
synthesis of spatial adjustable mechanisms forathygroximate generation of multi-
phase motions or multiple point-paths.

Ujwnbtdhynu 8n.I. Uwupgquyub

Thtm dupdlih wjws ghpptph hpupwhwenpn
puqunipjnibubpnid hwiwljEinpnt qunkp Unnupljng
YEwbph dwuht

Thunwpynd E wyhug dwpdth wjtyhup YEnkph npnodw juunhpp, npnup bpw bw-
huwtipgws nhpplph hpwpwhwenpn puqunipnibitpnid wdkwphst Eu sbnynid hwdw-
YLuwnpnt upbpwibphg' wjuqugnyd pupwliniuhtibph hpdwuwnny: Zwpduplyng dn-
nwpynudp Wjuquplnud k npnubjh Yinbkph hwdwlbunpnt uwpbpuitphg hwipuhwy-
Juljwt oknnudubph pwnwlniuhubph gnidwpp wjws nphppbph hwdwwywnwuppwu
puqunipniubpnid: Nunidbwuhpnipyut wewplu Yenbpp npnpdnud Eu dhohtt punw-
Yniuughtt okndwt tyuwwnwluyhtt $niughuyh vnnughntiwpnipjut wuydwibpb wp-
nwwwwnlbtpnn 13-py Jupgh bpkp hwipwhwoyulwt dwybkplnyputph thnpthwnnt-
Uny: ZnpJuénid ubpluyugyus wkunipniut nt ykpngubpp jupnn o wadhgwlwin-
kb Jhpundt) jupquynpynn nwpwswluwt dwtthynijjughnt dkluwtthquubph uhtipt-
qnud, npnip btwhwnbugws Ea nus puquwthny swpdnudubph jud puquuyh htnw-
gotnh Untnuynp YEpupunwgpnipyut hwdwp:

Axkagemuk 1O. JI. Capkucsan

Touku TBEpaOro Tena, anMpoOKCUMHUPYIOIME KOHIIEHTPUYecKHe
cepbl B YepeayOIIMXCsl MHOKECTBAX €ro 3aJaHHbIX M0JI0KeHU

PaccmaTpuBaercst 3aada ompenesicHuss TOYEK TBEPAOTO Teia, KOTOphIe B depe-
JTYIOITUXCS. MHOYKECTBAX €ro IMOJO0KEHHH HaUMEHEe YKIIOHSIOTCS OT KOHIIEHTPUIECKUX
ctep B CMBICIIC HAMMEHBIINX KBaAPaToB. MIckoMoe mpuOImKeHrne MUHIMUZHPYET CyM-
My HAaWMEHBIIAX KBAJPaTOB anreOpamvIecKuX OTKIOHEHWH (pacCTOSIHWI) YKa3aHHBIX
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TOYEK OT KOHIIEHTPUUYECKUX C(ep B COOTBETCTBYIOIIUX MHO)KECTBAX 3a/@HHBIX II0JIO-
xKeHuH. MHTepecylole HaC TOYKHU JIeKAT Ha MepecedueHuy TpEX anredpandeckux Io-
BEPXHOCTEH TPUHAIUATOrO IOPsAKA, OTOOPaXKAIOUIUX YCJIOBUS CTAl[MOHAPHOCTH ieje-
BOU ()yHKLMHU CPEeJHEKBaJpaTUUECKOro OTKIOHEHus. Teopus u MeTonsl, paspaboTaH-
HBIE B CTaTbe, MOTYT OBITb HENOCPEICTBEHHO IPUMEHEHbI B CHHTE3€ IPOCTPAHCTBEH-
HBIX PeryIHpyeMbIX MaHUIYJSLUOHHBIX MEXaHU3MOB, [IPEIHA3HAYECHHBIX AN puonu-
KEHHOI0 BOCIPOM3BEZEeHIA 3aJaHHBIX MHOTO3TANIHBIX IBIDKEHHUI MM MHOXECTBEH-
HBIX TPaeKTOpUil pabouero opraHa.
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