^{Հшилпр} Том 113 Volume

2013

МЕХАНИКА

<u>№</u> 4

УДК 539.3

Академик С. А. Амбарцумян

Мембранная микрополярная теория оболочек, изготовленных из разномодульного материала

(Представлено 21/VII 2013)

Ключевые слова: *микрополярная теория, разномодульность, безмоментная теория оболочек.*

В основе предлагаемого варианта теории лежат исследования, опубликованные в работах [1-4], где читатель при желании может найти список соответствующей обобщающей литературы.

1. Пусть весьма тонкая оболочка постоянной толщины h отнесена к смешанной ортогональной системе координат α_i . Пусть криволинейные координаты α_1 и α_2 совпадают с линиями главной кривизны срединной

поверхности оболочки, а координата α_3 прямолинейна и направлена по внешней нормали срединной поверхности. Пусть $R_1(\alpha_1, \alpha_2)$ и $R_2(\alpha_1, \alpha_2)$ являются главными радиусами кривизны срединной поверхности, а $k_i = R_i^{-1}$ – главными коэффициентами кривизны (рис. 1).

В основе предлагаемой здесь теории наряду с общими предположениями [1–6] лежат также следующие допущения:

а) все искомые напряжения

 $(\sigma_{\alpha_1} = \sigma_{11}, \sigma_{\alpha_2} = \sigma_{22}, \sigma_{\alpha_1\alpha_2} = \sigma_{12}, \sigma_{\alpha_2\alpha_1} = \sigma_{21}, \mu_{\alpha_1\alpha_3} = \mu_{13}, \mu_{\alpha_2\alpha_3} = \mu_{23}),$ искомые перемещения $(u_{\alpha_1} = u_1 = u, u_{\alpha_2} = u_2 = v, u_{\alpha_3} = w)$, а также ψ_3 не зависят от координаты α_3 ;

б) считаются пренебрежимо малыми напряжения

$$\left(\sigma_{\alpha_{3}}=\sigma_{33}, \sigma_{\alpha_{1}\alpha_{3}}=\sigma_{i3}, \mu_{\alpha_{1}}=\mu_{11}, \mu_{\alpha_{2}}=\mu_{22}, \mu_{\alpha_{3}}=\mu_{33}, \mu_{\alpha_{1}\alpha_{2}}=\mu_{12}, \mu_{\alpha_{2}\alpha_{1}}=\mu_{21}\right),$$

а также компоненты деформации $\left(\gamma_{13}=\gamma_{31}, \ \gamma_{23}=\gamma_{32}\right);$

в) разномодульны лишь основные упругие постоянные, т.е. имеем E^+ , E^- , v^+ , v^- при этом $E^+v^- = E^-v^+$. Новые упругие постоянные микрополярной теории – α , β , γ , ε постоянны и не зависят от знаков напряжений ввиду отсутствия экспериментов, в частности, для наноматериалов.

Далее, рассматривая решённые задачи однородных оболочек, согласно основополагающим предположениям разномодульной теории упругости и микрополярной теории в отдельности, легко заметить, что в них неявно фигурируют элементы неоднородной и анизотропной теорий оболочек и пластин. Вопрос этот недостаточно изучен и ждёт своих исследователей. В этой работе, не вдаваясь в подробности, предлагается ещё одно допущение:

г) модуль сдвига в общем напряжённом состоянии имеет следующее осреднённое значение:

$$\mu = \frac{E^+(1+\nu^-) + E^-(1+\nu^+)}{4(1+\nu^+)(1+\nu^-)} = \frac{\mu^+ + \mu^-}{2} \quad . \tag{1.1}$$

При этом обобщённый закон упругости в главных направлениях α, β имеет вид [1,2]

$$\begin{aligned} e_{\alpha} &= a_{11}\sigma_{\alpha} + a_{12}\sigma_{\beta}, \quad e_{\alpha\beta} = 0\\ e_{\beta} &= a_{12}\sigma_{\alpha} + a_{22}\sigma_{\beta}, \quad e_{\alpha\beta} = 0 \end{aligned}$$
(1.2)

где

1)
$$ecnu \ \sigma_{\alpha} > 0, \sigma_{\beta} < 0, a_{11} = \frac{1}{E^{+}}, a_{22} = \frac{1}{E^{-}}, a_{12} = -\frac{v^{+}}{E^{+}} = -\frac{v^{-}}{E^{-}},$$

2) $ecnu \ \sigma_{\alpha} < 0, \sigma_{\beta} < 0, a_{11} = \frac{1}{E^{-}}, a_{12} = \frac{1}{E^{+}}, a_{21} = -\frac{v^{+}}{E^{+}} = -\frac{v^{-}}{E^{-}}.$ (1.3)

В частности, если

1)
$$\sigma_{\alpha} > 0$$
, $\sigma_{\beta} > 0$, $a_{11} = a_{22} = \frac{1}{E^{+}}$, $a_{12} = -\frac{v^{+}}{E^{+}}$, $\mu^{+} = \frac{E^{+}}{2(1+v^{+})}$
2) $\sigma_{\alpha} < 0$, $\sigma_{\beta} < 0$, $a_{11} = a_{22} = \frac{1}{E^{-}}$, $a_{12} = -\frac{v^{-}}{E^{-}}$, $\mu^{-} = \frac{E^{-}}{2(1+v^{-})}$. (1.4)

2. Для компонент несимметричного тензора деформаций и тензора изгиба-кручения для рассматриваемой задачи плоского напряжённого состояния оболочки имеем [2,14]

$$\gamma_{11} = \frac{1}{B_1} \frac{\partial u}{\partial \alpha_1} + \frac{v}{B_1 B_2} \frac{\partial B_1}{\partial \alpha_2} + k_1 w,$$

$$\gamma_{22} = \frac{1}{B_2} \frac{\partial v}{\partial \alpha_2} + \frac{u}{B_1 B_2} \frac{\partial B_2}{\partial \alpha_1} + k_2 w,$$

$$\gamma_{12} = \frac{1}{B_1} \frac{\partial v}{\partial \alpha_1} - \frac{u}{B_1 B_2} \frac{\partial B_1}{\partial \alpha_2} - \psi_3, \quad \chi_{13} = \frac{1}{B_1} \frac{\partial \psi_3}{\partial \alpha_1}.$$
(2.1)

$$\gamma_{21} = \frac{1}{B_2} \frac{\partial u}{\partial \alpha_2} - \frac{\mathbf{v}}{B_1 B_2} \frac{\partial B_2}{\partial \alpha_1} + \psi_3, \quad \chi_{23} = \frac{1}{B_2} \frac{\partial \psi_3}{\partial \alpha_2},$$

где $u(\alpha_1, \alpha_2)$, $v(\alpha_1, \alpha_2)$, $w(\alpha_1, \alpha_2)$ – перемещения; $\psi_3(\alpha_1, \alpha_2)$ – кручение относительно оси α_3 ; $B_i(\alpha_1, \alpha_2)$ – коэффициенты первой квадратичной формы поверхности $\alpha_1 0 \alpha_2$; $k_i(\alpha_1, \alpha_2)$ – главные кривизны этой же поверхности.

Обобщённый закон упругости для предлагаемой модели с учётом (1.1) представляется следующим образом [1–4]:

$$\gamma_{11} = a_{11}\sigma_{11} + a_{12}\sigma_{22} + B_3m_1^2\sigma_{\beta},$$

$$\gamma_{22} = a_{22}\sigma_{22} + a_{12}\sigma_{11} - B_3l_2^2\sigma_{\alpha},$$
(2.2)

$$\gamma_{12} = \frac{\mu + \alpha}{4\mu\alpha} \sigma_{12} + \frac{\mu - \alpha}{4\mu\alpha} \sigma_{21},$$

$$\gamma_{21} = \frac{\mu + \alpha}{4\mu\alpha} \sigma_{21} + \frac{\mu - \alpha}{4\mu\alpha} \sigma_{12},$$
(2.3)

$$\chi_{13} = \frac{1}{\gamma + \varepsilon} \mu_{13}, \ \chi_{23} = \frac{1}{\gamma + \varepsilon} \mu_{23},$$
 (2.4)

где

$$B_3 = a_{22} - a_{11}, \tag{2.5}$$

 μ_{i3} – микрополярные напряжения (MT^{-2}) , которые образуют несимметричные тензоры напряжения; σ_{ik} – классические напряжения разномодульной теории $(ML^{-1}T^{-2})$; $\alpha, \gamma, \varepsilon$ – упругие постоянные микрополярной теории $\alpha - (ML^{-1}T^{-2})$, которые имеют размерность модуля упругости $E^{\pm}(ML^{-1}T^{-2})$ и $\gamma, \varepsilon - (MLT^{-2})$; σ_{ρ} – главное напряжение $(ML^{-1}T^{-2})$, которое в плоском напряжённом состоянии, совместно со вторым главным напряжением σ_{α} , записываются следующим образом [1,4]:

$$\begin{aligned} \sigma_{\alpha} &= l_{1}^{2} \sigma_{11} + l_{2}^{2} \sigma_{22} + l_{1} l_{2} \left(\sigma_{12} + \sigma_{21} \right), \\ \sigma_{\beta} &= m_{1}^{2} \sigma_{11} + m_{2}^{2} \sigma_{22} + m_{1} m_{2} \left(\sigma_{12} + \sigma_{21} \right), \end{aligned} \tag{2.6}$$

 m_i, l_i – направляющие косинусы, определяющие систему главных координат ($\alpha_0 \beta$) в исходной системе координат ($\alpha_1 0 \alpha_2$), которые удовлетворяют известным соотношениям

	α	β
α_1	l_1	m_1
α_2	l_2	m_2

$$l_1^2 + l_2^2 = 1, \quad m_1^2 + m_2^2 = 1,$$

$$l_1^2 + m_1^2 = 1, \quad l_2^2 + m_2^2 = 1,$$

$$l_1 l_2 + m_1 m_2 = 0, \quad l_1 m_1 + l_2 m_2 = 0,$$

(2.7)

определяемым из очевидного условия $\sigma_{\alpha\beta} = 0$, $\sigma_{\beta\alpha} = 0$, в развёрнутом виде записанного следующим образом:

$$\sigma_{\alpha\beta} = l_1 m_1 \sigma_{11} + l_2 m_2 \sigma_{22} + l_1 m_2 \sigma_{12} + l_2 m_1 \sigma_{21} = 0,$$

$$\sigma_{\beta\alpha} = m_1 l_1 \sigma_{11} + m_2 l_2 \sigma_{22} + m_1 l_2 \sigma_{12} + m_2 l_1 \sigma_{12} = 0.$$
(2.8)

Из условия (2.8), с учётом соотношений (2.7), для направляющих косинусов имеем:

$$m_1^2 = l_2^2 = \frac{1}{1+k^2}, \quad m_2^2 = l_1^2 = \frac{k^2}{1+k^2},$$

$$m_1m_2 = -l_1l_2 = \frac{k}{1+k^2},$$

(2.9)

где

$$k = \frac{m_2}{m_1} = -\frac{l_1}{l_2} = -t \pm \sqrt{t^2 + \frac{\sigma_{21}}{\sigma_{12}}}, \quad t = \frac{\sigma_{11} - \sigma_{22}}{2\sigma_{12}}.$$
 (2.10)

Решая (2.2)-(2.40) относительно напряжений, получим [1-4]

$$\sigma_{11} = \frac{a_{12}}{\lambda} \gamma_{11} - \frac{a_{12}}{\lambda} \gamma_{22} - \frac{B_3}{\lambda} \left(a_{22} m_1^2 \sigma_{\beta} + a_{12} l_2^2 \sigma_{\alpha} \right),$$

$$\sigma_{22} = \frac{a_{11}}{\lambda} \gamma_{22} - \frac{a_{12}}{\lambda} \gamma_{11} - \frac{B_3}{\lambda} \left(a_{11} l_2^2 \sigma_{\alpha} + a_{12} m_1^2 \sigma_{\beta} \right),$$
(2.11)

$$\sigma_{12} = (\mu + \alpha)\gamma_{12} + (\mu - \alpha)\gamma_{21}, \sigma_{21} = (\mu + \alpha)\gamma_{21} + (\mu - \alpha)\gamma_{12},$$
(2.12)

$$\mu_{13} = (\gamma + \varepsilon)\chi_{12}, \ \mu_{23} = (\gamma + \varepsilon)\chi_{23},$$
 (2.13)

где

$$\lambda = a_{11}a_{22} - a_{12}. \tag{2.14}$$

Напомним, что полученная здесь модель микрополярной разномодульной теории справедлива лишь при принятых выше допущениях в) и г)

3. Из условий статической эквивалентности для внутренних усилий $T_{11}, T_{22}, S_{12}, S_{21}$ и планарных моментов Q_{13}, Q_{23} , не вызывающих трансверсальных явлений изгибного характера, имеем [1-6]

$$T_{i} = h\sigma_{ii}, \ S_{ik} = h\sigma_{ik}, \ Q_{i3} = h\mu_{i3}.$$
(3.1)

Из (2.10), (2.15) согласно (3.1) имеем

$$k = -t \pm \sqrt{t^2 + \frac{S_{21}}{S_{12}}}, \quad t = \frac{T_1 - T_2}{2S_{12}}.$$
(3.2)

Пусть $T_{\alpha} = h\sigma_{\alpha} > 0$, $T_{\beta} = h\sigma_{\beta} < 0$, тогда в силу (3.1) заключаем, что $(S_{12} + S_{21})$ и k имеют разные знаки:

$$k = -\frac{T_1 - T_2}{2S_{12}} - \left[\left(\frac{T_1 - T_2}{2S_{12}} \right)^2 + \frac{S_{21}}{S_{12}} \right]^{\frac{1}{2}} < 0 \quad \text{при} \quad (S_{12} + S_{21}) > 0,$$

$$k = -\frac{T_1 - T_2}{2S_{12}} + \left[\left(\frac{T_1 - T_2}{2S_{12}} \right)^2 + \frac{S_{21}}{S_{12}} \right]^{\frac{1}{2}} > 0 \quad \text{при} \quad (S_{12} + S_{21}) < 0.$$
(3.3)

Наконец, укажем, что при решении конкретных задач мы всегда должны знать знаки главных напряжений для корректного выбора соответствующих упругих постоянных – E^+ , v^+ или E^- , v^- . Эти постоянные могут быть выбраны как по ходу выполнения выкладок, так и в конце.

Наконец, из (3.3) вытекает, что при выполнении условия

$$(S_{12} + S_{21}) - T_1 T_2 > 0 (3.4)$$

в данной точке будут иметь место неравенства $T_{\alpha} > 0$, $T_{\beta} < 0$, т.е. данная точка является точкой второго рода, для которой справедлив обобщённый закон упругости (2.2), (2.3). В противном случае имеем $T_{\alpha} > 0$, $T_{\beta} > 0$ или $T_1 < 0$, $T_{\beta} < 0$, т.е. данная точка является точкой первого рода, для которой справедлив классический закон упругости изотропного тела [1,3].

4. Внутренние усилия и планарные моменты должны удовлетворять следующей системе уравнений равновесия [1,5]:

$$\frac{\partial B_2 T_1}{\partial \alpha_1} - \frac{\partial B_2}{\partial \alpha_1} T_2 + \frac{\partial B_1 S_{21}}{\partial \alpha_2} + \frac{\partial B_1}{\partial \alpha_2} S_{12} = -B_1 B_2 X, \qquad (4.1)$$

$$\frac{\partial B_1 T_2}{\partial \alpha_2} - \frac{\partial B_2}{\partial \alpha_2} T_1 + \frac{\partial B_2 S_{12}}{\partial \alpha_1} + \frac{\partial B_2}{\partial \alpha_1} S_{21} = -B_1 B_2 Y, \qquad (4.2)$$

$$k_1 T_1 + k_2 T_2 = Z, (4.3)$$

$$\frac{\partial B_2 Q_{13}}{\partial \alpha_1} + \frac{\partial B_1 Q_{23}}{\partial \alpha_2} + B_1 B_2 \left(S_{12} - S_{21} \right) = 0, \tag{4.4}$$

где $X(\alpha_1, \alpha_2), Y(\alpha_1, \alpha_2), X(\alpha_1, \alpha_2)$ – компоненты поверхностной нагрузки, приведённые к срединной поверхности оболочки.

Планарные моменты и внутренние усилия должны удовлетворять граничным условиям. Ради краткости записи граничные условия приводятся лишь для края $\alpha_1 = \text{const}$:

а) свободный край: $T_1 = 0$, $S_{12} = 0$, $Q_{13} = 0$;

б) шарнирный закреплённый в тангенциальном направлении край: $T_1 = 0$, v = 0, $Q_{13} = 0$;

в) жёстко заделанный край: u = 0, v=0, $\psi_3 = 0$.

Безусловно, возможны и другие граничные условия [1-6]

Согласно (2.2) - (2.4), (2.11), (2.15), (3.1), определив внутренние усилия и планарные моменты и подставив их в уравнения равновесия (4.1) – (4.4), получим полную систему дифференциальных уравнений относительно искомых функций u, v, w, ψ . Она в общем случае достаточно громоздка и необозрима, поэтому её здесь не приводим.

5. Для иллюстрации рассмотрим модельную задачу кручения замкнутой круговой цилиндрической оболочки. Оболочка длиной l с радиусом кривизны R закреплена одним торцом ($\alpha_1 = 0$) и подвергается кручению

усилием S_0 , приложенным к другому торцу ($\alpha_1 = l$) оболочки (рис. 2).

Коэффициенты первой квадратичной формы B_i и главные радиусы кривизны R_i имеют следующие значения:

$$B_1 = 1, B_2 = 1, R_1 = \infty, R_2 = R.$$
 (5.1)

Компоненты поверхностной нагрузки (X,Y,Z) равны нулю.

Осесимметричная задача. Уравнения равновесия (4.1) – (4.4) примут вид

$$\frac{\partial I_1}{\partial \alpha_1} = 0, \ \frac{\partial S_{12}}{\partial \alpha_1} = 0, \ \frac{I_2}{R} = 0,$$
$$\frac{\partial Q_{13}}{\partial \alpha_1} + (S_{12} - S_{21}) = 0.$$
(5.2)

Граничные условия запишутся следующим образом [2]:

при
$$\alpha_1 = 0$$
 $u = 0$, $v=0$, $\psi=0$,
при $\alpha_1 = l$ $T_1 = 0$, $S_{12}=S_0$, $Q_{13}=0$. (5.3)

Компоненты деформации и изгиба-кручения (2.1) примут вид

$$\gamma_{11} = \frac{\partial u}{\partial \alpha_1}, \quad \gamma_{22} = \frac{w}{R}, \quad \gamma_{12} = \frac{\partial v}{\partial \alpha_1} - \psi_3,$$

$$\gamma_{21} = \psi_3, \quad \chi_{13} = \frac{\partial \psi_3}{\partial \alpha_1}, \quad \chi_{23} = 0,$$
(5.4)

соотношения упругости (2.11) – (2.14) согласно (3.1), (5.4) примут следующий вид:

$$T_{1} = h \frac{a_{22}}{\lambda} \frac{du}{ds} - h \frac{a_{12}}{\lambda} \frac{w}{R} - \frac{B_{3}}{\lambda} \left(a_{22} m_{1}^{2} \sigma_{\beta} + a_{12} l_{2}^{2} \sigma_{\alpha} \right) h,$$

$$T_{2} = h \frac{a_{11}}{\lambda} \frac{w}{R} - h \frac{a_{12}}{\lambda} \frac{du}{ds} + \frac{B_{3}}{\lambda} \left(a_{11} l_{2}^{2} \sigma_{\alpha} + a_{12} m_{1}^{2} \sigma_{\beta} \right) h,$$
(5.5)

$$S_{12} = h(\mu + \alpha) \frac{\partial v}{\partial s} - h(\mu + \alpha) \psi_3 + h(\mu - \alpha) \psi_3,$$

$$S_{21} = h(\mu + \alpha) \psi_3 + h(\mu - \alpha) \frac{\partial v}{\partial s} - h(\mu - \alpha) \psi_3,$$
(5.6)

$$Q_{13} = h(\gamma + \varepsilon) \frac{\partial \psi_3}{\partial s}, \quad Q_{23} = 0.$$
(5.7)

Здесь и в последующем принимается $\alpha_1 = S$. Из первых трёх уравнений равновесия (5.2) согласно граничным условиям (5.3) для внутренних усилий получим

$$T_1 = 0, \ T_2 = 0, \ S_{12} = S_0.$$
 (5.8)

Из соотношений упругости (5.6), (5.7) согласно (5.8) после элементарных преобразований с учётом граничных условий (5.3) получим [1-4]

$$S_{21} = \left[1 - \frac{2\alpha}{\mu + \alpha} \frac{\operatorname{ch}p(l-s)}{\operatorname{ch}pl}\right] S_0, \qquad (5.9)$$

$$Q_{13} = (\gamma + \varepsilon) \frac{\operatorname{ch} p(l-s)}{\operatorname{ch} pl} \frac{pS_0}{2\mu h},$$
(5.10)

$$\Psi_3 = \left[1 - \frac{\operatorname{ch}p(l-s)}{\operatorname{ch}pl} \frac{pS_0}{2\mu h}\right] \frac{S_0}{2\mu h},\tag{5.11}$$

где

$$p^{2} = \frac{4\mu\alpha}{(\mu+\alpha)(\gamma+\varepsilon)}.$$
 (5.12)

Из соотношений упругости (5.6) согласно (5.8)-(5.11) для определения тангенциального перемещения v(s) получим

$$\frac{d\mathbf{v}}{ds} = \frac{1}{\mu h} \left[1 - \frac{\alpha}{\mu + \alpha} \frac{\operatorname{ch}p(l-s)}{\operatorname{ch}pl} \right] S_0, \qquad (5.13)$$

интегрируя (5.12) с учётом граничного условия (5.4), получим [3,4]

$$\mathbf{v} = \left[S + \frac{\alpha}{\mu + \alpha} \frac{\operatorname{ch}p(l - s) - \operatorname{ch}pl}{p\operatorname{ch}pl}\right] \frac{S_0}{\mu h}.$$
 (5.14)

Полученные здесь представления (5.8)-(5.14) по структуре, как и следовало ожидать, совпадают с соответствующими представлениями, полученными согласно микрополярной теории [3,4]. Здесь разномодульность фигурирует лишь в µ (см (1.1)).

Согласно (3.1), (5.8) и (5.9) из (2.9), (2.10) имеем

$$k = \pm \sqrt{\frac{\sigma_{21}}{\sigma_{12}}} = \pm \sqrt{\frac{S_{21}}{S_0}}, \quad m_1^2 = l_2^2 = \frac{S_0}{S_0 + S_{21}},$$

$$m_2^2 = l_1^2 = \frac{S_{21}}{S_0 + S_{21}}, \quad m_1 m_2 = -l_1 l_2 = \frac{\sqrt{S_{21}S_0}}{S_0 + S_{21}}.$$

(5.15)

Далее из (2.6) получим

$$\sigma_{\alpha} = -\frac{1}{h} \sqrt{S_0 S_{21}}, \quad \sigma_{\beta} = \frac{1}{h} \sqrt{S_0 S_{21}}.$$
 (5.16)

Подставляя в (2.2) значения γ_{ii} , B_3 , m_1^2 , l_2^2 , σ_{α} , σ_{β} , соответственно из (5.4), (2.5), (5.15), (5.16) получим

$$\frac{du}{ds} = \frac{B_3}{h} \frac{S_0 \sqrt{S_0 S_{21}}}{S_0 + S_{21}}, \quad \frac{w}{R} = \frac{B_3}{h} \frac{S_0 \sqrt{S_0 S_{21}}}{S_0 + S_{21}}.$$
(5.17)

В (5.17), подставляя значение S_{21} из (5.9), получим

$$\frac{w}{R} = \frac{B_3}{2h} \frac{\sqrt{1 - 2\frac{\alpha}{\mu + \alpha} \frac{\operatorname{chp}(l - s)}{\operatorname{chp}l}}}{\sqrt{1 - \frac{\alpha}{\mu + \alpha} \frac{\operatorname{chp}(l - s)}{\operatorname{chp}l}}} S_0, \qquad (5.18)$$

$$\frac{du}{ds} = \frac{B_3}{2h} \frac{\sqrt{1 - 2\frac{\alpha}{\mu + \alpha} \frac{\operatorname{chp}(l - s)}{\operatorname{chp}l}}}{\sqrt{1 - \frac{\alpha}{\mu + \alpha} \frac{\operatorname{chp}(l - s)}{\operatorname{chp}l}}} S_0. \qquad (5.19)$$

Последнее представление рациональнее интегрировать численно.

Рассматривая полученные здесь результаты, замечаем, что даже принятая упрощённая модель разномодульности может привести к новым результатам. В этой простейшей задаче полученное напряжённо-деформированное состояние существенно отличается от классического.

6. Мы полагаем, что заинтересованный читатель, корректируя исходные предположения, сумеет построить общую микрополярную теорию разномодульных оболочек. А в последующем – разномодульную, микрополярную теорию упругости, теорию для корректного определения напряжённо-деформированного состояния элементов конструкций, изготовленных из наноматериалов.

Исследование выполнено в рамках научного проекта № SCS 13 – 2C 005 ГКН МОН РА.

Институт механики НАН РА

Академик С. А. Амбарцумян

Мембранная микрополярная теория оболочек, изготовленных из разномодульного материала

В рамках безмоментной теории оболочек предложена новая модель микрополярной теории оболочек, изготовленных из разномодульного материала. Для иллюстрации предложенной модели рассмотрена задача кручения замкнутой круговой цилиндрической оболочки.

Ակադեմիկոս Ս. Ա. Համբարձումյան

Տարամոդուլ նյութից պատրաստված անմոմենտ թաղանթների միկրոպոլյար տեսություն

Անմոմենտ թաղանթների տեսության շրջանակներում առաջարկված է տարամոդուլ նյութից պատրաստված միկրոպոլյար թաղանթների տեսության նոր մոդել։ Որպես առաջարկված մոդելի օրինակ դիտարկված է փակ գլանաձև թաղանթի ոլորման խնդիրը։

Academician S. A. Ambartsumian

Membrane Micropolar Theory of Shells Made of Different Modulus Material

In the framework of membrane theory of shells a new model of micropolar theory of shell made of different elastic modulus material is suggested. As an example of the presented model a torsion problem of a closed circular cylindrical shell is considered.

Литература

- 1. Амбарцумян С. А. Разномодульная теория упругости. М. Наука. 1982. 319 с.
- 2. Амбарцумян С. А. Сопротивление материалов, разносопротивляющихся растяжению и сжатию. Ереван. Изд-во РАУ. 2004. 188 с.
- Амбарцумян С. А. Микрополярная теория оболочек и пластин. Ереван. Изд-во НАН РА. 1999. 214 с.; 2-е изд. Ереван. Изд-во НАН РА «Гитутюн». 2013. 233 с.
- 4. Амбарцумян С. А., Белубекян М. В. Прикладная микрополярная теория упругих оболочек. Ереван. Изд-во НАН РА «Гитутюн». 2010. 136 с.
- 5. Амбарцумян С. А. Общая теория анизотропных оболочек. М. Наука. 1982. 446 с.
- 6. Власов В. З. Общая теория оболочек. М. Гостехиздат. 1946. 784 с.